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An exhaustive classification of a certain class of static solutions for the five-dimensional Einstein-
Gauss-Bonnet theory in vacuum is presented. The class of metrics under consideration is such that the
spacelike section is a warped product of the real line with a nontrivial base manifold. It is shown that for
generic values of the coupling constants the base manifold must be necessarily of constant curvature, and
the solution reduces to the topological extension of the Boulware-Deser metric. It is also shown that the
base manifold admits a wider class of geometries for the special case when the Gauss-Bonnet coupling is
properly tuned in terms of the cosmological and Newton constants. This freedom in the metric at the
boundary, which determines the base manifold, allows the existence of three main branches of geometries
in the bulk. For the negative cosmological constant, if the boundary metric is such that the base manifold
is arbitrary, but fixed, the solution describes black holes whose horizon geometry inherits the metric of the
base manifold. If the base manifold possesses a negative constant Ricci scalar, two different kinds of
wormholes in vacuum are obtained. For base manifolds with vanishing Ricci scalar, a different class of
solutions appears resembling ‘‘spacetime horns.’’ There is also a special case for which, if the base
manifold is of constant curvature, due to a certain class of degeneration of the field equations, the metric
admits an arbitrary redshift function. For wormholes and spacetime horns, there are regions for which the
gravitational and centrifugal forces point towards the same direction. All of these solutions have finite
Euclidean action, which reduces to the free energy in the case of black holes, and vanishes in the other
cases. The mass is also obtained from a surface integral.

DOI: 10.1103/PhysRevD.76.064038 PACS numbers: 04.50.+h, 04.20.Jb, 04.90.+e

I. INTRODUCTION

According to the basic principles of general relativity,
higher dimensional gravity is described by theories con-
taining higher powers of the curvature [1]. In five dimen-
sions, the most general theory leading to second order field
equations for the metric is the so-called Einstein-Gauss-
Bonnet theory, which contains quadratic powers of the
curvature. The pure gravity action is given by

 I � �
Z
d5x

���
g
p
�R� 2�� ��R2 � 4R��R��

� R����R������; (1)

where � is related to the Newton constant, � to the
cosmological term, and � is the Gauss-Bonnet coupling.
For later convenience, it is useful to express the action (1)
in terms of differential forms as

 I �
Z
�abcde��2RabRcd � �1Rabeced � �0eaebeced�ee;

(2)

where Rab � d!ab �!a
f!

fb is the curvature 2-form for
the spin connection !ab � !ab

�dx
�, ea � ea�dx

� is the

vielbein, and the wedge product is understood.1 For a
metric connection with vanishing torsion, the field equa-
tions from (2) read
 

Ea :� �abcde��2RbcRde � 3�1Rbcedee � 5�0ebecedee�

� 0: (3)

The kind of spacetimes we are interested in have static
metrics of the form

 ds2 � �f2�r�dt2 �
dr2

g2�r�
� r2d�2

3; (4)

where d�2
3 is the line element of a three-dimensional

manifold �3 that we call the ‘‘base manifold.’’ Note that
@=@t is a timelike Killing vector field, orthogonal to 4-
manifolds that are a warped product of R with the base
manifold �3.

If the Gauss-Bonnet coupling �2 vanishes, general rela-
tivity with a cosmological constant is recovered. In this
case the equations force the base manifold to be of constant
curvature � (which can be normalized to � � �1 or zero)
and2 [2]
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1The relationship between the constants appearing in Eqs. (1)
and (2) is given by � � �2

6�1
, � � 10 �0

�1
, and � � �6�1.

2The four-dimensional case was discussed previously in [3–5].
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 f2 � g2 � ��
�

r2 �
5

3

�0

�1
r2: (5)

If � � 1, i.e., for �3 � S3, the Schwarzschild–anti-de
Sitter solution is recovered.

For spacetime dimensions higher than five, the equations
of general relativity do not impose the condition that the
base manifold be of constant curvature. In fact, any
Einstein base manifold is allowed [6]. For nonzero �2,
however, the presence of the Gauss-Bonnet term restricts
the geometry of an Einstein base manifold by imposing
conditions on its Weyl tensor [7].

In this work we restrict ourselves to five dimensions
without assuming any a priori condition on the base mani-
fold in the ansatz (4). We show that, in five dimensions, the
presence of the Gauss-Bonnet term permits one to relax the
allowed geometries for the base manifold �3, so that the
whole structure of the five-dimensional metric turns out to
be sensitive to the geometry of the base manifold. More
precisely, it is shown that solutions of the form (4) can be
classified in the following way:

(i) Generic class.—For generic coefficients, i.e., for
arbitrary �0, �1, �2, the line element (4) solves the
Einstein-Gauss-Bonnet field equations provided the
base manifold �3 is necessarily of constant curvature
� (that we normalize to �1, 0) and

 f2 � g2�r�

� ��
3

2

�1

�2
r2

�
1�

��������������������������������������������
1�

20

9

�2�0

�2
1

�
�
�

r4

s �
;

(6)

where� is an integration constant. This solution was
obtained in [8] assuming the base manifold to be of
constant curvature, and in the spherically symmetric
case Eq. (6) reduces to the well-known Boulware-
Deser solution [9].

(ii) Special class.—In the special case where the Gauss-
Bonnet coupling is given by

 �2 �
9

20

�2
1

�0
; (7)

the theory possesses a unique maximally symmetric
vacuum [10], and the Lagrangian can be written as a
Chern-Simons form [11]. The solution set splits into
three main branches according to the geometry of the
base manifold �3:

(ii.a) Black holes.—These are solutions of the
form (4) with

 f2 � g2 � 	r2 ��; 	 :�
10

3

�0

�1
(8)

(� is an integration constant). Their peculiarity is
that, with the above choice of f and g, any (fixed)
base manifold �3 solves the field equations. Note

that for negative cosmological constant �	> 0� this
solution describes a black hole [12,13] which, in the
case of spherical symmetry, reduces to the one found
in [9,14].

