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Linear stability of Einstein-Gauss-Bonnet static spacetimes: Vector and scalar perturbations
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We study the stability under linear perturbations of a class of static solutions of Einstein-Gauss-Bonnet
gravity in D � n� 2 dimensions with spatial slices of the form �n

� � R�, �n
� an n�manifold of

constant curvature �. Linear perturbations for this class of spacetimes can be generally classified into
tensor, vector and scalar types. In a previous paper, tensor perturbations were analyzed. In this paper we
study vector and scalar perturbations. We show that vector perturbations can be analyzed in general using
an S-deformation approach and do not introduce instabilities. On the other hand, we show by analyzing an
explicit example that, contrary to what happens in Einstein gravity, scalar perturbations may lead to
instabilities in black holes with spherical horizons when the Gauss-Bonnet string corrections are taken
into account.
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I. INTRODUCTION

The analysis of the properties and behavior of gravity in
higher dimensions has become a major area of research in
recent years, motivated, in particular, by developments in
string theory. Among others, the Einstein-Gauss-Bonnet
(EGB) gravity theory has been singled out as relevant to
the low energy string limit [1]. The EGB theory is a special
case of Lovelock’s theory of gravitation [2], whose lagran-
gian is a linear combination of Euler densities continued
from lower dimensions. Lovelock’s theory gives equations
involving up to second order derivatives of the metric, and
has the same degrees of freedom as ordinary Einstein
theory [2]. A number of solutions to the EGB equations,
many of them relevant to the development of the AdS�
CFT correspondence [3], are known, among them a variety
of black holes in asymptotically Euclidean or �A�dS space-
times [4–9]. These were found mostly because they are
highly symmetric. Analyzing their linear stability, how-
ever, confronts us with the complexity of the EGB equa-
tions, since the perturbative terms break the simplifying
symmetries of the background metric. To be more specific,
we consider spacetimes that admit locally a metric of the
form

ds2 � �f�r�dt2 � g�r�dr2 � r2 �gijdxidxj; (1)

where �gijdxidxj is the line element of an n� dimensional
manifold �n

� of constant curvature � � 1; 0 or �1. Linear
perturbations around (1) can be conveniently classified,
following the scheme proposed in [10], into tensor, vector,
and scalar perturbations. The � � 1 case �n

1 � Sn gives,
for appropriate f and g, cosmological solutions, as well as
higher dimensional Schwarzchild black holes. The stability
of these solutions under tensor perturbations was studied in
[11]. A complete classification of solutions to the EGB
equation with line element (1) and � � 1; 0 or�1, together
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with a case by case stability study under tensor perturba-
tions appears in [12]. In this paper we extend the analysis in
[12] to vector and scalar perturbations. The methods we
employ here are rather different from the analytic compu-
tations carried out in [11,12] for arbitrary dimension. The
complexity of the computations involved in the study of
vector and scalar perturbations forced us to develop alter-
native approaches. Explicit expressions were worked out
for spacetime dimensions D � n� 2 � 11, and their
n-dependence was then interpolated. As a result, we
obtained expressions which are low degree ( � 4)
polynomials in n, correct at least up to the highest physi-
cally interesting spacetime dimension (D � 11; n � 9).
Nevertheless, we conjecture that they are correct for arbi-
trary n. This is because only the lower values of n (up to
n � 6) are required to obtain the n-dependence, and higher
values appear as ‘‘predictions’’. Moreover, it is clear that a
purely analytic derivation of the equations for general n
should lead to expressions of the form presented here, and
this gives further support to our conjecture. The paper is
organized as follows. In Sec. II we give the general solution
of the EGB equations with metric (1), then we introduce
vector and scalar perturbations following [10]. In Sec. III
we study the stability of (1) under vector perturbations in
EGB gravity. As was done for tensor perturbations in [12],
we show that the problem reduces to obtaining a lower
bound for the spectrum of a Schrödinger operator which, in
spite of its complexity, turns out to be an S-deformation
[10] of a much simpler operator. Section IV is devoted to
scalar perturbations. A step by step guide for constructing
the potential of the associated Schrödinger operator is
given, since its general expression for arbitrary dimensions
is extremely long and has a complicated dependence on the
parameters. This makes a general analysis of the stability
problem under scalar-type perturbations practically impos-
sible. On the other hand, since the procedure given in this
paper allows for the explicit construction of the potential
for any particular choice of dimension n, and other pa-
rameters of the theory, our results can easily be used in the
-1 © 2005 The American Physical Society
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analysis of particular classes of situations. As an example
and application, we analyze Schwarzschild-like five di-
mensional black holes and find a scalar instability of low
mass, which is absent in Einstein gravity. Section V con-
tains the conclusions.

