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Abstract

Sufficient conditions are proven for 't Hooft’s consistency conditions to hold at points in the moduli space of
supersymmetric gauge theories. Known results for anomaly matching in supersymmetric QCD are rederived as a sample
application of the results. The results can be used to show that the anomaly matching conditions hold for s-confining

theories. © 1997 Published by Elsevier Science B.V.

One important constraint on the moduli space of
vacua of supersymmetric gauge theories [1] is that
the massless fermions in the low energy theory
should have the same flavor anomalies as the funda-
mental fields, i.e. the 't Hooft consistency conditions
should be satisfied [2]. The computation of the flavor
anomalies at a point in the moduli space can often be
quite complicated. In this paper we derive some
general conditions which guarantee that ’t Hooft’s
consistency conditions are satisfied. The results are
applied to supersymmetric QCD, and agree with
known results for this case. They can also be used to
show that "t Hooft consistency conditions are satis-
fied for s-confining theories [3]. Other applications
will be discussed in a longer publication [4].

The analysis makes use of the result that the
classical moduli space .#, of a supersymmetric
gauge theory is the algebraic quotient U/ /G of the
space U of critical points of the superpotential W of
the fundamental theory by G, the complexification
of the gauge group G, [4,5]. This follows from the
fact that a supersymmetric vacuum state is contained
in a closed G-orbit, a result proved in Ref. [5]. The
relation of supersymmetric vacua to closed orbits,

and a more detailed discussion of the construction of
A, from an algebraic geometry viewpoint will be
given in [4]. There are several subtleties in the
construction not discussed in [5] which are relevant
for anomaly matching.

The fundamental theory, such as supersymmetric
QCD, will be referred to as the ultraviolet (UV)
theory. The massless degrees of freedom that charac-
terize the moduli space .# will be referred to as the
infrared (IR) theory. We will use ¢ € U to represent
a constant field configuration in the UV theory.
Supersymmetric vacua are characterized by the val-
ues of ¢ € V, where V is a vector space spanned by
gauge invariant polynomials ¢'(¢) constructed out
of the fundamental fields ¢’. The classical moduli
space .#, is an algebraic set in V (see, e.g. [5]).
There is a natural map 7:U —.#,,. The G-orbit of a
point ¢ € U will be denoted by G¢. The tangent
space at a point p in X will be denoted by 7, X, so
that T,,U is the tangent space at ¢ in the UV theory,
and T3.# is the tangent space at ¢ in the [R theory.
The differential of 7 at ¢, m,, gives a map from
T,U - T;.#,. In the following discussion. all terms
(such as closed, open, dimension, etc.) are in the
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algebraic geometry sense. We shall also assume that
the complexified gauge group is a reductive group.
For example in supersymmetric QCD with N, = N,
and no tree-level superpotential, the UV fields are
the quarks Q' and the antiquarks O, ;g that span a
vector space U of dimension 2 N?2. The IR fields are
the mesons M]' a baryon B and antibaryon B, that
span the vector space V of dimension N7+ 2. The
classical moduli space .#,, is the algebraic set det M
= BB contained in V. The map w takes ¢ =
(0=, Qjﬁ) to d= (M}, B, B), where

Mi=Q“Q,, B=detQ, B=detg. (1)

The anomaly matching theorem given below re-
quires that the map m:T,U — T;.#, be surjective,
and that kerm, =T, (G¢) Note that since 7 is
gauge invariant, one always has Ty(G¢)Ckermy.
The following result proved in Ref. [4] establishes
sufficient conditions for these requirements to hold.

Theorem I: Assume that G is totally broken at
¢, 1.e. Lie( G) ¢, = Lie( G), and that G¢, is closed
in U. Then kerm, =T, (G¢,)=Lie(G), m, is
onto, and 7w(¢,) is a smooth point of .#,.

Note that the condition that G¢, be closed is
equivalent to the statement that this orbit contains a
point satisfying the D-flatness conditions in Wess-
Zumino gauge.

The anomaly matching theorem is

Theorem II: Let .#, be the classical moduli
space of a supersymmetric gauge theory with gauge
group G, and flavor symmetry F. It is assumed that
the gauge theory has no gauge or gravitational
anomalies, and the flavor symmetries have no gauge
anomalies. Let cﬁo €.4#, be a point in the classical
moduli space. Assume there is a point ¢, € U in the
fiber 7~ ' (m(,)) of ¢, such that
(a) G (the complexification of G,) is completely

broken at ¢, so that Lie( G) ¢, = Lie( G).

