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Abstract

We provide evidence that “super-extremal” black hole spacetimes (either with charge larger than mass or angular momentum larger than mass),
which contain naked singularities, are unstable under linearized perturbations. This is given by an infinite family of exact unstable solutions in the
charged non-rotating case, and by a set of (unstable) numerical solutions in the rotating case. These results may be relevant to the expectation that

these spacetimes cannot be the endpoint of physical gravitational collapse.

© 2006 Elsevier B.V. All rights reserved.

It is well known that the equations of general relativity ad-
mit exact solutions that contain singularities. In some cases,
as in black hole spacetimes, the singularities are “hidden” be-
hind horizons, that is, regions that cannot communicate causally
with the rest of spacetime. However, the same solutions that de-
scribe black holes can, for certain choices of their parameters,
describe “naked” singularities. This is the case of a charged
(Reissner—Nordstrom) spacetime with |Q| > M or a rotating
(Kerr) solution with angular momentum a > M. These repre-
sent problematic spacetimes, since the singularities can com-
municate causally with the exterior. There has always been the
expectation that these solutions are not the endpoint of physi-
cally relevant collapsing matter. This whole issue frames itself
in the context of the “cosmic censorship” hypothesis of Penrose
that loosely stated claims no naked singularities are formed by
gravitational collapse. Several arguments have been put forward
that show that one indeed cannot drop charges into a charged
black hole to turn it into “super-extremality” or spin up a Kerr
black hole into a similar regime [1].

In this Letter we would like to argue that “super-extremal”
spacetimes are unstable under linearized perturbations. This
would further strengthen the idea that they cannot be the end-
point of gravitational collapse. We start our discussion by con-
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sidering a spherically symmetric, charged spacetime described
by the Reissner—Nordstrom solution of the Einstein equations,

ds’>=—fdi®>+ (/f)dr* +r*d2>, (1)

where f = (r> — 2rM + Q%)/r?, and d£2? is the standard
line element on the unit sphere. The real (positive or negative)
constants M and Q can be respectively identified with the New-
tonian mass and the total (electric) charge of the source. We
consider only the case M > 0 in what follows. The case M < 0,
0O =0 has been previously analyzed in [2] and [3].

The range of r in (1) is limited by the singularities of the
metric coefficients. These occur for r =0 and ro = M +
VM? — Q2. For M > |Q| the singularity at » = r, corre-
sponds to a regular horizon, and the solution may be extended
tor < r4. The resulting spacetime is known as a “charged black
hole”. The horizon hides a curvature singularity for » = 0, ren-
dering the portion of spacetime outside the horizon globally
hyperbolic. However, if |Q| > M, there are no horizons, and
the spacetime contains a “naked” singularity for » = 0.

The question of the (linear) stability of both charged and un-
charged black hole spacetimes has been analyzed by many au-
thors, starting with the papers by Regge and Wheeler, and Zer-
illi [4] (see [5] for a recent formulation in arbitrary dimensions).
To simplify the discussion we shall restrict to polar (scalar) met-
ric perturbations in the Regge—Wheeler gauge [4—6]. The metric
and electromagnetic scalar perturbations for the angular modes
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with fixed £, (£ = 2,3, ...), can then be encoded in two func-
tions, @;(r, t), i = 1, 2, that satisfy the equations

0Pi _ 9P (pdfi g0\ = _ A
o2 g (ﬂ,dr* +Bi /i +/<f,>¢>, =-A;o;, )
where k = (L — DLEL+ 1D +2), Bi =3(M + (—=1)' ), and,

B f
T B+ (- D(E+2)r2

with = /M2 +402(¢ — 1)(€ +2)/9, and r* the “tortoise”
coordinate defined by dr*/dr =1/f,
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These have been analyzed in the case M2 > Q2, where there is
a regular horizon, hiding the curvature singularity at r = 0. On
the other hand, we are here interested in the case Q2 > M2,
with M > 0. In this case, the range of r is the full interval
(0, +00), so it is crucial to establish what boundary conditions
are acceptable for r — 0. If we assume that the solutions are
regular near r = 0, and expand @; in power series in r, with
time dependent coefficients, replacing these expansions in (2),
we find,

@i (t,r) =b;(Or + ci(H)r?
n ([2@ +2)(6 = 1)Q* +3M(M — (— 1)) w)1b; (1)

