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Five and six dimensional static, spherically symmetric, asymptotically Euclidean black holes, are
unstable under gravitational perturbations if their mass is lower than a critical value set by the string
tension. The instability is due to the Gauss-Bonnet correction to Einstein’s equations, and was found in a
previous work on linear stability of Einstein-Gauss-Bonnet black holes with constant curvature horizons
in arbitrary dimensions. We study the unstable cases and calculate the values of the critical masses. The
results are relevant to the issue of black hole production in high energy collisions.
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I. INTRODUCTION

The most conservative approach to gravity in higher
dimensions is the one due to Lovelock [1], in which the
left-hand side (LHS) of Einstein’s equation Gab ��gab �
8�GTab is replaced with Gab, the most general symmetric,
divergency free rank (0, 2) tensor that can be constructed
out of the metric and its first two derivatives. Lovelock’s
tensor is

 G ab �
X��D�1�=2�

n�0

cnG
�n�
ab; (1)

whereD is the spacetime dimension, [z] the highest integer
satisfying �z� � z, and G�n�ab is obtained by making ap-
propriate contractions on a tensor product of n copies of
the Riemman tensor, contractions that trivially vanish if
n > ��D� 1�=2�.

The first few G�n�ab’s are the spacetime metric G�0�ab �
gab, Einstein’s tensor G�1�ab � Rab �

1
2Rgab, and the

Gauss-Bonnet tensor
 

G�2�b
a � Rcb

deRde
ca � 2Rd

cRcb
da � 2Rb

cRca � RRb
a

� 1
4g
a
b�Rcd

efRef
cd � 4RcdRd

c � R2�; (2)

If D � 4, G�n�ab vanishes for all n > 1 and Lovelock
theory reduces to Einstein theory with a cosmological
constant c0. Starting with D � 5, we may add the G�2�b

a

term, and the resulting theory, usually referred to as
Einstein-Gauss-Bonnet theory (EGB, for short), is the
most general Lovelock theory in five and six dimensions:

 �G
�0�b

a �G
�1�b

a � �G
�2�b

a � 8�GTb
a: (3)

As is well known, EGB theory arises in the low energy
limit of heterotic string theories [2,3], �> 0 being propor-
tional to the inverse string tension, thus string related
treatments of black holes in higher dimension should use

the EGB equations. Spherically symmetric, asymptotically
Euclidean vacuum black hole solutions of the EGB equa-
tions (3) with � � 0 are well known since the eighties [3–
5]. They are given by

 ds2 � �f�r�dt2 � f�r��1dr2 � r2 �gijdxidxj; (4)

�gijdxidxj the line element of Sn, n � D� 2, and
 

f�r� � 1�
r2

��n� 1��n� 2�

	

�
1�

��������������������������������������������������
1�

4���n� 1��n� 2�

nrn�1

s �
: (5)

� above is an integration constant, related to the massM of
the black hole through [6,7]

 M �
�

8�G

�
2��n�1�=2

��n�1
2 �

�
�:

�An

8�G
; (6)

An being the area of the n sphere. For positive � and �,
the case we are interested in, there is a single horizon rh
located at the only positive root of (note the missing factor
of 1=4 in [8])

 � �
nr�n�3�

4
���n� 1��n� 2� � 2r2�; (7)

then

 M �
nrh

�n�3�An

32�G
���n� 1��n� 2� � 2rh

2�: (8)

The temperature and entropy of the black hole (4) and (5)
are [6]

 T �
�
�n� 1�

8�rh

��
2rh

2 � ��n� 2��n� 3�

rh
2 � ��n� 1��n� 2�

�
; (9)

 S �
rh
nAn

4G

�
1�

�n�n� 1�

rh
2

�
: (10)

The specific heat can be obtained from (8) and (9) using*gdotti@famaf.unc.edu.ar
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 C �
@M
@T
�

�
@M
@rh

��
@T
@rh

�
�1
: (11)

Introducing r̂h :� rh���
�
p we obtain

 C��
�
nAn�

n=2

4G

�

	