(b) kerm; =Lie(G)¢, and m;  is surjective.

If a subgroup H C F is unbroken at ¢, then the 't
Hooft consistency conditions for the H?® flavor
anomalies and the H gravitational anomalies are
satisfied.

For the purposes of the proof, it is convenient to
write the original flavor symmetry as F' X R, where
R is the R-symmetry, and F’ now contains only
non-R symmetries. We first prove anomaly matching
when H C F’, and then prove consistency for anoma-

lies that include the R symmetry. (Note that the
unbroken R symmetry might be a linear combination
of the original R symmetry and some generator in
F')

Since H is unbroken at $O, ‘1§0 is H-invariant
Lie( H), = 0. (2)
The map 7:U —.
metries, so

0 = Lie( H) é,=Lie( H){(m(,))

#, commutes with the flavor sym-

= 7, (Lie( H) ¢,). (3)
Thus, by (a) and (b)
Lie( H)$, Ckerm, =Lie(G)d,. (4)

This implies that given any f) € Lie( H), there is a
unique g( §) € Lie(G) such that

b= —a(h) e, (5)

where the minus sign is chosen for convenience. It is
straightforward to check that the map Lie(H)—
Lie(G) given by h — q(bh) is a Lie-algebra homo-
morphism,

Q([bl»bz])=[&1(51)@(52)]' (6)

This allows us to define a new “‘star’’ representation
of Lie( H) in U

b =h+g(h). (7
Since Lie(G)¢, € kerm;, , the new Lie( H) repre-
sentation on T .#, defined by m; h~ agrees with
the original one. Thus the §) "-anomalies computed at
b, €A, are the same as the D-anomalies at the
same point.

Lie(G)¢, is an invariant subspace under §*,
and the restriction of " to Lie( G) ¢, is the adjoint
action by g( ). This can be seen by direct computa-
tion. Take any element g ¢, € Lie( G)¢,. Then

h gd,=bgd,+a(h)ad,=abd,+a(h)gad,
_[Q(b) Q]¢0 Adqlh)g¢oe (8)

since the flavor and gauge symmetries commute, and
using Eq. (5). The space U can be broken up into the
tangent space to the G-orbit T, G, = Lie(G) and
its invariant complement, Cd,o, since G is reductive.
By (b), the map 7, is a bijective linear map from
C,, to the tangent space Ty #, of the moduli space

#, at ¢y, and commutes with . Thus the action
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of §* on C, is equivalent to the action of b on
T;,#,, by the similarity transformation § given by
Ty, restricted to C e One can write

SHES" 0 ©)
0 Adﬂ(h) ’

where the second form shows the structure of §* on
U=C, &T, Gd,. The action of h on U has been
labeled by the subscript UV, and the action on the
moduli space has been labeled by IR.

One can now compare anomalies in the UV and
IR theories using the two different forms for §~.
Since the adjoint representation is real, the (§*)’
flavor anomaly and 0§~ gravitation anomaly are
equal to the anomalies in the infrared theory. All that
remains is the proof that the (§*)” and §~ anoma-
lies of U equal the §* and § anomalies of U. Let
§4BC be any three elements of Lie( H). Then

Trh " A{h"".5"}
=Tr v {H8v.HTv]
+Trg(5*){H5v . BTy ) + cyclic
+Tr hy {a(5®).a(HC)} + cyclic
+Tra(8%){a(h®).8(H)} (10)

The last three lines vanish because the original the-
ory had no gauge and gravitational anomalies, and
the flavor symmetries have no gauge anomalies.
Thus the §* and (§~)’ anomalies are the same.
Similarly the §)* and §) anomalies agree since g is
traceless because there is no gravitational anomaly.
Thus ’t Hooft’s consistency condition for the flavor
anomalies is satisfied.

We now prove the matching theorem for anoma-
lies involving the R-charge using an argument simi-
lar to the one presented above. The R-charge acting
on U is given by the matrix t. The R-charge is
defined acting on chiral superfields, and so is the
charge of the scalar component. Anomalies are com-
puted using the fermionic components, so it is con-
venient to define a new charge T which we will call
fermionic R-charge, defined by

T=r—1. (11)
The anomaly can be computed by taking traces over

the chiral superfields of . The reason for making
the distinction between v and T is that the map 7

b*=buv+g(b)=

from U to .#, commutes with R = expt, but does
not commute with R = exp¥F.