80*
Mgz(t))ﬁ +0(r%) (5)

where by 2, c1 2 are, in principle, arbitrary functions of ¢. Notice
that both @; contain two arbitrary functions of ¢ and, therefore,
these expansions represent the general behavior of these func-
tions near r = 0. We may replace the expansions in the expres-
sions for the perturbations of the metric in the Regge—Wheeler
gauge near r = 0. It is then straightforward to obtain, for in-
stance, the Kretschmann invariant, X = Rypeq R4 up to first
order in the perturbations. We recall that for the background
metric we have K = 560%/r® + O(r~7). The explicit expres-
sion including first order terms is rather long to give explicitly
here. After replacing the metric coefficients in K and some sim-
plification we find that, in general, the perturbations introduce
singular contributions that diverge faster than the background,
unless the following conditions are imposed

3(M + ) (M — )
2

Wbl(f), () = ) 10
in which case the Kretschmann invariant has the behavior given
above. We shall take (6) as the appropriate boundary condition
for the perturbations in what follows. We therefore exclude per-
turbations that might either modify the nature of the singularity,
or take us beyond the domain of linear perturbations. We re-
mark that these are the most restrictive boundary conditions that
can be imposed at the singularity without making the solution

c1(t) = by (1), (6)

trivial. We will see, nevertheless, that even under this restric-
tions the perturbation equations have unstable solutions.

The usual procedure for analyzing stability is to consider so-
lutions of (2) of the form ®; (¢, r) = exp(—iwt)¢; (r) and look
for pure imaginary values of w. Replacement of this Ansatz
in (2) leads to second order ordinary differential equations for
¢;. For the negative mass Schwarzschild singularity, analytic
expressions for unstable modes of arbitrary ¢, satisfying ap-
propriate boundary conditions, were obtained in [3]. It was
then noticed by Cardoso and Cavaglia [7] that these unsta-
ble modes agree with the algebraically special (AS) solutions
in [6], which, although irrelevant as perturbations in the black
hole (M > 0) regime—due to their behavior at the horizon—
satisfy appropriate boundary conditions in the nakedly singular
case. The AS modes for the Reissner—Nordstrom spacetime
have pure imaginary frequency w = —ik with k = —«/(281)
(so that k > 0). They can be constructed following [6], the re-
sult being

=0, & = Cl)((r)+C2)((r)/ S NG
x (u)

where

_ *
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with & — (—DLE+HE+2) )
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We can readily check that for all Q% > M?, and ¢, unstable
solutions satisfying appropriate boundary conditions are ob-
tained by simply setting C» = 0 in (7). Nevertheless, since
B1 < 0, the resulting solutions for @; are singular for r =
—B1/1(€ — 1)(£ +2)]. We notice, however, that replacing these
expressions into those for the metric perturbations we find that
this “kinematic singularity” is absent both in the electromag-
netic field and the perturbations of the metric coefficients, and,
therefore, for finite ¢ these solutions correspond to the evolution
of regular perturbations that can be made initially arbitrarily
small as compared to the background (see [3] for a discussion
of an analogous situation in the Q =0, M < 0 case). This is
confirmed by an explicit computation of /X to first order in the
perturbations. The result (exact in r) is,

8(6r2M?* — 12rM Q2 +70%)
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)
where the first term on the RHS of (9) corresponds to the
background, and C is an arbitrary constant. We therefore see
that for all Q> > M?, there exist divergent perturbations of
the Reissner—Nordstrom spacetime for all £ > 2. Notice that if
Q% < M?, the exp(—kr*) factor in (8) gives a divergent behav-
ior at the horizon for any choice of C;, since r* ~ M In(r —r™)
itr~r*,r>rt, and k > 0, and, therefore, (8) cannot be con-

sidered an acceptable perturbation of the Reissner—Nordstrom
black hole.
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The issue of dynamics in non-globally-hyperbolic static
spacetimes is a subtle one, some aspects of which were ana-
lyzed in a series of papers by Wald [8] and Wald and Ishibashi
[9,10]. In [8,9] the Klein—Gordon equation (with positive mass)
is cast into the form (2). A similar form for gravitational pertur-
bations on AdS backgrounds of arbitrary dimensions is given
in [10]. In all cases, the fact that the analogous of the opera-
tor A; in Eq. (2) is positive definite on an appropriate function
space, allows to globally define the dynamics of the field (see,
e.g., Eq. (4) in [10]). A straightforward consequence of the
existence of the exponentially growing modes (7)—(8) is, how-
ever, that A in Eq. (2) is not positive definite on the function
space of physically relevant perturbations, i.e., those that do
not increase the degree of divergence of the scalar invariants
as the singularity is approached. Thus, gravitational perturba-
tions around super extremal charged black holes lie outside
the scope of [8—10]. A similar situation was found in the non-
globally-hyperbolic negative mass Schwarzschild solution, and
is discussed in detail in [3].