II. VECTOR AND SCALAR PERTURBATIONS OF A
CLASS OF STATIC SPACETIMES

The Einstein-Gauss-Bonnet (EGB) equations in the vac-
uum case are given by

0 � Gb
a � �G

�0�b
a �G

�1�b
a � �G

�2�b
a; (2)

where � is the cosmological constant, G�0�ab � gab the
spacetime metric, G�1�ab � Rab �

1
2Rgab the Einstein ten-

sor and

G�2�b
a � Rcb

deRde
ca � 2Rd

cRcb
da � 2Rb

cRc
a � RRb

a

�
1

4
�ab�Rcd

efRef
cd � 4RcdRd

c � R2� (3)

the quadratic Gauss-Bonnet tensor. These are the first three
in a tower G�s�b

a; s � 0; 1; 2; 3; ::: of tensors of order s in
Rab

cd given by Lovelock in [2].
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Here we consider static spacetimes satisfying (2) with a
metric of the form (1). These are foliated by spacelike
hypersurfaces, orthogonal to the timelike Killing vector
@=@t, that contain a submanifold of dimension n � D� 2
(D the spacetime dimension) of constant curvature � �
1; 0 or �1, and line element �gijdxidxj. The nonzero com-
ponents of the Riemann and Ricci tensors, and the Ricci
scalar for a metric of the form (1) are given in [12].
Inserting these in (2) we find that (1) solves the EGB
Eq. (2) if [4,5,7,8,11,12]

1

g�r�
� f�r� � �� r2 �r� (4)

and  �r� is a solution of

P� � �
n�n� 1��n� 2�

4
 2 �

n
2�

 �
�

�n� 1��

�
�

�rn�1 : (5)

This implies that,
f�r� � ��
r2

��n� 1��n� 2�

�
1� �

����������������������������������������������������������������������������������
1�

4��n� 1��n� 2�

n�n� 1�

�
��n� 1�

rn�1 ��
�s �
; (6)
where � � 	1 picks a root of the quadratic polynomial
P� �. The Ricci scalar for this solution is [12]

R � �n� 2��n� 1� �r� � 2r�n� 2�
d �r�
dr
� r2 d

2 �r�

dr2 ;

(7)

so that there is a singularity whenever  ! 1 or  !  o,
the stationary point of P, since d =dr!1 at this point.
We also note [12] that if �=� > 0 the condition f � ��
r2 > 0 reduces to

 � 0 or 0< ;
�
�
j j�n�1�=2 � P� � �if � � 1�

(8)

 � 0 �if � � 0� (9)

 � 0 and
�
�
j j�n�1�=2 
 P� � �if � � �1� (10)

whereas for �=� < 0, f � �� r2 > 0 is equivalent to

 � 0 or 0< ; P� � �
�
�
j j�n�1�=2 �if � � 1�

(11)

 � 0 �if � � 0� (12)
 � 0 and P� � 

�
�
j j�n�1�=2 �if � � �1� (13)

In [12], the spacetimes (1)-(3)-(4)-(5)-(6) were classified
by studying the intersections of the curves P� � and
�
� j j

�n�1�=2.
To study linear perturbations we follow the treatment

given in [10], where it is shown that an arbitrary perturba-
tion of the metric is a linear combination of perturbations
of the tensor, vector and scalar types. Tensor perturbations
around the EGB vacuum solution (1)-(3)-(4)-(5) were
studied in [11,12]. We consider now vector and scalar
perturbations. We use a; b; c; d; ::: as generic indices, greek
indices�; � refer to r; t, whereas i; j; k; l; m; ::: are assumed
to take values on �n

�. A bar denotes tensors and operators
on �n

�. The perturbations are of the form

gab ! gab � hab; (14)

and indices of hab are raised using the background metric,
therefore �gab � �hab.