�
r̂n�2
h �r̂2

h��n�1��n�2��2�2r̂2
h��n�2��n�3��

2r̂4
h��n�2��n�7�r̂2

h��n�1��n�2�2�n�3�

�
:

(12)

Note that (4) and (5) reduce to the n� 2 dimensional
Schwarzschild-Tangherlini [9] black hole of Einstein’s
theory in the �! 0 limit, since

 f�r� � 1�
2�

nrn�1 �O���: (13)

The thermodynamic functions (9)–(11) reduce to the
Schwarzschild-Tangherlini (ST) ones in the �! 0 limit.
Note, however, that some solutions to the EGB equations
are found to diverge as �! 0, an example being the
solution (4) and (5) with a plus sign in front of the square
root in (5). Other crucial issues strongly depend on � being
nonzero (we will restrict to �> 0, as in string theory).
Consider first five dimensional (n � 3) EGB black holes.
From (7) follows that there is a minimum mass� � 3

2� for
black hole formation, otherwise, (4) and (5) have a naked
singularity. This does not happen for five dimensional ST
black holes. The temperature

 T5D �
rh

2��r2
h � 2��

goes to infinity as rh ! 0� (�! 0�) for ST holes,
whereas it tends to zero as rh ! 0� (�! 3��

2 ) in the
EGB case. The specific heat is always negative in the ST
case, whereas it has a pole in the EGB case at rh �

������
2�
p

,
with C> 0 for rh <

������
2�
p

, and C< 0 for rh >
������
2�
p

, i.e.,
small five dimensional EGB black holes can be in equilib-
rium with a heat bath, contrary to what happens for ST
holes. Six dimensional EGB black holes behave more like
ST black holes, their temperature decreasing monotoni-
cally from infinity in the interval 0< rh <1, and their
specific heat being always negative. However, both five
and six dimensional low mass EGB black holes were found
to be unstable under (linear) gravitational perturbations
[8,10,11], whereas all D> 4 ST black holes are well
known to be stable under linear gravitational perturbations
[12]. There are two issues worth remarking at this point:
(i) The gravitational instability found for five and six
dimensional black holes is entirely due to the ‘‘stringy’’
Gauss-Bonnet correction, unseen in general relativity.
(ii) The gravitational instability could not have been an-
ticipated from the thermodynamic behavior. In fact, in five
dimensions, black holes follow an opposite pattern under
thermodynamic and gravitational fluctuations: they are

thermodynamically stable if their mass is low enough,
yet unstable under gravitational perturbations unless their
mass is above a threshold, calculated below. In the last few
years, a number of papers addressed the issue of mini black
hole production in high energy collisions [13], most of
them in the context of higher dimensional gravity.
Among the simplifications commonly found in these cal-
culations, Gauss-Bonnet corrections are suppressed.
However, although a small Gauss-Bonnet coupling con-
stant does not affect qualitative aspects of the black hole
solutions, it becomes rather relevant once stability issues
are considered. The purpose of this work is to find the
values for the critical mass below which five and six
dimensional EGB black holes become unstable under lin-
ear gravitational perturbations. We restrict our considera-
tions to black holes with spherical horizons, since these are
the models commonly used in the study of mini black hole
production. On the other hand, black holes with flat hori-
zons have some characteristics that make them worth
looking at [14]: (a) their thermodynamic functions are
less sensitive to the Gauss-Bonnet (and higher Lovelock)
corrections and (b) they are thermodynamically stable
(positive specific heat) for any mass value (see, e.g.,
[15]). The linear stability of black holes with a flat horizon
can be analyzed starting from the results in [8,10,11],
which set the basic perturbation equations for black holes
of constant-positive, zero, or negative-curvature horizon,
and it is currently under study [16].

The perturbation treatment in [8,10,11] is based in the
decomposition in tensor, vector, and scalar modes given in
[17], which is a higher dimensional generalization of the
axial and polar modes found in the Regge-Wheeler treat-
ment of Schwarzschild perturbations [18]. The metric
perturbation in the tensor modes are made from sym-
metric, divergency free tensor fields Tij on Sn satisfying
DkD

kTij � �kT
2Tij, Dj the covariant derivative on Sn.