(ii.b) Wormholes and spacetime horns.—For
base manifolds �3 of constant nonvanishing Ricci
scalar, ~R � 6�, the metric (4) with

 f2�r� � �
����
	
p

r� a
������������������
	r2 � �

q
�2; (9)

 g2�r� � 	r2 � � (10)

(a is an integration constant) is a solution of the
field equations. In this case, there are three sub-
branches determined by jaj> 1, jaj< 1, or jaj �
1. It is simple to show that, for negative cosmologi-
cal constant �	> 0� and � � �1, the solution with
jaj< 1 corresponds to the wormhole in vacuum
found in [15]. The solution with jaj � 1 and � �
�1 corresponds to a brand new wormhole in vac-
uum (see Sec. III).
If the base manifold �3 has vanishing Ricci scalar,
i.e., ~R � 0, it must be

 f2�r� �
�
a

����
	
p

r�
1����
	
p

r

�
2
; (11)

 g2�r� � 	r2; (12)

with a an integration constant. If 	> 0 and a � 0,
this solution looks like a ‘‘spacetime horn.’’ If the
base manifold is not locally flat, there is a timelike
naked singularity, but nevertheless the mass of the
solution vanishes and the Euclidean continuation
has a finite action (see Sec. IV).

(ii.c) Degeneracy.—If �3 is of constant curva-
ture, ~Rmn � �~em~en, and g2 given by Eq. (10), then
the function f2�r� is left undetermined by the field
equations.

The organization of the paper is the following: in Sec. II
we solve the field equations and arrive at the classification
outlined above; Sec. III is devoted to describing the ge-
ometry of the solutions of the special class, including some
curious issues regarding the nontrivial behavior of geo-
desics around wormholes and spacetime horns. The
Euclidean continuation of these solutions and the proof
of the finiteness of their Euclidean action is worked out in
Sec. IV. The mass of these solutions is computed from
surface integrals in Sec. V. Section VI is devoted to a
discussion of our results, and some further comments.

II. EXACT SOLUTIONS AND THEIR
CLASSIFICATION

In this section we solve the field equations and arrive at
the classification outlined in Sec. I. This is done in two
steps. We first solve the constraint equation E0 � 0, and
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find two different cases: (i) a solution which is valid for any
Einstein-Gauss-Bonnet theory, (ii) a solution that applies
only to those theories satisfying (7).

In a second step we solve the remaining field equations
and complete the classification of the solution set.

The vielbein for the metric (4) is chosen as

 e0 � fdt; e1 � g�1dr; em � r~em; (13)

where ~em stands for the vielbein on the base manifold, so
that the indices m, n, p, . . . run along �3. The constraint
equation E0 � 0 then acquires the form

 B0�r� ~R� 6A0�r� � 0; (14)

where ~R is the Ricci scalar of the base manifold, and

 A0 � 20�0r4 � 3�1r�g2r2�0 � �2�g4�0r; (15)

 B0 � 2r�3�1r� �2�g
2�0	: (16)

Since ~R depends only on the base manifold coordinates,
Eq. (14) implies that

 A0�r� � ��B0�r�; (17)

where � is a constant. Hence, the constraint reduces to

 

�
B0�r�� ~R� 6�� � 0

A0�r� � ��B0�r�
(18)

and implies that either

(i) the base manifold is of constant Ricci scalar ~R � 6�,
or

(ii) B0 � 0.
In case (i) the solution to (17) is

 g2�r� � ��
3

2

�1

�2
r2

�
1�

��������������������������������������������
1�

20

9

�2�0

�2
1

�
�
�

r4

s �
(19)

(� is an integration constant). Since this solution holds for
generic values of �0, �1, and �2, we call case (i) the
generic branch.

Case (ii), on the other hand, implies A0 � B0 � 0 [see
Eq. (17)], and this system admits a solution only if the
constants of the theory are tuned as in (7), the solution
being

 g2 � 	r2 ��; 	 :�
10

3

�0

�1
: (20)

Note that in case (ii) the constraint equation does not
impose any condition on the base manifold.

The radial equation E1 � 0, combined with the con-
straint in the form e0E0 � e

1E1 � 0, reduces to

 �B0�r� � B1�r�� ~R� 6�A0�r� � A1�r�� � 0; (21)

where

 A1�r� � 2r
�

10�0r
3 � 3�1g

2r� 3�1g
2 f
0

f
r2

� 2�2
f0

f
g4

�
;

B1�r� � 2r
�

3�1r� 2�2g2 f
0

f

�
:

Finally, the three ‘‘angular’’ field equations Em � 0 are
equivalent to the following three equations:

 B�r� ~Rmn � A�r�~em~en � 0; (22)

where

 A�r� :� 60�0r
4 �

�2r2

f
�3�g4�0f0 � 4g4f00�

� 3�1r2

�
2�g2r�0 � 4g2 f

0

f
r� �g2�0

f0

f
r2

� 2g2 f
00

f
r2

�
(23)

and

 B :� 2r2

�
3�1 � �2

�
�g2�0

f0

f
� 2g2 f

00

f

��
: (24)

In what follows we solve the field equations (21) and
(22), starting from the generic case (i), i.e., base manifolds
with a constant Ricci scalar ~R � 6�, and g2 given by (19).