Assume that R is unbroken at ¢, = (b, ). Then
by an argument similar to that above, it is possible to
define a ‘‘star’” R-charge, t ",

r =r+g(r) (12)

which has the form

. SreS™ 0
r =rUV+g(r)= 0 Ad

|
a(r)

under the decomposition of U into C, @ T, Gdy,.
As in Eq. (9), we have used the subscripts UV and
IR to denote the R charges in the ultraviolet and
infrared theories. Note that S is the same matrix in
Egs. (9,13), given by my restricted to C, . The
fermionic R-charge is then given by

T"=1r"-1=14 +g(r)

_[Strs™ 0 (14)
0 Ady,— 1

where in the last equality we have used the fact that
fermion R charge T =g — 1 in the infrared the-
ory.

Compute the trace of (¥*)* in U,

Tr(2°) = Tr{t +a(r)}
=Tr{t}y + 3ty a(r)

+3t v a(r)* +a(r)’). (15)

The R-charge has no gauge anomaly, so
Try Tuv{@a.ap} + T L6y {Adg L Ad, ) =0, for
any g, g € Lie(G). Here the first term is the matter
contribution to the anomaly, and the second term is
the gaugino contribution. The absence of gauge
anomalies implies that odd powers of g(t) vanish
when traced over the matter fields, since there is no
gaugino contribution to these anomalies. Thus we
find

~ % \3 ~ 3
Try(T°) = Try(Tuv) = 3T i) Adiy (16)
The block diagonal form of T* Eq. (14), gives

~ N3 ~ 3
Tr,(t7) =Tr(TR) —TrLle(G)(1+3Ad§(r)).
(17)
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The R* anomaly Ay ( R?) in the UV theory is given
by adding the matter and gaugino contributions

- 3
Aw(R) =Tr,(Tyy) +Tr Lie(G)l3

=Tr, (T )+Tqmm0+3A¢“J

(18)

The R’ anomaly Az( R*) in the IR theory is given
by

AR(R') =Tr(Ty)’, (19)

since there are no gauginos in the low energy theory.
Combining Eqgs. (16)—(19), one sees immediately
that the UV and IR anomalies are equal, Ay (R?) =
Ar(R%).

It is straightforward to check that the gravitational
R anomaly, and the H2R and HR’ anomalies match
by a similar computation; the details are given in
Ref. [4].

The results derived above allow one to study the
matching of anomalies between the ultraviolet and
infrared theories at certain points in the classical
moduli space. We now derive some results that allow
one to relate the anomalies at different points on the
moduli space to each other. The moduli space is no
longer restricted to be the classical moduli space
A,. The first case we will consider is when the
moduli space .# is an algebraic set in an ambient
vector space V given as the critical points of a flavor
symmetric superpotential W with R-charge two,

={devIw(d)=0}, (20)

where d; denotes a pomt in V, and we will use the
notation W, = 3W/6qb‘ = 62W/8¢c’¢J etc. The
tangent space to .# at d)o, Ty #, 1s defined by

0}. (21)

In all the cases we are interested in, W is a polyno-
mial in ¢ and Eq. (21) agrees with the algebraic
geometry notion of the tangent space.

Assume that a subgroup H (not containing an R
symmetry) of the flavor symmetry group F is unbro-
ken at a point $0 €.#. The invariance of the super-
potential W under F implies that

w(nid’) = w(d), (22)

1y, = (02 1W,(8,)0/ -

where h' is the matrix for the H transformation in
the representatlon p of the fields . Differentiating
this equation twice with respect to é and using
Hb, = b, gives

hy hl u(‘f’o) ij(d;())’ (23)

which shows that W, j(glA)O) is a H invariant tensor
that transforms as ( p® p)g under H. The tangent
space to .# at <f>0 is the null-space of W,;, and so is
H-invariant. One can write V=T .# + Ny .# as the
direct sum of the tangent space and its orthogonal
complement in V. Then W;; provides a non-singular
invertible map from N # into its dual, so that
N, # transforms as a real representation of H. This
immediately implies that the H anomalies computed
using the flat directions Tj .# agree with those
computed using the entire vector space V.