A. Vector perturbations

A general vector perturbation is given by,

h�� � 0 h�i � rf�Vi; hij � 2r2HTVij (15)

where f�, and HT are functions of �r; t�, and Vi, Vij are
-2
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defined on �n
�. Vi is a divergence-free vector harmonic

field, satisfying,

� �4� k2
V�Vi � 0 �riVi � 0 (16)

where �4: � �rj �rj and �ri are, respectively, the Laplacian
and covariant derivative for the metric �gij of (1). The
symmetric tensor

Vij � �
1

2kV
� �riVj � �rjVi� (17)

is a harmonic tensor on �n
�, with the properties,

� �4� k2
V � �n� 1���Vij � 0 (18)

Vii � 0; �rjV
j
i �

k2
V � �n� 1��

2kV
Vi (19)

As shown in [10], for k2
V � �n� 1��, the combinations,

F� � f� �
r
kV
@�HT (20)

are a basis for gauge invariant variables.

B. Scalar perturbations

Scalar perturbations are of the form

h�� � F ��S; h�i � rF �Si;

hij � 2r2�HL �gijS�HTSij�:
(21)

In (21), S is a scalar harmonic

� �4� k2
S�S � 0; (22)

and one constructs scalar-type harmonic vectors and ten-
sors

Si � �
1

kS
�riS; Sij �

1

k2
S

�ri �rjS�
1

n
�gijS; (23)

which satisfy

� �4� k2
S � �n� 1���Si � 0;

�riSi � kSS; Si
i � 0;

(24)
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and

rjS
j
i �
�n� 1��k2

S � n��
nkS

Si;

� �4� k2
S � 2n��Sij � 0:

(25)

Harmonic symmetric tensors of arbitrary rank on n�
spheres are constructed in [13]. In general, we lack explicit
expressions for harmonic tensors on arbitrary constant
curvature manifolds, although bounds on the Laplacian
spectrum can be derived.

It can be shown [10] that, in analogy, and, extending to
higher dimensions the well known Regge-Wheeler gauge
for ‘‘even’’ perturbations in four spacetime dimensions,
one can, by an appropriate coordinate transformation,
choose a gauge where F a � 0, and HT � 0. This makes
F ab andHL a basis for gauge invariant quantities. We shall
make this choice of gauge in what follows, but, for conve-
nience, we rewrite F ab in the form,

F rr �
1

f
Frr; F rt �

@Frt
@t

; F tt � fFtt (26)

III. VECTOR PERTURBATIONS IN EGB GRAVITY

In this section we study vector perturbations of (1) as
defined in Eqs. (14)–(19). As is clear from the derivations
in [10], one can always choose a gauge where HT � 0.
This generalizes the Regge-Wheeler gauge for odd pertur-
bations to higher dimensions, but more important, it sim-
plifies considerably the analysis. With this simplifying
gauge choice, after a long computation we find that the
nontrivial linearized Einstein-Gauss-Bonnet equations
�Gij � 0 are equivalent to,

0 �
@
@r

�
Frf�r

�n�2� � ��n� 2�
d
dr
�r�n�3���� f���

�
�
@
@t

�

�
Ft
f

�
r�n�2� � ��n� 2�

d
dr
�r�n�3���� f�

��
(27)

while �Gir � 0 can be written as
0 � r
�
@2Ft
@t@r

r�
@2Fr
@t2

r� 2
@Ft
@t

�
�r2 � ��n� 1��n� 2���� f�� � Frf

��
�n� 1��n� 2�r2��� f� � 2�n� 1�r3 df

dr

� r4 d
2f

dr2

�
� �n� 1��n� 2�

�
r2 d
dr

�
df
dr
�f� ��

�
� 2�n� 3�r

df
dr
�f� �� �

1

2
�n� 3��n� 4��f� ��2

�
�

�

�
��n� 2�

�
�n� 3��f� �� � r

df
dr

�
� r2

�
�k2
V � �n� 1��� � 2r4�

�
(28)
and �Git � 0 leads to,
-3
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0� Ft