(i) Radial and angular equations: Generic case (i).—
The radial field equation E1 � 0 allows one to find
the explicit form of the function f2�r�, whereas the
components of the field equations along the base
manifold restrict its geometry to be of constant cur-
vature. This is seen as follows.
Since in case (i) the base manifold has ~R � 6�,
where � is a constant, Eq. (21) reads

 �B0�r� � B1�r���� �A0�r� � A1�r�� � 0; (25)

its only solution being f2 � Cg2, where the constant
C can be absorbed into a time rescaling. Thus, in the
generic case (i), the solution to the field equations
E0 � E1 � 0 for the ansatz (4) is f2 � g2 given in
(19)
The angular equations (22) imply

 A�r� � �
B�r�; (26)

for some constant 
, and then (22) is equivalent to

 

�
B�r�� ~Rmn � 
~em~en� � 0;

A�r� � �
B�r�:
(27)

Since B�r� � 0 for f2 � g2 given by (19), the base
manifold must necessarily be of constant curvature,
i.e., the metric of �3 satisfies ~Rmn � 
~em~en, and,
since ~R � 6�, it must be 
 � �. This takes care of
the first of equations (27). The second one adds
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nothing new since

 A�r� � �B�r� � 0 (28)

is trivially satisfied because for f � g,

 r�2�A�r� � �B�r�	 � r�1�A0�r� � �B0�r�	0; (29)

and g satisfies (17). This concludes the classification
of case (i).

(ii) Radial and angular equations: Special case (ii).—
From the constraint equation E0 � 0, one knows that
in this case the Gauss-Bonnet coefficient is fixed as in
Eq. (7), and the metric function g2 is given by
Eq. (20).
The radial field equation (21) now reads

 

�
��� 	r2	

f0

f
� 	r

�
� ~R� 6�� � 0; (30)

which is solved either by
(ii.a) Having the first factor in (30) vanish, or by
(ii.b) Requiring the Ricci scalar of �3 to be ~R � �6�.

After a time rescaling, the solution in case (ii.a), is f2 � g2

[given in Eq. (20)].
No restriction on �3 is imposed in this case.

Case (ii.b), on the other hand, is solved by requiring ~R �
�6�, so that the scalar curvature of the base manifold is
related to the constant of integration in (20). Note that, in
this case, the metric function f2 is left undetermined by the
system E0 � E1 � 0.

The remaining field equations, Em � 0, can be written as

 

�
	� 	r

f0

f
� �	r2 ���

f00

f

�
� ~Rmn ��~em~en� � 0: (31)

For case (ii.a), the first factor of Eq. (31) vanishes, and
the geometry of base manifold �3 is left unrestricted. We
have a solution of the full set of field equations of the
special theories (7) given by (4) with f2 � g2 of Eq. (20),
and an arbitrary base manifold �3.

In case (ii.b), Eq. (31) can be solved in two different
ways:

(ii.b1) Choosing f such that the first factor vanishes.
(ii.b2) Requiring the base manifold to be of constant

curvature ��, i.e., ~Rmn � ��~em~en.
Case (ii.b2) leaves the redshift function f2 completely

undetermined.
Case (ii.b1) opens new interesting possibilities. The

vanishing of the first factor of Eq. (31) gives a differential
equation for the redshift function, whose general solution,
after a time rescaling, reads

 f2�r� �
�
�
����
	
p

r� a
�������������������
	r2 ��

p
�2: � � 0

�a
����
	
p

r� 1���
	
p

r�
2: � � 0;

(32)

where a is an integration constant. �3 is not a constant
curvature manifold, although it has constant Ricci scalar

~R � �6�. Note that we do not lose generality if we set
�� equal to � � �1, 0.

For � � 0 there are three distinct cases, namely jaj> 1,
jaj< 1, or jaj � 1, with substantially different qualitative
features. It is simple to show that, for negative cosmologi-
cal constant �	> 0�, the solution with � � �1 and jaj< 1
corresponds to the wormhole in vacuum found in [15],
whereas that with jaj � 1 corresponds to a brand new
wormhole in vacuum (see Sec. III).

On the other hand, if � � 0 (base manifold with vanish-
ing Ricci scalar), for negative cosmological constant and
nonnegative a, the metric (4) describes a spacetime that
looks like a ‘‘spacetime horn.’’ We will see in the next
section that, if the base manifold is not locally flat, there is
a timelike naked singularity. Yet, the mass of the solution
vanishes and the Euclidean continuation has a finite action
(see Sec. IV).

This concludes our classification of solutions. Since
case (i) has been extensively discussed in the literature,
we devote the following sections to a discussion of the
novel solutions (ii.a) and (ii.b1/b2).

III. GEOMETRICALLY WELL-BEHAVED
SOLUTIONS: BLACK HOLES, WORMHOLES, AND

SPACETIME HORNS

In this section we study the solutions for the special case
found above.

One can see that, when they describe black holes and
wormholes, as r goes to infinity the spacetime metric
approaches that of a spacetime of constant curvature �	,
with different kinds of base manifolds. This is also the case
for spacetime horns, provided a � 0 (see Sec. III B). It is
simple to verify by inspection that, for	 
 0, the solutions
within the special case are geometrically ill-behaved in
general. Hence, hereafter we restrict our considerations
to the case l2 :� 	�1 > 0, where l is the anti-de Sitter
(AdS) radius.