A similar result holds for the anomalies involving
the R charge. Let R, be the R-charge of (i,-, so that

W(eiaR,(f)i) = glia W(J)z‘)’ (24)

since W has R charge two. Differentiating twice
with respect to & shows that

el RTR) W;J(‘bo) =% W]ij((?;o)’ (25)
which can be written in the suggestive form

el @RI IR 1])W (‘2\7())=Wij(‘$o)' (26)
R;— 1 is the R charge of the fermionic component

of the chiral superfield. Thus Eq. (26) shows that
N; # transforms like a real representation under
R=R —1, the fermionic R charge. Thus the R
anomalies, (and mixed anomalies involving R and
non-R flavor symmetries) can be computed at d;o
using V instead of Tj .#. The result can be summa-
rized by

Theorem III: Let .#CV be a moduli space
described by the critical points of a flavor symmetric
superpotential W with R-charge two. Then the
anomalies of an unbroken subgroup H ¢ ¥ at a point
qbo E€.# can be computed using the entire space V,
instead of 73 .#. If the anomaly matching conditions
between the UV and IR theories for H are satisfied
at (f’u- they are also satisfied at all points of any
moduli space .#' C V given by the critical points of
any W’ (including W' =0 and W' = W).

Note that this result tells us that for moduli spaces
described by invariant superpotentials, the precise
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form of the moduli space is irrelevant. The only role
of possible quantum deformations is to remove points
of higher symmetry from the moduli space. It also
greatly simplifies the computation of anomalies in
the infrared theory, since one does not need to
compute the tangent vectors at a given point in the
moduli space.

One simple application of the above result is to
prove that anomaly matching conditions are compati-
ble with integrating out heavy fields. Assume that
one has a theory with a moduli space .#, described
by a superpotential W(g, A). Now perturb the UV
theory by adding a tree level mass term m, ¢’ to
the superpotential. m; d)‘¢>/ is gauge mvanant and
can be written as a polynormal W, (&) of the gauge
invariant composites d) of the IR theory. If the UV
theory contains no singlets, then W, (¢)) is linear in
the basic gauge invariant composite fields $. From
this, it immediately follows that the effective super-
potential of the massive theory is given by
W(,A) =Wy(b,A) +W,(). (27)
where W, is the superpotential in the absence of a
mass term, since a linear term in the fields is equiva-
lent to a redefinition of the source.

The anomalies in the IR theory for any unbroken
subgroup are unaffected by the change in the moduli
space due to the addition of the mass term. They are
still obtained by tracing over the whole space V. In
the UV theory, one should trace not over the whole
space U, but only over the modes that remain mass-
less when W, is turned on. But it is easy to see that
the massive modes in the UV theory form a real
representation of the unbroken symmetry. The argu-
ment is the same as that used in the IR theory, except
that W, (430) is replaced by the (constant) matrix
m;; The mass term does not introduce any modifica-
tlons to the anomaly in the UV or IR theory for any
symmetry left unbroken by the mass. Thus one finds
that if the ’t Hooft conditions are verified for a
theory with a moduli space given by a superpoten-
tial, they are also valid for any theory obtained by
integrating out fields by adding a mass term.

One can now apply the results to study anomaly
matching in supersymmetric gauge theories. Con-
sider supersymmetric QCD with N, > N, > 2. The
fundamental fields are the quarks Q'® and antiquarks

QJB' The flavor symmetry group is SU(Np), X
SU(Np)g X U1y X U(Dy if N> 2.
Consider the point ¢, in the UV theory
0 = mdé'* i<N, 5 _0 28
0 l. > IV( ’ Q]a - V. ( )
The point 7(¢,) = &, in the IR theory is described
by gauge invariant meson and baryons fields,

M/=0, Bii=0,

. (29)

s

B, .., =m" €, Ny -

by i

The unbroken flavor group at ¢, is SU(N,), X
SU(N; — N,); X SU(Np)g X U(1)y X U(1)z. Under
these unbroken symmetries, the fields transform as
Table 1.The unbroken U(1); and U(1); symmetries
are linear combinations of the original U(1); and
U(1), and a U(1) generator in SU(N),.