Similarly, vector (scalar) mode perturbations are made
from vector (scalar) fields satisfying DkD

kTi � �kV
2Ti

(DkDkT � �kS
2T). A detailed exposition of the construc-

tion of these modes can be found in [17]. The spectrum of
the Laplacian acting on divergency free, rank p symmetric
tensors on Sn is [19]

 kp2 � ‘�‘� n� 1� � p; ‘ � 0; 1; 2; . . . (14)

kS, kV , and kT correspond to p � 0, 1, and 2, respectively.

II. SCALAR MODE INSTABILITY OF FIVE
DIMENSIONAL BLACK HOLES

In five dimensions there is a single horizon located at
(see (5)–(7))

 rh �
����������������
2
3�� �

q
; (15)

as long as � is greater than 3�=2, the minimum value
required for black hole formation. It is convenient to adopt
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the dimensionless variables from Sec. 4a of Ref. [11]

 x :� r��1=2; m :�
�
�
; (16)

then xh �
����������������
2
3m� 1

q
and the dimensionless tortoise coor-

dinate

 x
�x� :�
Z x

2xh

dx0

f�x0�
; f�x� � 1�

x2

2

�
1�

����������������
1�

8m
3x

s �
(17)

extends from minus to plus infinity.
Scalar perturbations in five dimensions (n � 3) of har-

monic number k2
S � ‘�‘� 2�, ‘ � 2; 3; . . . , (the modes

‘ � 0, 1 are trivial [17]) are entirely described by a single
function �̂�t; x� governed by an equation �H kS �

�@2=@t2��̂ � 0, which admits separation of variables
�̂�t; x� � ��x�e!t, giving H kS� � ��!

2� � �E�,
with � satisfying appropriate boundary conditions
(Ref. [11], Eqs. (61)–(66)). The ‘‘Hamiltonian’’

 H kS � �
@2

@x
2
� �VkS (18)

can be constructed following Sec. V in [11]. A negative
eigenvalue of H kS —real !—implies that this mode
grows exponentially with time, i.e., is unstable. Generic
perturbations have projections on each harmonic (tensor,
vector, or scalar) mode. Since 5D black holes were found
to be stable under tensor and vector perturbations
[8,10,11], they will be unstable if and only if a kS is found
such that the spectrum of H kS is not positive. The bound-
ary conditions defining the space of functions on which

H kS acts determine its spectrum, L2�x
; dx
� being an
appropriate function space for black hole spacetimes (see
however, the discussion in [20] regarding nakedly singular
spacetimes). The problem of stability is then entirely
equivalent to the quantum mechanical problem of deter-
mining the sign of the lowest eigenvalue for each member
of the family of Hamiltonians H kS , kS �

������������������
‘�‘� 2�

p
, ‘ �

2; 3; . . . Our strategy to prove instability consists in show-
ing that, if �=� is small enough, then for sufficiently high
kS, there exists a wave function with a negative expectation
value of H kS (numerical evidence of this fact was given in
Sec. IVa of Ref. [11]). This implies that the ground state of
H kS has negative energy, from where the instability fol-
lows. From the results in Sec. IV of [11], we find, after a
long calculation, that, after introducing

 x0 :�
����������������
xh

2 � 1
q

; y :�
��������������������
x4 � 4x0

2
q

; (19)

the potential can be conveniently split as

 UkS
:�

�VkS
f
� kS

2q1 � q0 �
kS

2q1 � q2

D
; (20)

where D is a quartic polynomial in kS:

 D � 2x2y4��kS
2 � 3�y� 6x0

2��2; (21)

and the q’s do not depend on kS:

 q1 �
�x4 � 4x0

2�

x2y2 ; (22)

 q0 �
�x8 � 120x4x0

2 � 240x0
4�

8x2y3 �

�
x10 � 6x8 � 200x0

2x6 � 528x0
2x4 � 560x0

4x2 � 480x0
4

8x2y4

�
; (23)

 q1 � 24x2x0
2��24x0

2 � 20x0
2x2 � 6x4 � x6�y� 48x0

4 � 8x0
2x4 � x8�; (24)

 q2 � 72x2
0x

4��x6 � �2x2
0 � 6�x4 � 20x2

0x
2 � 24x4

0 � 24x2
0�y� x

8 � 2x2
0x

6 � 4x2
0x

4 � 40x4
0x

2 � 96x4
0�: (25)