A. Case (ii.a): Black holes

According to the classification presented in the previous
section, fixing an arbitrary base manifold �3, the metric

 ds2 � �

�
r2

l2
��

�
dt2 �

dr2

�r
2

l2 ���
� r2d�2

3 (33)

solves the full set of Einstein-Gauss-Bonnet equations for
the special theories (7). The integration constant � is
related to the mass, which is explicitly computed from a
surface integral in Sec. V. Assuming the base manifold to
be orientable, compact, and without boundary, for �> 0,
the metric (33) describes a black hole whose horizon is
located at r � r� :�

����
�
p

l. Requiring the Euclidean con-
tinuation to be smooth, the black hole temperature can be
obtained from the Euclidean time period, which is given by
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 � �
1

T
�

2�l2

r�
: (34)

For later purposes, it is useful to express the Euclidean
black hole solution in terms of the proper radial distance �
(in units of l), given by

 r � r� cosh���;

with 0 
 � <1, so that the Euclidean metric reads

 ds2 �
r2
�

l2
sinh2���d2 � l2d�2 � r2

�cosh2���d�2
3: (35)

The thermodynamics of these kinds of black holes turns
out to be very sensitive to the geometry of the base mani-
fold, this is briefly discussed in Sec. IV.

B. Case (ii.b): Wormholes and spacetime horns

In this case the base manifold possesses a constant Ricci
scalar ~R � 6�, with � normalized to �1 or 0.

Let us first consider the case for which the base manifold
�3 has nonvanishing Ricci scalar, i.e., � � 0. By virtue of
Eqs. (9) and (10), the spacetime metric (4) reads

 ds2 � �

�
r
l
� a

��������������
r2

l2
� �

s �
2
dt2 �

dr2

r2

l2
� �

� r2d�2
3; (36)

where a is an integration constant and l > 0. The Ricci
scalar of (36) is given by

 R � �
20

l2
�

6�
l

�
r
�
r
l
� a

��������������
r2

l2
� �

s ��
�1
; (37)

which generically diverges at r � 0 and at any point sat-
isfying r=a < 0 and

 r2
s � l2

�a2

1� a2 : (38)

In the case � � 1 the metric possesses a timelike naked
singularity at r � 0, and if �1< a< 0, an additional
timelike naked singularity at r2 � r2

s . Because of this ill
geometrical behavior, we no longer consider the spacetime
(36) for the case � � 1.

Wormholes.—The case � � �1 is much more interest-
ing. The region r < lmust be excised since the metric (36)
becomes complex within this range, and the
Schwarzschild-like coordinates in (36) fail at r � l.
Introducing the proper radial distance �, given by

 r � l cosh���;

allows one to extend the manifold beyond r � l (� > 0) to
a geodesically complete manifold by letting �1< �<
1. For a2 < 1, the resulting metric for this geodesically
complete manifold reads

 ds2 � l2��cosh2��� �0�dt2 � d�2 � cosh2���d�2
3	;

(39)

where �0 :� �tanh�1�a�, and the time coordinate has
been rescaled. Note that, since (36) is invariant under
�r; a� ! ��r;�a�, the � > 0 piece of (39) is isometric to
(36), whereas the � < 0 portion is isometric to the metric
obtained by replacing a! �a in (36). In other words, (39)
matches the region r � l of the metric (36) with a given
value of a, with the region r � l of the same metric but
reversing the sign of a. The singularity at r2 � r2

s in
Eq. (38) is not present since a2 
 1, and that at r � 0 is
also absent since r � l > 0 at all points.

For a2 � 1 we obtain another wormhole in vacuum, by
using again the proper distance � defined above:

 ds2 � l2��e2�dt2 � d�2 � cosh2���d�2
3	: (40)

In these coordinates it is manifest that the metrics (39)
and (40) describe wormholes, both possessing a throat
located at � � 0. No energy conditions are violated by
these solutions, since in both cases, the whole spacetime is
devoid of any kind of stress-energy tensor.

The spacetime described by Eq. (39) is the static worm-
hole solution found in [15]. This metric connects two
asymptotically locally AdS regions, and gravity pulls to-
wards a fixed hypersurface located at � � �0 being paral-
lel to the neck. This is revisited in the next subsection.

The metric (40) describes a brand new wormhole. Its
Riemann tensor is given by
 

Rt�t� � �
1

l2
;

R�i�j � �
1

l2
�ij;

Rtitj � �
1

l2
tanh����ij;

Rijkl �
1

l2
~Rijkl

cosh2���
�

1

l2
tanh2�����ik�

j
l � �

i
l�
j
k�;

(41)

where Latin indices run along the base manifold. At the
asymptotic regions �! �1, the curvature components
approach

 Rt�t� � �
1

l2
; R�i�j � �

1

l2
�ij;

Rtitj ’ �
1

l2
�ij; Rijkl ’ �

1

l2
��ik�

j
l � �

i
l�
j
k�:

(42)

This makes clear that the wormhole (40) connects an
asymptotically locally AdS spacetime (at �! 1) with
another nontrivial smooth spacetime at the other asymp-
totic region (�! �1). Note that, although the metric
looks singular at �! �1, the geometry is well behaved
at this asymptotic region. This is seen by noting that the
basic scalar invariants can be written in terms of contrac-
tions of the Riemann tensor with the index position as in
(41), whose components have well-defined limits [given in
(42)], and g�� � ���. Thus, the invariants cannot diverge.
As an example, the limits of some invariants are
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 lim
�!�1

R���� � �
8

l2
;

lim
�!�1

R����R
��
�� �

40

l4
;

lim
�!�1

C����C
��
�� �

8

l4
;

(43)

where C���� is the Weyl tensor.
We have also computed some differential invariants and

found they are all well behaved as �! �1.
Some features about the geodesics in these vacuum

wormholes are discussed in the next subsection, their
regularized Euclidean actions and their masses are eval-
uated in Secs. IV and V, respectively.