�
�r2

�
r2 d

2f

dr2 ��n� 1�
�
2r
df
dr
�n�f���� 2

��
��n� 1��n� 2�

�
r2 d
dr

�
df
dr
�f���

�
� 2�n� 2�r

df
dr
f

��n� 3�
�
n
2
��� f�2� 2� 2r

df
dr
� 2f

��
�� 2r4��

�
r2���n� 2�

�
r
df
dr
��n� 3���� f�

��
�k2
V ��n� 1���

�

� fr�4�n�
�
r2 @
@r

�
@Ft
@r

r�n�4��r2���n� 1��n� 2���� f��
�
�
@
@r

�
@Fr
@t

r�n�2��r2���n� 1��n� 2���� f��
��

(29)
As explained in the Introduction, the n-dependence in
these formulas was obtained by interpolating the results
for different n values, and checked in the physically rele-
vant range n � 9 and isolated higher n values. No more
than four points were required for the interpolation in every
case. We conjecture that these formulas are valid for every
n. As required for consistency, (27)–(29) are not indepen-
dent. Setting

Ft � p�r�f�r�
@��t; r�
@r

; Fr �
p�r�
f�r�

@��t; r�
@t

; (30)

with

p�r� �
�
r�n�2� � ��n� 2�

@
@r
�r�n�3��f�r� � ���

�
�1
;

(31)
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solves trivially (27) and makes both (28) and (29) equiva-
lent to

@2��t; r�

@t2
� f2 @

2��t; r�

@r2 �QV�r�
@��t; r�
@r

� qV�r���t; r�

� 0: (32)

Here,

��t; r� �
@��t; r�
@t

; (33)

and

qV�r� �
f�k2

V � �n� 1���H

r2 ; (34)

where
H �
�2n�n� 2�2�n� 3��n� 1� 2 � 2�n�n� 2��n� 3� � 4�n� 2���� 2n

2n��n� 1��n� 2� �� 1�2
: (35)

Also

QV�r� � �
f

���n� 2�r��n� 3���� f� � r dfdr� � r3�

�
��n� 2�

�
r2f

d2f

dr2 � r2
�
df
dr

�
2
� f�n� 2��n� 3���� f�

�

�
df
dr

�
��n� 1�f� n� 3�r

�
� r3

df
dr
� fnr2

�
(36)
If we introduce a Regge-Wheeler ‘‘tortoise’’ coordinate r,
such that,

dr

dr
�

1

f�r�
; (37)

an ‘‘integrating’’ factor K�r�r��, and we also separate
variables

��t; r� �
1

KV�r�r
��
��r�r��e!t; (38)

we find that the choice

KV�r� �
�
rn � ��n� 2�r2 @

@r
�r�n�3���� f��

�
�1=2

(39)

reduces (32) to a (stationary) Schrödinger equation,
H � � �
@2�

@r2
� VV� � �!2� � E� (40)

with ‘‘energy’’ eigenvalue �!2 and ‘‘potential’’ V�r�r��
given by

VV�r� � qV�r� �
1

KV�r�

��
d2KV
dr2

�
f2 �

�
dKV
dr

�
f
df
dr

�
:

(41)

The stability problem therefore reduces to analyzing the
spectrum of the Hamiltonian operator (40), the presence of
a negative eigenvalue (! real) signaling an instability. H
acts on square integrable functions on the f 
 0 region I,
and, in spite of the complexity of the potential VV , infor-
mation on its spectrum can be obtained by using the
S-deformation approach, as done in [10,12]. As in [12],
we find that, due to the structure (41) of VV , it can be
-4
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S� deformed into qV given in (34) and (35), thus, for any
normalized smooth test function of compact support in I
[12]