Note that q1 is negative in the range jxj< xc :�
���
2
p
�1�

x2
h�

1=4, and that 0< xh < xc if and only if 3=2<m<
9=2� 3

���
2
p

. Suppose this is the case and let  �x� be a
real C1 function vanishing outside �xh; xc�, normalized
such that

 1 �
Z 1
�1

�  dx
 �
Z xc

xh

 2

f
dx:

Using  as a test function, the expectation value of the
kinetic piece of (18) is

 h�@2=@x
2i � �
Z 1
�1

� 
@2 

@x
2
dx


�
Z xc

xh
f
�
@
@x

�
f
@ 
@x

��
2
dx (26)

and that of the scalar potential is

 h�VkSi � �
Z 1
�1

� VkS dx

 �

Z xc

xh
 2UkSdx

� kS
2Q1 �Q0 �Q�kS�; (27)

where
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 Q1 �
Z xc

xh
 2q1dx < 0 (28)

and

 Q0 �
Z xc

xh
 2q0dx (29)

do not depend on kS, and

 Q�kS� �
Z xc

xh
 2

�
kS

2q1 � q2

D

�
dx: (30)

Note that the integrand in (30) converges uniformly to zero
in the interval x 2 �xh; xc� as kS ! 1. This follows from
the fact that D is strictly positive in �xh; xc� (see (21)) and
is a quartic polynomial in kS. As a consequence,
limkS!1Q�kS� � 0 and thus hH kSi is negative for the
given test function and large values of kS. Since the above
construction is possible if

 3=2<m<mc�5D� � 9=2� 3
���
2
p
’ 8:743; (31)

we conclude that, in this mass range, all (static, spherically
symmetric, asymptotically Euclidean) 5D black holes have
a high harmonic scalar instability. Although solving the
quantum mechanical problem (18) analytically is out of
consideration, in some cases we were able to spot the
fundamental energy using a shooting algorithm to numeri-
cally integrate (18). This was done in the standard coor-
dinate x (instead of x
), for which (18) reduces to an
equation of the form �00 � P�0 �Q� � 0 with a regular
singular point at the horizon. The first few terms of the
Frobenius series around the horizon were used to generate

appropriate initial conditions for the shooting algorithm.
As an example, we exhibit in Fig. 1 the scalar potential vs
x
, together with the ground state wave function corre-
sponding tom � 1:7, ‘ � 2. We also remark that no bound
state was found for m>mc�5D�.

III. TENSOR MODE INSTABILITY OF SIX
DIMENSIONAL BLACK HOLES

As in [8], we find it convenient to introduce dimension-
less variables
 

m :� ���3=2; x :� r=����1=5 � r��1=2m�1=5;

dx
=dx :� 1=f: (32)

The spectrum of the Laplacian on symmetric divergency
free tensors on S4 is k2

T � ‘�‘� 3� � 2, ‘ 2 Z, only ‘ > 1
tensors being required to construct nontrivial tensor per-
turbations of 6D black holes. These perturbations are en-
tirely described by a single function �̂�t; x� governed by an
equation that, after separation of variables �̂�t; x� �
��x�e!t, assumes the form H kT � ��m

2=5!2� �
�m2=5E� ([8], Eq. (16)), with Hamiltonian

 H kT � �
@2

@x
2
� �m2=5VkT ; (33)

VkT being the right-hand side (RHS) of Eq. (18) in [8].
From [8] we can readily construct the potential, the result is

 U :�
�VkT
f

� �kT
2 � 2�m��2=5�U0 �m��2=5�U1 �U2 �U3; (34)

where the Uj’s depend only on x:

 U0 �
2�x5 � 6�2 � 75

2x2�x5 � 1��x5 � 6�
; (35)

 U1 �
8x20 � 72x15 � 1218x10 � 1752x5 � 27

4x2�x5 � 1�2�x5 � 6�2
; (36)