The point ¢, = (Q'*,Q,,) breaks the gauge group
completely. The orbit G¢, is closed and has maxi-
mal dimension, so Theorem 1 tells us that the hy-
potheses of Theorem II are satisfied. The anomaly
matching theorem (Theorem II) implies that the
SU(N,), X SU(Ny — N,), X SU(N; )z X U(1)z X
U(1), anomalies must match between the UV and IR
theories. It is straightforward to verify by explicit
computation that this is the case. The UV anomalies
are computed using the above transformation rules
for the fundamental fields. The IR anomalies are
computed by determining the representation of the
tangent vectors to the classical moduli space at (f)o
under the unbroken symmetry. One can similarly
show that anomaly matching holds at other points at
the moduli space of supersymmetric QCD.

In the special case Np =N, + 1, the classical
moduli space is described by a superpotential. Then
Theorem III implies that since the SU(N,), X SU(N;
— N.), X SU(N)g X U(1)5 X U(1);, match at Eq.
(29), they must also match at the origin. One can
verify by explicit computation that these anomalies
match at the origin for N, = N, + 1, but not for any
other value of N,. (Equivalently, the fact that the
these anomalies match at Eq. (29) but not at the

! For N, = 2, the SU(Ng); X SU(N;)g X U(1) is enlarged into
a SU(2N;) flavor symmetry. Anomaly matching can be proven
by an argument similar to that for N. > 2.
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Table 1
SU(N,), SU(N; — N,), SU(N: R U, U(Dg
Q'*,i<N, N, - - 0 0
Q'“ i>N, - Ny~ N. - — Ny Ny - 2N) /2Ny~ N,)
O - ~ Ny Ny —N, (2N; ~2N.) /(2 Nz~ N.)

origin for Ny # N, + | implies that the moduli space
for N; # N_+ 1 cannot be given by a superpotential.)
Similarly by considering the point given by exchang-
ing the values of Q and Q in Eq. (29), one can prove
that the SU(N.), X SU(N), X SU(Nz — N.)g X
U(1), X U(1),; anomalies also match at the origin.
Anomaly matching for these two subgroups is suffi-
cient to guarantee that the anomalies for the full
SU(N;), X SU(Np)g X U(1)y X U(1), flavor group
match at the origin. Applying Theorem III again then
shows that the anomalies match everywhere on the
moduli space.

Since supersymmetric QCD with N, =N_+ 1 is
described by a superpotential, integrating out one
flavor by adding a mass term also gives a consistent
theory. This is supersymmetric QCD with N, =N,
with the quantum deformed moduli space detM —
BB = A*™:, ? Integrating out additional flavors leads
to a trivial result, since there is no point in the
moduli space of the theory, and all vacua are unsta-
ble because of the quantum superpotential [6]. One
cannot relate anomalies in N> N, + 1 to those for
N = N, + 1 by adding mass terms, since the theories
with Ny > N_+ 1 are not described by a superpoten-
tial. This is consistent with the result that these
theories do not satisfy the anomaly matching condi-
tions at the origin, and the infrared behavior is
governed by a dual theory [1].

The results of this paper have been used to repro-
duce known results for supersymmetric QCD, with-
out having to explicitly compute any anomalies in
the UV or IR theories. The key point is to find some
simple field configurations ¢ that completely break
the gauge symmetry, and at which 7" is surjective.
The results are particularly powerful for theories

% The anomaly matching theorem cannot be applied at the
origin, which is a point of the classical moduli space, but is not
part of the quantum moduli space.

with a moduli space described by a superpotential.
The resuits of this paper can also be applied to the
s-confining theories that have been studied recently
[3]. These theories have a moduli space given by a
superpotential, and are therefore similar to supersym-
metric QCD for Ny =N_+ 1. The "t Hooft consis-
tency conditions are automatically satisfied for the
entire moduli space, using Theorems I-1III. It then
follows that any theory obtained from an s-confining
theory by adding mass terms also satisfies the 't
Hooft consistency conditions, as long as it has super-
symmetric vacua. A direct check of the anomaly
matching conditions by explicit computation is ex-
tremely involved.

We are indebted to N. Wallach and M. Hunziker
for extensive discussions on algebraic geometry, N.
Wallach for providing a draft of his book: [7] prior to
publication, and K. Intriligator for discussions on
supersymmetric gauge theories and duality. This
work was supported in part by a Department of
Energy grant DOE-FG03-97ER40546.
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