We now turn our attention to the uncharged, rotating Kerr
spacetimes with a > M. The linearized perturbations were first
studied by Teukolsky [11], who showed that they could be
captured in a master equation in terms of a linearized tetrad
component ¥ of the Weyl tensor. The equation can be sepa-
rated by assuming ¢ = F(r, 0, ¢) exp(—iwt) and F(r,0, ¢) =
Sy (0) exp(im@) Ry ¢, (r), which leads to a coupled system for
S and R,

1 d (. dS 22 o m?
—— —|sinf— )+ | a“w”cos“ 6 — — 2aws cos B
sinf do do sin 6
2 0
- —s2c0t29+E—s2>S=0, (10)
sin“ 6
AZR a0 — R
* s r— “=
dr? dr
K? —2is(r — M)K .
A +4irws — AR =0, (11

where s =42, A=r2—2Mr+a?, and K = (r2 +a®)w —am.
The eigenvalues E are determined by regularity conditions on
S(0) for0 =0, 7, and A = E — 2ame + a*w? — s(s + 1).

For non-extremal Kerr black holes (a®> < M?), where a hori-
zon is present, the region outside the horizon is globally hy-
perbolic, and one can show stability of the perturbations under
appropriate boundary conditions at the horizon and for r — oo.
However, for a®> > M?, the spacetime is not globally hyper-
bolic, and even though (10) still applies, the question of the
stability is certainly more subtle. As a preliminary Ansatz, we
will assume that even in this case any acceptable unstable per-
turbation (solution of (10) and (11)) must fulfill at least the
requirements that (i) it can be made arbitrarily small at some
chosen time, and (ii) that it grows exponentially in time. We
think that prior to the present analysis, it was not known if even
these modest requirements could in fact be satisfied.

As shown in [6], AS modes « exp(—iwt + im¢) exist for
the Teukolsky equation if the Starobinsky constant vanishes.
This condition and the regularity condition S(6 =0, 7) =0 re-
quired in (10), impose two constraints on A and @ that may

have complex w solutions [6]. These solutions are of the form
R(r)=(A+ Br+Cr* + Dr3)exp(ia)r*) [6], where r* — r
as |r| — oo, and, since the domain of interest when a’ > M?
is —0o0 < r < 00, AS modes always diverge in one of the as-
ymptotic regions. Therefore, we do not consider AS modes as
relevant perturbations of the super-extremal Kerr solution be-
cause they do not satisfy our Ansatz.

In general, solutions of the Teukolsky system can be carried
out numerically, as first discussed by Press and Teukolsky [12].
In our case we started by assuming that w =ik with k > 0 to
seek for solutions that grow with time. For simplicity we set
m =0, and chose E to be real, so the equation for R had real
coefficients. The equation for S is complex. We integrated (11)
using a power series in x = cos 6 around x = 0, up to the high-
est order allowed by the particular computer implementation
that we used, which in our case was x27, but we checked that
essentially the same results were already obtained using expan-
sions up to order 20 or higher. Regularity of S for 6 =0, 7, im-
plies S(x = 1) = 0. Imposing this condition yields a lengthy
yet polynomial relationship between E and k. We chose the
lowest real value of E given k. With this value of E we solved
numerically equation (11) using a shooting method. To set up
the shooting method we worked out asymptotic approximations
to the solution for large values of |r| (in the super-extremal case
Kerr can be extended through the “ring” singularity to negative
values of r). Indicating with = the cases r — o0, they are of
the form,

+ —k|r|—(cE£kM)In(r?) | £ bli bgt
R(r)y©=e [b0+7+r—2+~-}, (12)
where ¢ =1/2, ¢™ =5 + 1/2, and the constants b* are ad-
justed so that (11) is satisfied to the given order. These ex-
pansions were used to generate numerical initial data for the
shooting algorithm, typically around r = £10 (M = 1). For a
we took values in the range 1.1-1.4. The value of k was then
varied until the algorithm yielded a finite solution. A typical
solution for s = —2 is shown in Fig. 1. Similar results, for the
same values of k, were obtained for s = 42, (i.e., for ¥y) as ex-
pected from the non-vanishing of the Starobinsky constant [6].