��;H�� �
Z
I

jD�j2

f
dr� �k2

V � �n� 1���

�
Z
I

j�j2H

r2 dr; (42)

whereD� � � ddr � S��; S � �fd ln�KV�=dr. E in (40) is
greater than or equal to a lower bound of (42). Since neither
H nor D depend on kV , it is clear that (42) can be made
negative for sufficiently high kV unless H is positive defi-
nite on I. In fact, ifH < 0 on an open setO � I, the second
integral in (42) will be negative for a test function with
support contained inO, and ��;H��< 0 for high enough
kV . On the other hand, if H is nonnegative in I, then E 
 0
since both integrals in (42) will be positive and

k2
V � �n� 1�� > 0; (43)

as can be seen by integrating by parts

0 �
Z

�n
�

�riVj �rjVi��riVj �rjVi�
���
�g

p
dnx (44)

on the Riemannian compact manifold �n
�. We conclude

that a spacetime is stable under vector perturbations if and
only ifH in (35) is non negative on I. As a first application,
note from (35) that H � 1 in Einstein theory (� � 0), an
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already known [10] result on the stability of (1) under
vector perturbations in General Relativity. Let us now
consider the theories for which P� � in (5) has two real
roots �1 <�2, so that r extends to infinity (5). As in [12],
define

 o �
�1 ��2

2
; � �

�1 ��2

2
; x �

 �  o
�

(45)

in terms of which

H �
n� 3

2�n� 1�
�

n� 1

2�n� 1�x2 : (46)

Eq. (46) shows that all solutions are stable for these theo-
ries (note that that the Gauss-Bonnet term G

�2�b
a in (2) is

non trivial starting n � 3, so that (46) is positive definite in
the relevant cases). If P� � has complex roots then � in
(45) is purely imaginary and x2 < 0 in (46). For these
theories the spacetimes (1) have a naked singularity [12].
The stability of spacetimes with a naked singularity in
EGB theories is currently being studied [14].

IV. SCALAR PERTURBATIONS IN EGB GRAVITY

After interpolating the n-dependence in the perturbative
equations for n � 9, we obtained a set of equations equiva-
lent to �Gab � 0, in terms of the functions introduced in
(21) and (26). The �Gij � 0 equations imply the condition
0 � �Ftt � Frr���n� 2��n� 3���f� �� � r2 � �n� 2��rf0� � 2�n� 2���r2 � �n� 3��n� 4���f� ��

� 2�n� 3��rf0 � �r2f00�HL: (47)

�Grt � 0 is equivalent to

0 � nr�2f� rf0�
@HL

@t
� f

�
nr
@Frr
@t
� k2

S
@Frt
@t
� 2nr2 @

2HL

@r@t

�
: (48)

�Gtt � 0 is equivalent to

0 � �r2 � �n� 1��n� 2����� f��
�
nfr

�
�
@Frr
@r
� 2r

@2HL

@r2

�
� 2�n� 1�HL�k2

S � n�� � nr
�
@HL

@r

�
�rf0 � 2�n� 1�f�

� Frr�n�n� 3�f� k2
S � nrf

0�� � nrf�r�
�
�Frr � 2r

@HL

@r

�
�2r� �n� 1��n� 2��f0�

� 2�n� 1��n� 2��HL�k
2
S � n���2�� 2f� rf0�: (49)

�Gir � 0; is equivalent to

0 � 2rf
�

2�n� 1��n� 2���2�� 2f� rf0�
@HL

@r
� Frr�2r� �n� 1��n� 2��f0�� � �r2 � �n� 1��n� 2����� f�

�

� �2rf
�
@Ftt
@r
� 2�n� 1�

@HL

@r

�
� Frr�rf0 � 2�n� 3�f� � 2r

@2Frt
@t2

� Ftt��2f� rf0�
�
: (50)

�Git � 0; is equivalent to
-5
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0 � ��n� 1��n� 2����� f� � r2�

�
@Frt
@t
��n� 4�f� rf0� �

@2Frt
@r@t

fr�
@Frr
@t

r� 2�n� 1�r
@HL

@t

�

� 2�n� 1��n� 2�r
@HL

@t
��rf0 � 2f� 2�� � rf�2r� �n� 1��n� 2��f0�

@Frt
@t

: (51)