Spacetime horns.—Let us consider now the case when
the base manifold �3 has vanishing Ricci scalar, i.e., ~R �
0.

In this case the metric (4) reduces to

 ds2 � �

�
a
r
l
�
l
r

�
2
dt2 � l2

dr2

r2 � r
2d�2

3; (44)

where a is an integration constant. The Ricci scalar of this
spacetime reads

 R � �
4

l2

�
5ar2 � l2

l2 � ar2

�
: (45)

The timelike naked singularity at r2
s � �

l2
a can be removed

requiring a � 0; however, this condition is not strong
enough to ensure that the spacetime is free of singularities.
Indeed the Kretschmann scalar is given by

 K :� R
�
��R��
�

�
~Rkl

ij ~Rij
kl

r4 �
8�5r4a2 � 4l2r2a� 5l4�

l4�ar2 � l2�2
; (46)

where ~Rkl
ij ~Rij

kl is the Kretchmann scalar of the Euclidean
base manifold �3. Hence, for a generic base manifold with
vanishing Ricci scalar, the metric possesses a timelike
naked singularity at r � 0, unless the Kretchmann scalar
of the base manifold vanishes. Since the base manifold is
Euclidean, the vanishing of its Kretchmann scalar implies
that it is locally flat. This drives us out of (ii.b1) to the
degenerate case (ii.b2), for which the gtt component of the
metric is not fixed by the field equations, for this reason we
will not consider the locally flat case.

If the base manifold is not locally flat, at the origin the
Ricci scalar goes to a constant and the Kretschmann scalar
diverges as r�4. Therefore, the singularity at the origin is
smoother than that of a conifold [16], whose Ricci scalar
diverges as r�2, and it is also smoother than that of the five-
dimensional Schwarzschild metric with negative mass, that
possesses a timelike naked singularity at the origin with a
Kretschmann scalar diverging as r�8. In spite of this di-
vergency, the regularized Euclidean action and the mass

are finite for this solution, as we show in Secs. IV and V. In
this sense this singularity is as tractable as that of a vortex.

In the case a > 0 we are interested in, we introduce a �:
e�2�0 and a time rescaling; then the metric (44) expressed
in terms of the proper radial distance r � le� is

 ds2 � l2��cosh2��� �0�dt
2 � d�2 � e2�d�2

3	: (47)

This spacetime possesses a single asymptotic region at
�! �1 where it approaches AdS spacetime, but with a
base manifold different from S3. Note that, as the warp
factor of the base manifold goes to zero exponentially as
�! �1, it actually looks like a ‘‘spacetime horn.’’

For a � 0, the metric (44) can also be brought into the
form of a spacetime horn,

 ds2 � l2��e�2�dt2 � d�2 � e2�d�2
3	; (48)

which also possesses a single asymptotic region at �!
�1, which agrees with the asymptotic form of the new
wormhole (40) as �!�1.

The asymptotic form of the Riemann tensor is not that of
a constant curvature manifold, and can then be obtained
from the �! �1 limit in (42).

The regularized Euclidean action and mass of these
spacetime horns are evaluated in Secs. IV and V.
Geodesics are discussed in the next subsection.

C. Geodesics around wormholes and spacetime horns

The class of metrics that describes the wormholes and
spacetime horns is of the form

 ds2 � �A2���dt2 � l2d�2 � C2���d�2; (49)

where the functions A��� and C��� can be obtained from
Eqs. (39) and (40) for wormholes, and from Eqs. (47) and
(48) for spacetime horns.

1. Radial geodesics

Let us begin with a brief analysis of radial geodesics for
the wormholes and spacetime horns. The radial geodesics
are described by the following equations:

 

_t�
E

A2 � 0; (50)

 l2 _�2 �
E2

A2 � b � 0; (51)

where the dot stands for derivatives with respect to the
proper time, the velocity is normalized as u�u� � �b, and
the integration constant E corresponds to the energy. As
one expects, Eq. (51) tells that gravity is pulling towards
the fixed hypersurface defined by � � �0, where �0 is a
minimum of A2���.

Wormholes.—From (39) we have A2��� � l2cosh2���
�0�, then the equations for radial geodesics (50) and (51)
reduce to
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 _� 2 �
E2

l4cosh2��� �0�
� �

b

l2
; (52)

 

_t�
E

l2cosh2��� �0�
� 0: (53)

These equations immediately tell us that [15]: The �
coordinate of a radial geodesic behaves as a classical
particle in a Pöschl-Teller potential; timelike geodesics
are confined, they oscillate around the hypersurface � �
�0. An observer sitting at � � �0 lives in a timelike
geodesic (here d=dt � l,  the proper time of this static
observer); radial null geodesics connect both asymptotic
regions (i.e., � � �1 with � � �1) in a finite t span
�t � �, which does not depend on �0 (the static observer
at � � �0 says that this occurred in a proper time � �
�l). These observations give a meaning to �0: gravity is
pulling towards the fixed hypersurface defined by � � �0,
which is parallel to the neck at � � 0, and therefore �0 is a
modulus parametrizing the proper distance from this hy-
persurface to the neck.