The shooting algorithm was implemented in Maple using the
built in Runge—Kutta integrator. We checked that the solution
was insensitive to the error tolerance of the integrator and to the
departure point of the shooting. The solution has an exponential
behavior that limits in practice how far in the range of r can
we start the shooting procedure before running into machine
precision problems. We verified the solution by shooting both
from large negative and positive values of r. The conclusion of
the numerical analysis is that solutions with k > 0 exist, at least
for the values of the other parameters chosen, and seem to be
numerically robust. Further studies are needed to confirm the
ranges of values of the various parameters for which unstable
solutions exist.

It should be stressed that any solution ¥ of the s = —2
Teukolsky equation is a “Debye potential” from which a met-
ric perturbation £y, that solves the linearized Einstein equations
around the Kerr background can be constructed. 4y, is obtained
by applying a second order linear differential operator to ¥
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Fig. 1. The left panel shows a typical solution for the radial part of the perturbation R(r) in the Kerr case, obtained for s = —2, M = 1, and a = 1.4. The amplitude
is arbitrary since this is a linear problem, and has been normalized so that R(r) = 1 at its maximum. The right panel shows the corresponding real and imaginary
parts of the angular function S(6). The integration gave k =7.07...,and E =17.37....

(see [13]). Using the solution above as a Debye potential gives
a linearized solution A, o exp(kt), and, therefore, unstable, of
Einstein’s equations around a super-extremal Kerr spacetime.
However, the explicit expression of the metric perturbation is so
lengthy that it is hard to use it in further computations to eval-
uate, e.g., the perturbation effects at the ring singularity. One
may want to compute the perturbed values of the Riemann in-
variants. A basis of algebraic invariants for the Riemann tensor
in vacuum is given by the complex scalar fields [14]

14 P
Wy = anbcdcab‘d = 2WWy — 8 U 4 6(¥,)?,

1 A N ~
W, = _gcahchCdefCe'fab
= 6V — 6(¥2)° — 6(¥1)* Wy
— 6(¥3)* W + 120U W3, (13)

where C,pcq the Weyl tensor and Coubed := (Cabed + i*Caped)
(note that the Kretschmann invariant is given by the real part
of Wp). Since the only nonzero Weyl scalar for the Kerr back-
ground is ¥; [11,15], the linearization of (13) yields

SW1 = 12080, SWy = —18(W7)%5Ws. (14)

However, §¥,; = 0 for arbitrary perturbations (with the excep-
tion of stationary, axially symmetric perturbations) of the Kerr
spacetime [15], and thus algebraic invariants are not modified to
first order. A similar situation was found for the unstable modes
of the negative mass Schwarzschild spacetime [3], for which
the perturbation effect on the singularity was then analyzed by
computing differential invariants of the Riemann tensor, an ap-
proach that is hard to implement in this case, in view of the
above mentioned length and complexity of the explicit expres-
sions for the perturbed metric components.

We therefore at the moment do not know the effect of the
perturbations constructed at the ring singularity and are not as
confident as in the Reissner—Nordstrom case that the perturba-
tions constructed are “conservative enough” in their behavior at
the singularity.

In any case, we must stress that the unstable (numerical) so-
lutions of the Teukolsky equation found here are different from
the algebraically special modes suggested in Ref. [7]. In partic-
ular, the Starobinsky constant does not vanish, and, therefore,
they represent a new type of solutions of the Teukolsky equa-
tion, of which we have found a few examples, through some
simplifying assumptions, such as taking m = 0, etc. It would
clearly be interesting to see what happens if these restrictions
are lifted. We are currently working on this problem.

Summarizing, we have shown explicitly in analytic form that
the Reissner—Nordstrdom spacetime is linearly unstable when
Q2 > M 2, M > 0, even in the case the perturbations are “con-
servative” in the sense that they are small at the singularity in
an appropriate sense. We have also numerical evidence that the
Kerr spacetime is unstable for a > M at least for some values
of a, M. Further work is needed to confirm that the instabilities
occur for all the range of parameters in super-extremality.
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