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Abstract

Higher-dimensional Einstein gravity in vacuum admits static black hole solutions with an Einstein manifiolattorfistant
curvature as a horizon. This gives a much richer family of static black holes than in four-dimensional GR. However, as we
show in this Letter, the Gauss—Bonnet string theory correction to Einstein gravity poses severe limitations on the geometry of a
horizon Einstein manifold. The additional stringy constraints rule out most of the known examples of exotic black holes with a
horizon of nonconstant curvature.
0 2005 Elsevier B.V. All rights reserved.
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Higher-dimensional black holes have come to play an important role, not only as a theoretical device to gain
insight on problems in 3- 1 gravity, but also because of the intriguing possibility that they could actually be
produced in the next generation of particle accelerators, provided a large extra dimensions scenario [§]correct
A rich family of static, vacuum black hole solutions to Einstein equations+4n2 dimensions exists, where the
horizon manifoldX’,, is not necessarily of constant curvature, as it may belong to the far less restricted class of
Einstein manifoldg2]. A natural question to ask is whether or not these black holes could actually be produced
in high energy scattering processes|3hthis problem is approached by studying the stability of the exotic black
holes in(n 4 2)-dimensional Einstein gravity, with emphasis on the case where the horizon Einstein manifolds are
spheres or product of spheres equipped with the inhomogeneous Einstein metrics discovered p4] Batthis
Letter we take a different approach. Since higher-dimensional gravity is motivated by string theory, we consider
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the effects of the first order string correction to Einstein gravity, namely, the Gauss—Bonnet term
1 :
G2p® = Rep¥ Ry’ — 2R Rep™ — 2R, R + RRp — Z(SZ(RCff Ref — 4R RS + R?). (1)
String theory predicts that the vacuum equations for the gravitational fie[&Jare

0=Gy"=AGop" + Gap” +aG 2", (2

wherec« is related to the string tensiom the cosmological constang ).» = ga» the spacetime metric and
G yab = Rap — %Rgub the Einstein tensor. Additional terms of higher order in the curvature are pofsjibieost
probably in the form of higher order Lovelock tens@@s7]. Since Einstein equations involve only the Ricci tensor,
it is intuitively reasonable that replacing a constant curvature horizon with an Einstein manifold in a black hole
solution may give a new solution of the field equations. In contrast, the Einstein-Gauss—Bonnet (EGB) term from
string theory exposes the full structure of the Riemann tensor, and, as we will show below, sets nontrivial conditions
on the Weyl tensor of the horizon manifold.

We take the horizoLy, to be aRiemannian manifold of dimensiom > 2 with metricg;; (tensors and connection
coefficients onX,, will be denoted with an overline; coordinate indices are from the middle of the alphabet). We
assumeY, is anEinstein manifold, i.e., one for which

Rij=K(n—1)g. (3)
Using (3) in the identityVi (R;; — Rg;;j/2) = 0 gives 0= (n — 1)(1 — n/2)V,«, thusk in (3) must be a constant,
since we assumed> 2. Eq.(3) also implies that

Rif* = Cii* + e (8%s;' — 85", 4)

whereC;;* is the Weyl tensor. In the particular case whéygt! = 0, ¥, is a Riemannian manifold afonstant
curvature . Since the Weyl tensor is identically zeraiit= 3, there is no distinction between Einstein manifolds
and constant curvature manifolds in three dimensions. Howevet, £08B, constant curvature manifolds are just
special cases of Einstein manifolds.

Let M be the two-dimensional Lorentzian manifold with line element

ds®=—f(r)dt®> + g(r) dr®. (5)

We will use letters from the beginning of the alphabet for the coordinatesnd underline tensors and connection
coefficients for this manifold. Note that

r_f S r_ &

r. =— r.'=— r.'=— 6
=1t 2g’ =—1tr 2f’ =—rr 28’ ( )
and that
! o 12, _ 27
Et,”=fgf+f g ffg. )
4f2g2
The spacetime is taken to be a warped produc,pnd M, with metric
ds? = —f(r)dt® + g(r)dr? + r?g;; dx' dx. (8)

In the region of interestf > 0 andd/d¢ is a time-like Killing vector, orthogonal to the= const slices. Iff =0
at somer = ro, there is a Killing horizon¥,, in these space-like slices.
The nonvanishing Christoffel symbols (&) are
r o
a a i =1 r = i J
Type =17, i =Ty, Fij=—§gijv I = 9)
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and the non-trivial components of the Riemann tensor are

/7 12 _ofN ) / . . —f
Rzrtr = fg f+f 2g2 f fgv Rrir] = 8 281']’ Rtit] = f (Sij»
4f2g 2rg 2rfg
Ciik kg—1
kl 12 kol lo k
R,‘j = r2 —|—< r2g >(8, 5j —8,‘ 8j ) (10)

Thus, the non-zero Ricci tensor components are

(21" fe+ P8+ f18'f  nf _—2f"fs+ %8+ f'8'f  ng

_l.