The geodesic structure of the new wormhole (40) is quite
different from the previous one. In this case, the radial
geodesic equations (50) and (51) read

 _� 2 �
e�2�E2

l4
� �

b

l2
; (54)

 l2 _t� e�2�E � 0: (55)

As expected, the behavior of the geodesics at �! �1 is
like in an AdS spacetime. Moreover, since gravity pulls
towards the asymptotic region �! �1, radial timelike
geodesics always have a turning point and they are doomed
to approach to �! �1 in the future. Note that the proper
time that a timelike geodesic takes to reach the asymptotic
region at � � �1, starting from � � �f, is finite and
given by

 � �
Z ���f

���1

l2d���������������������������
E2e�2� � l2
p

�
�l
2
� ltan�1

� ���������������������������
E2

l2
e�2�f � 1

s �
<1: (56)

It is easy to check that null radial geodesics can also reach
the asymptotic region at � � �1 in a finite affine parame-
ter. This, together with the fact that spacetime is regular at
this boundary, seems to suggest that it could be analytically
continued through this surface. However, since the warp
factor of the base manifold blows up at � � �1, this null
hypersurface should be regarded as a spacetime boundary.

Spacetime horns.—For the spacetime horn (47), the
(�; t) piece of the metric agrees with that of the wormhole
(39). Hence, the structure of radial geodesics in both cases
is the same, with gravity pulling towards the � � �0

surface. Timelike geodesics again have a turning point,

which, in this case, prevents the geodesics from hitting
the singularity at � � �1.

In the case of the spacetime horn (48) [compare to (40)],
gravity becomes a repulsive force pointing from the singu-
larity at �! �1, towards the asymptotic region at �!
�1. Therefore timelike radial geodesics are doomed to
end up at the asymptotic region in a finite proper time [see
(56)].

2. Gravitational vs centrifugal forces

In this section we discuss an interesting effect that
occurs for geodesics with nonzero angular momentum.
One can see that for the generic class of spacetimes (49),
which includes wormholes and spacetime horns, there is a
region where the gravitational and centrifugal effective
forces point in the same direction. These are expulsive
regions that have a single turning point for any value of
the conserved energy, and within which bounded geodesics
cannot exist.

The class of metrics we consider is (49) with the further
restriction that the base manifold �3 have a Killing vector
�. Choosing adapted coordinates y � �x1; x2; �� such that
� � @=@�, the base manifold metric is d�2

3 �

~gij�x�dyidyj and the spacetime geodesics with x fixed are
described by the following equations:

 

_t �
E

A2 ; _� �
L

C2 ; l2 _�2 � �b�
E2

A2 �
L2

C2 :

(57)

Here we have used the fact that, if ua is the geodesic
tangent vector, then �aua � L is conserved, and _� �
L=�C2 ~g���x�� �: L=C2. If � is a U�1� Killing vector,
then L is a conserved angular momentum. Examples are
not hard to construct, for spacetime horns, what we need is
a base manifold with zero Ricci scalar and a U�1� Killing
field. For wormholes, we need a nonflat 3-manifold with
~R � �6 and a U�1� isometry, an example being S1 �
H2=�, where � is a freely acting discrete subgroup of
O�2; 1�, and the metric locally given by

 d�2
3 �

1
3�dx1

2 � sinh2�x1�dx2
2� � d�2: (58)

The motion along the radial coordinate in proper time is
like that of a classical particle in an effective potential
given by the right-hand side (rhs) of Eq. (57). This effective
potential has a minimum at � � �� only if the following
condition is fulfilled:

 

A0� ���

A� ���3
E2 �

C0� ���

C� ���3
L2: (59)

This expresses the fact that the gravitational effective force
is canceled by the centrifugal force if the orbit sits at � �
��. The class of spacetimes under consideration has regions
U where the sign of A�3A0 is opposite to that of C�3C0,
i.e., the effective gravitational and centrifugal forces point
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in the same direction. Within these regions, there is at most
a single turning point, and consequently bounded orbits
cannot exist.

In the case of a wormhole (39), Eq. (59) reads

 

E2 tanh� ��� �0�

cosh2� ��� �0�
�
L2 tanh ��

cosh2 ��
: (60)

The centrifugal force reverses its sign at the neck at � � 0,
the Newtonian force does it at � � �0, both forces being
aligned for � between zero and �0. The expulsive region U
is nontrivial whenever �0 � 0. This situation is depicted in
Fig. 1(a).

In the case of the new wormhole solution (40), the region
U is defined � 
 0 [See Fig. 1(b)], and for the spacetime
horn (47) the region U is given by � 
 �0 [Fig. 1(c)].
Finally, for the spacetime horn (48) the region U is the
entire spacetime, there are no bounded geodesics.

IV. REGULARIZED EUCLIDEAN ACTION

Here it is shown that the geometrically well-behaved
solutions discussed in the previous section have finite
Euclidean action, which reduces to the free energy in the
case of black holes, and vanishes for the other solutions.

The action (2) in the case of special choice of coeffi-
cients can be written as

 I5 � �
Z
M
�abcde

�
RabRcd �

2

3l2
Rabeced

�
1

5l4
eaebeced

�
ee; (61)

and it has been shown that it can be regularized by adding a
suitable boundary term in a background independent way,
which depends only on the extrinsic curvature and the
geometry at the boundary [17]. The total action then reads

 IT � I5 � B4; (62)

where the boundary term is given by

 B4 � �
Z
@M
�abcde�abec

�
Rde �

1

2
�df�

fe �
1

6l2
edee

�
;

(63)

and �ab is the second fundamental form. The total action
(62) attains an extremum for solutions of the field equa-
tions provided
 

�IT � �
Z
@M
�abcde���

abec � �ab�ec�

�

�
�Rde �

1

2
�df�

fe �
1

2l2
edee

�
� 0; (64)

where �Rab :� Rab � 1
l2
eaeb. Therefore, the value of the

FIG. 1. Gravitational vs centrifugal forces for wormholes and spacetime horns. In this diagram, black and dashed arrows represent
effective gravitational and centrifugal forces, respectively. Parts (a) and (b) correspond to the wormholes (39) and (40), while parts (c)
and (d) represent the spacetime horns (47) and (48), respectively.
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regularized Euclidean action makes sense for solutions
which are bona fide extrema, i.e., for solutions such that
condition (64) is fulfilled.