 U2 �
24x20 � 336x15 � 2414x10 � 2916x5 � 189

24�x5 � 1�2�x5 � 6�2
; (37)

 U3 �
24x20 � 216x15 � 1154x10 � 1506x5 � 81

24x5�x5 � 1�2�x5 � 6�
�������������������
1� 6=x5

p : (38)

Let xc � �
�����������
75=2

p
� 6�1=5 ’ 0:658 be the only positive root

ofU0, note thatU0 < 0 for 0< x< xc. The x coordinate of
the horizon is

 xh �
z2 � 4

2m1=5z
; z � �2m� 2

������������������
16�m2

p
�1=3: (39)

xh is a monotone increasing function of m, and xh � xc at
m � mc�6D� given by

FIG. 1. The scalar potential (arbitrary scale) in five dimensions
for ‘ � 2 and �=� � 1:69 is shown together with the ground
state wave function and energy, found numerically using a
shooting algorithm. The origin of x
 was chosen as in (17), x
 �
0 for x � 2xh.
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 mc�6D� �
72

���
6
p
�5

���
6
p
� 12�3=2

�12� 5
���
6
p
� 61=4

���
5
p ���������������������

5
���
6
p
� 12

p
�5=2
’ 7:965:

(40)

If m<mc�6D�, then xh < xc and we can take a test function
supported in �xh; xc�, so that the expectation value of theU0

piece of the potential is negative. Note from (34) that this
term is proportional to the harmonic ‘�‘� 3�, and no other
term of H kT depends on ‘, thus the expectation value of
H kT for such a test function will be negative for suffi-
ciently high harmonic number. We conclude that 6D black
holes are unstable if m<mc above. Now we prove stabil-
ity for m>mc�6D�: U0, U1 (and U2) are positive if x > xc,
whereasU2 �U3 > 0 if x > x0c ’ 1:176. Since xh � x0c for
m � m0 ’ 48:927, stability will follow if we prove that
U > 0 for ‘ � 2; 3 . . . , mc�6D� <m<m0 and x > xh given
in (39). A lower bound for U in this region of parameter
space is given by the minimum of the single variable
function UL :� �10U0 �U1�50�2=5 �U2 �U3 in the in-
terval x 2 �xc;1�. After some work UL can be seen to be
positive in this interval, thus proving stability. We conclude
that 6D black holes are linearly unstable if and only if
�=�3=2 � m<mc�6D�.

Figure 2 exhibits the potential and fundamental state
(found numerically) corresponding to ‘ � 2, ���3=2 �
1:85.

IV. CONCLUSIONS

Gauss-Bonnet corrections to Einstein’s equations in
higher dimensions have been considered in many different
models, and naturally arise in the low energy effective
action of certain string theories. However, their effects on
black hole formation have long been disregarded. The
instability found in [8,10,11] and this paper implies that
the simplest EGB black holes (asymptotically Euclidean,
static, spherically symmetric), which are the closest ana-
logue of Schwarzschild black holes, cannot actually be
formed in five space time dimensions if their mass parame-
ter � (see (5) and (6)) is less than �8:743�. The Gauss-
Bonnet term also prevents the formation of these black
holes in six dimensions unless � is greater than
�7:965�3=2. The implications of these figures depend on
the context where (4) and (5) is used. As an example, the
n-dimensional EGB black hole (4) and (5) is an approxi-
mate EGB solution if we periodically identify one of the
asymptotically Euclidean coordinates with a period much
larger than the horizon radius, and our perturbative analysis
should be valid in this setting. The large extra dimensions
scenario (suitable only for D  6, [21]) is of interest
because it allows � to be in the TeV scale [21,22], and
so mini black holes could be produced in high energy
collisions and be eventually detected at LHC. In view of
our results, the probability of these events may be severely
limited due to low mass black hole instabilities. As far as
we know, this fact has not been taken into account in
previous calculations on black hole production rates in
high energy collisions. In theories where the EGB equa-
tions simply arise as a low energy effective theory of some
quantum gravity model, � is of the order of the Planck
scale and the bounds we obtained for small black hole
masses are much more stringent.
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