Finally, �Grr � 0 gives

0 � �r2 � �n� 1��n� 2����� f��
�
2nr2 @

2HL

@t2
� f

�
nr
@HL

@r
�rf0 � 2�n� 3�f� � nr

@Ftt
@r

f� nFrr��n� 3�f� rf0�

� 2n
@2Frt
@t2

r� 2�n� 1�HL�k2
S � n�� � k

2
SFtt

��
� rf2��Frr � 2r

@HL

@r
��2nr� n�n� 1��n� 2��f0�

� 2�n� 1��n� 2��fHL�k2
S � n���2�� 2f� rf0�: (52)

These equations are used to solve for the different variables, until we get a single equivalent differential equation on a
function of r and t, suitable for the stability analysis and other applications discussed in the Conclusions. We first solve (47)
for Ftt�t; r�,

Ftt � Frr �
2�n� 2���r2 � ���n� 3��n� 4��f� �� � 2f0r�n� 3� � r2f00��

��n� 2���n� 3��f� �� � rf0� � r2 HL (53)
Integrating (48) with respect to t gives

Frr �
HL��rf0 � 2f�

f
�
k2
SFrt
nr
� 2r

@HL

@r
(54)

plus an arbitrary function of r that we absorb into Frt using
the freedom of adding to it an arbitrary function of r (see
(26)). Inserting

Frt � :
r
f
��� 2HL� (55)

in (54), and the resulting expression in (49), we get an
equation that can be solved for HL in terms of �, and
@�=@r. The result is

HL � ����n� 1��n� 2��f� �� � r2��n��rf0 � 2f�

� 2k2
S��
�1

�
nfr���n� 1��n� 2��f� �� � r2�

@�

@r

� ��n� 1��n� 2��fn��n� 3��f� �� � rf0�

� k2
S�f� ����� r

2�k2
S � nf�n� 1����

�
(56)

At this point we have explicit expressions for Ftt, Frr, Frt,
and HL, all in terms of ��t; r� and its first and second
derivatives with respect to r. Replacing these expressions
in (50) and (52) we end up with equations that contain
@3�=�@t2@r�, and @3�=@r3. However, the linear combina-
tion

��1=2�nfA�B

nr2�n� 1��n� 2��f�r� � ���� nr4
; (57)

where A and B are the RHSs of (50) and (52) respectively,
eliminates both terms, giving an equation of the form,
124002
@2�

@t2
� f2 @

2�

@r2 �QS
@�

@r
� qS� � 0: (58)

where QS and qS are functions of r. One can show that any
solution of (58), when inserted back into the formulas for
Ftt; Frr; Frt and HL in terms of �, solves all the �Gab � 0
equations. Note that (58) is of the same form as (33) for the
vector perturbations. However QS and qS in (58) depend
not only on r, but also on all the parameters of the theory in
a rather complicated way. In particular, we do not find the
‘‘factorization’’ property for the dependence on k2

S, neither
we find that qS�r� has a definite sign. Therefore, the
S-deformation method does not appear to be readily appli-
cable for the stability analysis in this case. On the other
hand, and perhaps a little surprisingly, we have found an
explicit form for the transformation that puts (58) in a
standard Regge-Wheeler-Zerilli form. Namely, we intro-
duce a function �̂�t; r� such that

��t; r� � KS�r��̂�t; r�: (59)

Then, choosing the integration factor

KS�r� �
r�1=2n�1�nrf0 � 2fn� 2k2

S������������������������������������������������������������������������������
r2 � �n� 2���rf0 � �n� 3���� f��

p (60)

and switching to tortoise coordinate r (37) cancels the
terms in @�̂�t; r�=@r and yields an equation of the Regge-
Wheeler-Zerilli form, which, after separating variables
�̂�t; r� � ��r�e!t gives (as in (40)) a stationary
Schrödinger equation

H � � �
@2�

@r2
� VS� � �!