R, R

4f2g? 2rfg’ 4f2g? 2rg?’
Ri_T8f—rf'8+28f kg =D -1 ; (11)
b 2r2g2f i

and the Ricci scalar is
_ 22 (f'g + f8) +anrf(fg' — ['g) — AP fgf” + AngfAkg — D(n —1)

R 12
(2rfg)? (12)
The Einstein tenso (1), is diagonal, with components
G l_n(n—l)g(l—/cg)—nrg’ G r_nrf/—n(n—l)f(/(g—l)
L = 27 , Qr = 272 fg ,
i 20— fgkg =D =2+ g1+ fel2r(n = 1) f + 22 f"1 = r2ff'g' —r?gf”
G(]_),‘ = 2 . (13)
(rfg)
The Gauss—Bonnet tensGr(g)a” may have nontrivial off diagonal elements, these are
. C"Cr ..
Gl = 4 JFIi (14)
the diagonal elements f,),” are:
oot — (i Cu"Cia N n(n = D1 = D(keg ~ Dig(n =3 (eg — ) +2rg')
@t = 4% 4r4g3 ’
ot (2t G Cn N n(n = D = 2)cg ~ DIf (= 3(oeg = 1) — 2]
@r = 454 4r4g2f(r)
and
i (=D -2
Go)i' = W{—(n -3 (kg — 1)[g(/<g - Dn—4 + 2rg/]f2
+ f[(2r(n—=3) f + 21cr2f”)g2 + (f’(—g’Kr2 —2r(n—3) — 2r2f”)g + 3r2g’f’]
4 é l_lnénki _ . é 'I"C_'nkj
+r2(f’)2g(1—;<g)}+< 2 _iin Chi"Ci . 4ijln ki~ Ci > (15)
T

From the vacuum EGB equatio(®), 0= G;' — G,/ for all i andj, and 0= G;/, j #i. Using(8), (13), (14) and
(15) these conditions read

o Z Ckilnélnkj = 9 ( Z C_'kmlnélnkm>8,~j = Ot@&‘j. (16)

kln n kmlin
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From 0=G,' — G, « f'g + f¢ and(8), (13) and (15)we getf = c¢/g. We may then set the constant 1 by
rescaling . Introducing

)=k —r2y), (17)
we find that the remaining equations admit a solutiohiifi (16)is a constant ang (r) satisfies
1 n+1 / (XQ
S P )] + 57 =0, (18)
where
_an(n—1H(n—-2) s N A
P(y(r) = flﬂ(r) + Ellf(r) PONEL (19)
In conclusion, the EGB vacuum equations are:
o Z Cri"Cri® = 68,7, 6 constant (20)
klm
g =fr) =k —r?y ), (21)
an(n —1)(n — 2) 5 N " b
() 4 VOV = T e 4(n —3)rd’ (22)

wherep is an integration constant. If the horizon manifold has constant curv@Qys trivial, 9 = 0 and(21)—(22)
reduce to the equations leading to well known black hf8e43]. If we drop the string correction by settiag= 0,
(20)is trivially satisfied and we recover the family of solutions whose stability is studig2 14].

The main result of this Letter is E¢20), which sets the condition imposed by string theory on a candidate
Einstein horizon manifold. It is interesting that the same constraint was obtairj@é8]im a different context,
while attempting to generate five-dimensional brane geometries by stacking four-dimensional Einstein manifolds.
Eq. (20) poses a severe constraint on the geometry of the Einstein manifold that rules out most nontrivial (i.e.,
nonconstant curvature) Einstein manifolds. Note {28} is both an algebraic and a differential constraint, since
V;6 = 0. The algebraic constraint is always satisfied i 4, namely, all four-dimensional Einstein manifolds
satisfy an equation liké20) with a nonconstarft [15]. In higher dimensions, howevey;,,, Ci;"" C;,,*/ need not
be proportional t@;/ .

As an example, we will apply E¢20) to the Bohm metrics ifi3,4]. We should mention here that black-holes
with Bohm horizons were found to be unstable under tensor mode perturbations in Einstein[gfavity

The Bohm metrics have positive curvature and are locally givel8by

ds®=dp® +a(p)?d2% + b(p)*ds2?. (23)

wheredQ,%l is the line element of a unit-sphere. These can be extended onto manifolds of topdiéggt or
sPtl x 54, as long as

a(0) =0, a(0) =1, b(0) = b,, h(0)=1. (24)
There are infinitely many Bohm metrics o9+ corresponding to different choices @fp) andb(p). These
are labeledBohm(p, ¢)om, m = 0,1,2, ..., in [3]. There is also an infinite family os?*1 x $7, labeled

Bohm(p, ¢)am+1, m =0,1,2,.... The variablep runs from zero to a valugs, and O< a(p), b(p) if 0 < p [3].
Using the results ifi3], and introducing

. .2 o7
a ac—1 ab

Xy:=—+«, Yo = —5— +xk, Zap = — +« (25)
a a ab

(and analogous definitions faf, andY}), we can write the conditions f¢23) to satisfy(3) as[3]

Xo+qZap+(p—DY, =0, Xp+pZap+ (g — DY, =0, PXa+qgXp=0. (26)
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If we further imposg20) we get three more equations

PX2+qXp?=0/2, X+ qZa+(p-DY2=0/2, Xp*+ pZa®+(q—DY,2=0/2. (27)

Fixing the conformal factor such that= 1, and regardin¢26)—(27)as algebraic equations ofy,, X, Y4, Ys, Zap,
p, g and@, we find a number of solutions, many of which are trivial because theyhav@ and thus correspond
to a null Weyl tensor. Inserting the remaining (algebraic) solutior{@)leaves a unique possibility:

-1 -1 . 29 —1 -1
p=g—1, 9:%, a('o):\/qu—lsm<\/qq r), b(p) = q_ . (28)

This can easily be recognized as the standard metri¢f onS?, a well known homogeneous Einstein metric which
corresponds to the particular caBehm(g — 1, ¢)1 in the notation of3]. Of the countably infinite set of Bohm
metrics, only this one is admissible as a horizon. In particular, no static black hole in odd spacetime dimensions
admits a Bohm horizon.
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