The Euclidean continuation of the class of spacetimes
described in Sec. III, including black holes, wormholes,
and spacetime horns, is described by metrics of the form

 ds2 � A2���d2 � l2d�2 � C2���d�2
3; (65)

where 0 
  
 � is the Euclidean time, and the functions
A and C correspond to the ones appearing in Eq. (35) for
the black holes; Eqs. (39) and (40) for the wormholes, and
in Eqs. (47) and (48) for the spacetime horns.

Let us first check that these solutions are truly extrema
of the total action (62).

A. Geometrically well-behaved solutions as extrema of
the regularized action

For the class of solutions under consideration, the cur-
vature two-form satisfies

 

�R 01 � �R1m � 0; (66)

and the condition (64) reduces to

 �IT � ���FI3 � 6GV 3	@�; (67)

where � is the Euclidean time period, V 3 is the volume of
the base manifold, and @� is the boundary of the spatial
section. In Eq. (67), I3 is defined by

 I 3 :�
Z

�3

���
~g

p
~Rd3x; (68)

and the functions F and G in (67) are given by

 F :�
2

l
�A0�C� A�C0 � C0�A� C�A0	; (69)

 

G :� �A0�C2 � C02� � 2C0�CA� C0A0�	
�C

l3

� �A�C2 � C02� � 2C�CA� C0A0�	
�C0

l3

� C0�C2 � C02�
�A

l3
� C�C2 � C02�

�A0

l3
: (70)

Here we work in the minisuperspace approach, where the
variation of the functions A and C correspond to the
variation of the integration constants, and prime �0� denotes
derivative with respect to �.

Now it is simple to evaluate the variation of the action
(67) explicitly for each case.

Black holes.—As explained in Sec. III, the Euclidean
black hole metric is given by

 ds2 �
r2
�

l2
sinh2���d2 � l2d�2 � r2

�cosh2���d�2
3; (71)

with � � 2�l2
r�

, and it has a single boundary which is of the
form @M � S1 ��3. In order to evaluate (67), it is useful

to introduce the regulator �a, such that 0 
 � 
 �a. It is
easy to verify that the functions F and G defined in (69)
and (70) respectively, satisfy

 F��a� � G��a� � 0; (72)

and hence, the boundary term (67) identically vanishes.
Note that it was not necessary to take the limit �a ! �1.

Wormholes.—The Euclidean continuation of both
wormhole solutions in Eqs. (39) and (40) can be written as

 ds2 � l2��cosh�� a sinh��2d2 � d�2 � cosh2�d�2
3	;

(73)

where the metrics (39) and (40) are recovered for a2 < 1
and a2 � 1, respectively, and � is arbitrary. In this sense,
the wormhole (40) can be regarded as a sort of extremal
case of the wormhole (39). In this case, since the boundary
is of the form @� � ��3 [ ��3 it is useful to introduce the
regulators ��, such that �� 
 � 
 ��. Using the fact that
the base manifold has a negative constant Ricci scalar
given by ~R � �6, the variation of the action (67) reduces
to

 �IT � 6��l�a�V 3	
��
�� � 0: (74)

Note that, as in the case for the black hole, the boundary
term vanishes regardless of the position of the regulators
�� and ��.

Spacetime horns.—The Euclidean continuation of the
spacetime horns in Eqs. (47) and (48) can be written as

 ds2 � l2��ae� � e���2d2 � d�2 � e2�d�2
3	; (75)

with an arbitrary time period �. The metrics (47) and (48)
are recovered for a > 0 and a � 0, respectively. From this
one see that (48) is a kind of extremal case of (47). In this
case, as �! �1, the spacetime has a boundary of the
form @M � S1 ��3. Since generically, there is a smooth
singularity when �! �1, it is safer to introduce two
regulators ��, satisfying �� 
 � 
 ��. Because of the
fact that the base manifold has vanishing Ricci scalar, only
the second term at the rhs of Eq. (67) remains, i.e.,

 �IT � 6���GV 3	
��
�� ;

and it is simple to check that, since G���� � G���� � 0
the boundary term (67) vanishes again regardless the po-
sition of the regulators.

In sum, as we have shown that the black holes, worm-
holes, and spacetime horns are truly extrema of the action,
it makes sense to evaluate the regularized action on these
solutions.

B. Euclidean action for geometrically well-behaved
solutions

For the class of solutions of the form (65), which satisfy
(66), the bulk and boundary contributions to the regular-
ized action IT � I5 � B4, given by Eqs. (61) and (63)
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respectively, reduce to

 I5 � ���HI3 � 6JV 3	; (76)

 B4 � ���hI3 � 6jV 3	@�: (77)

The functions H and J in the bulk term are defined by

 H :� �
8

l

Z
ACd�; (78)

 J :�
4

l3
Z �
�C2�0�AC�0 �

4

3
AC3

�
d�; (79)

where the integrals are taken along the whole range of �.
For the boundary term (77), the functions h and j are,
respectively, defined by

 h � �
2

l
�AC�0; (80)

 j � �
1

l3

�
�AC�0

�
C2

3
� C02

�
� �C2�0

�
AC
3
� A0C0

��
: (81)

Now it is straightforward to evaluate the regularized
Euclidean action for the class of solutions under
consideration.

Black holes.—In order to obtain the regularized
Euclidean action for the black hole (35), one introduces
the regulator �a, such that the range of the proper radial
distance is given by 0 
 � 
 �a. The regularized action IT
for the black hole is

 IT � 4��r�

�
I3 �

r2
�

l2
V 3

�
: (82)

Note that the action is finite and independent of the regu-
lator �a.