2� � E� (61)

Unfortunately, the explicit expression for the scalar poten-
tial VS in terms of r and the parameters of the static
-6



FIG. 2. The potential ~V � �VS as a function of x � r=
����
�
p

,
for n � 3, � � 0, ~� � �=� � 1:7. The scalar perturbation
corresponds to the ‘ � 10 harmonic.
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solution is extremely long and complicated, and we have
not been able to put it in a form that would be useful for a
general analysis of the stability problem. It should be clear,
nevertheless, that, for any choice of parameters, including
n, VS can be straightforwardly recovered, e.g., by means of
a symbolic manipulation program, following the procedure
outlined above. In the next subsection, some examples are
analyzed by assigning particular values to the parameters.

A. Application: a scalar instability in small mass, 5D
spherical EGB black holes

For � � 0 and � � 1, the � � �1 branch of (6),

f�r� � 1�
r2

��n� 1��n� 2�

�

�
1�

��������������������������������������������������
1�

4���n� 1��n� 2�

nrn�1

s �
; (62)

reduces to the n� 2 dimensional Schwarzschild-
Tangherlini [15] (Einstein) black hole in the �! 0 limit:

f�r� � 1�
2�

nrn�1 �O��� (63)

In this section we will apply our results to exhibit a low
mass scalar instability of 5D Schwarzschild-Tangherlini-
EGB black holes.

Before that, we note that, in general, � (assumed strictly
positive from now on) can be used to introduce dimension-
less quantities

~�: �
�

��n�1�=2
~�: � �� x: � r��1=2 (64)

and that f in (6) depends on � only through x; ~� and ~�. If
we define
FIG. 1. The potential ~V � �VS as a function of x � r=
����
�
p

,
for n � 3, � � 0, ~� � �=� � 1:7. The scalar perturbation
corresponds to the ‘ � 2 harmonic.
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x: �
r����
�
p �

Z x

xo

dx0

f�x0; ~�; ~��
(65)

we find that (61) is equivalent to

�
@2�

@x2
� �VS� � �E�: (66)

Furthermore, it can be shown that �VS � ~V�x; ~�; ~�; k2
S�,

so that the stability problem reduces to determining if the
�� independent potential ~V�x; ~�; ~�; k2

S� admits negative
energy eigenvalues. For n � 3 ST-EGB black holes
FIG. 3. The potential ~V � �VS and a (non normalized) gauss-
ian test wave function as a function of x � r=

����
�
p

, for n � 3,
� � 0, ~� � �=� � 3. The scalar perturbation corresponds to
the ‘ � 2 harmonic. The normalized test function gives
h�d2=dx2i � 0:12 and h�VSi ’ �0:28. The expectation value
of the ‘‘Hamiltonian’’ is negative for this test function, implying
the existence of negative energy eigenvalues.
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FIG. 5. The potential ~V � �VS and a (non normalized) gauss-
ian test wave function as a function of x � r=

����
�
p

, for n � 3,
� � 0, ~� � �=� � 6. The scalar perturbation corresponds to
the ‘ � 10 harmonic. The normalized test function gives
h�d2=dx2i � 0:15 and h�VSi ’ �0:24. The expectation value
of the Hamiltonian is negative for this test function, implying the
existence of negative energy eigenvalues.

FIG. 4. The potential ~V � �VS and a (non normalized) gauss-
ian test wave function as a function of x � r=

����
�
p

, for n � 3,
� � 0, ~� � �=� � 3. The scalar perturbation corresponds to
the ‘ � 10 harmonic. The normalized test function gives
h�d2=dx2i � 0:73 and h�VSi ’ �6:11. The expectation value
of the Hamiltonian is negative for this test function, implying the
existence of negative energy eigenvalues.

REINALDO J. GLEISER AND GUSTAVO DOTTI PHYSICAL REVIEW D 72, 124002 (2005)
f�x; ~�� � 1�
x2

2

�
1�

����������������
1�

8 ~�

3x4

s �
(67)

and we must assume ~�> 3=2, since there is no horizon
below this mass value. This is a special feature of n � 3
EGB, for higher dimensions there is always a horizon [12].
The integral (65) for f given in (67) can be solved in closed
form in terms of hypergeometric functions, and values of
x and ~V can be obtained for different x0s and used to
generate parametric plots of ~V vs: x. All graphs in
Figs. 1–6 were generated setting xo � 2xH in (65), so
that x � 0 when x � 2xH, and x ! �1 as x! x�H .
Since ~V�x� is bounded and limx!	1V�x

� � 0, a suffi-
cient condition for the existence of a bound state of nega-
tive energy is [16]

Z 1
�1

Vdx < 0: (68)

The above condition is certainly met in the graphs shown in
Figs. 1 and 2, which exhibit the ‘ � 2 and ‘ � 10 poten-
tials for ~� � 1:7 1. For higher mass values (68) may not be
satisfied, and still the potentials may allow negative energy
bound states. This can be seen by means of a standard
variational argument: if a test function� is found such that

Z 1
�1

�
�
�
@2�

@x2
� �VS

�
�dx < 0; (69)
1A perturbation obtained from the ‘ � 0 scalar harmonic
correspond to a variation of the mass parameter, whereas an ‘ �
1 perturbation is shown to be pure gauge [10]. The first relevant
case is therefore ‘ � 2.

124002
then the spectrum of � @2

@x2
� �VS contains negative ei-

genvalues. For each one of the examples shown in Figs. 3–
5 we have found a test function � satisfying the condition
(69). This was done by first fitting a quadratic curve Q�x�
around the potential minimum. � was then chosen as the
gaussian wave function whose width and center are those
of the ground state of the harmonic oscillator with potential
Q�x�. The test function � is shown together with �VS in
Figs. 3–5. For higher mass values in n � 3 (i.e, spacetime
dimension five), as well as for higher spacetime dimen-
sions, we were not able to find test functions with negative
energy expectation values. There appears to be no scalar
FIG. 6. The potential ~V � �VS as a function of x � r=
����
�
p

,
for n � 3, � � 0, ~� � �=� � 10. The scalar perturbation
corresponds to the ‘ � 2 harmonic. �VS has a small negative
tail—shown in the inset—which cannot accommodate a nega-
tive energy state.
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instability in these cases (see, e.g., Fig. 6), although a
more systematic study has not been completed yet. Note
however that a low mass instability under tensor mode
perturbations was previously found in six dimensional
Schwarzschild-Tangherlini-EGB black holes [11,12].

V. CONCLUSIONS

The study of the linear stability of static solutions to the
Einstein-Gauss-Bonnet gravity with spatial slices of the
form �n

� � R�, �n
� an n�manifold of constant curvature

� can be carried out using the techniques introduced by
Kodama and collaborators. In the classification of Kodama,
et al. [10], general linear perturbations can be constructed
from appropriate harmonic tensors on �n

�, and classified
accordingly into tensor, vector and scalar modes. Tensor
perturbations were analyzed in [11,12], the other modes
being the subject of this paper. We proved that, as happens
in higher dimensional GR stability problems [10,17], the
perturbation equations can be reduced to a single stationary
Schrödingerlike equation on a function of the radial coor-
dinate, the potential being different for the scalar and
vector cases. Finding the linearized EGB equation and
the appropriate integrating factors leading to the equivalent
Schrödinger problem is far more difficult in the vector and
scalar modes than in the tensor modes. However, after
performing the calculations in spacetime dimensions five
to 11, the dimension dependence of the equations was
interpolated by formulas that we believe are valid beyond
124002
this range and that reproduce the expected �! 0 (GR)
results. In the vector case, we were able to prove stability
using an S-deformation argument. The same result is
found in higher dimensional GR. In the scalar case, how-
ever, we found an instability that is absent in GR [10,17].
Although the complexity of the potential prevents us from
drawing general conclusions, the EGB analogous to 5D
Schwarzschild black holes are shown to be unstable below
a critical mass. A similar result was found in [11], where it
was proved that low mass 6D spherical, asymptotically
Euclidian black holes are unstable. These results are rele-
vant to TeV scale quantum gravity scenarios, where those
black holes are predicted to be produced in high energy
collisions [18]. The potentials that we have obtained have a
number of applications beyond the study of the stability of
black holes and cosmological solutions. Among the most
immediate ones are the analysis of black hole uniqueness,
quasi normal modes, and the analysis of stability of naked
singularities in EGB gravity. These topics are currently
under study [14].
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