For a fixed temperature, the Euclidean action (82) is
related to the free energy F in the canonical ensemble as

 IT � ��F � S� �M; (83)

so that the mass and the entropy can be obtained from

 M � �
@IT
@�

; S �
�
1� �

@
@�

�
IT: (84)

In the case of a generic base manifold �3, the thermody-
namics of the black holes in Eq. (35) turns out to be
qualitatively the same as the one described in Ref. [13].
In the case of base manifolds of constant curvature, it
agrees with previously known results.

Note that the mass of the black hole,

 M � 2�
r2
�

l2

�
I3 �

3r2
�

l2
V 3

�
; (85)

is very sensitive to the geometry of the base manifold. For a
fixed base manifold with I3 < 0,M is bounded from below

by M0 :� � �
6

I2
3

V 3
. Note that M0 can be further minimized

due to the freedom in the choice of the base manifold. Even
more interesting is the fact that, among the solutions with a
given base manifold satisfying I3 < 0, the Euclidean ac-
tion (82) has a minimum value, attained at

 r� � l

�����������
�I3

3V 3

s
; (86)

that can be written in terms of the Yamabe functional Y3 :�

I3

V 1=3
3

[18]:

 IT0
� �

8
���
3
p

9
��ljY3j

3=2: (87)

Note that the freedom in the choice of the boundary
metric allows further minimization of the extremum of the
action (87). This can be performed by choosing �3 as a
stationary point of the Yamabe functional. Since it is well
known that the Yamabe functional has critical points for
Einstein metrics, and three-dimensional Einstein metrics
are metrics of constant curvature, the base manifold turns
out to be of negative constant curvature.

Wormholes.—The Euclidean continuation of the worm-
hole metrics (39) and (40) is smooth independently of the
Euclidean time period �. The Euclidean action IT � I5 �
B4 is evaluated introducing regulators such that �� 
 � 

��.

In the case of the Euclidean wormhole (39), the regu-
larized Euclidean action vanishes regardless of the position
of the regulators, since

 I5 � B4

� 2�l�V 3�3 sinh��0� � 8cosh3��� sinh��� �0�	
��
�� :

(88)

Consequently, the mass of this spacetime also vanishes,
since M � � @IT

@� � 0.
For the wormhole (40), the Euclidean action reads

 IT � 6��V 3��J� j� � �H � h�	; (89)

with

 H � �2l�e2� � 2��j���� ; (90)

 J � �1
3l��e

4� � 3e2� � 12�� e�2��j
��
�� ; (91)

 h � �2le2�j
��
�� ; j � �1

3l��e
�4� � 3e2� � e�2��j

��
�� :

(92)

The regularized action vanishes again independently of
��, and so does it mass.

It is worth pointing out that both wormholes can be
regarded as instantons with vanishing Euclidean action.

Spacetime horns.—The Euclidean continuation of the
spacetime horns (47) and (48) have arbitrary �. Let us
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recall that, when �! �1, the spacetime has a boundary
of the form @M � S1 ��3, and due to the presence of the
singularity at �! �1, we introduce regulators ��, such
that �� 
 � 
 ��. Since the Ricci scalar of �3 vanishes,
the regularized action for the spacetime horns reduce to

 IT � 6��V 3�J� j�: (93)

For the spacetime horn (47), the Euclidean action

 J � 4
3l�e

4���0 � e2���0�j
��
�� ;

j � 4
3l�e

4���0 � e2���0�j�� :
(94)

vanishes. Note that it was necessary to take the limit �� !
�1.

In the case of the spacetime horn (48), in the limit �� !
�1, the regularized action also vanishes since

 J � �8
3le

2�j
��
�� ; j � �8

3le
2�j�� : (95)

As a consequence, the masses of the spacetime horns
vanish.

The mass for the spacetime metrics discussed here can
also be obtained from a suitable surface integral coming
from a direct application of Noether’s theorem to the
regularized action functional.

V. MASS FROM A SURFACE INTEGRAL

As in Sec. IV it was shown that the geometrically well-
behaved solutions are truly extrema of the regularized
action, one is able to compute the mass from the following
surface integral
 

Q��� �
�
l

Z
@�
�abcde�I��

abec � �abI�e
c�

�

�
~Rde �

1

2
�df�

fe �
1

2l2
edee

�
; (96)

obtained by the straightforward application of Noether’s
theorem.3 Here � � @t is the timelike Killing vector.

For a metric of the form (65), satisfying (66) and (96)
gives

 M� 2
�
l

�
�A0C�C0A�

�
I3�

3

l2
�C2�C02�V 3

��
@�
; (97)

which can be explicitly evaluated for the black holes,
wormholes, and spacetime horns.

Black holes.—For the black hole metric (33) the mass in
Eq. (97) reads

 M � 2�
r2
�

l2

�
I3 �

3r2
�

l2
V 3

�
: (98)

It is reassuring to verify that it coincides with the mass
computed within the Euclidean approach in Eq. (85).

Wormholes.—As explained in Ref. [15], for the worm-
hole (39), one obtains that the contribution to the total mass
coming from each boundary reads

 M� � Q��@t� � �6�V 3 sinh��0�; (99)

whereQ��@t� is the value of (96) at @��, which again does
not depend on �� and ��. The opposite signs of M� are
due to the fact that the boundaries of the spatial section
have opposite orientation. The integration constant �0 can
be regarded as a parameter for the apparent mass at each
side of the wormhole, which vanishes only when the
solution acquires reflection symmetry, i.e., for �0 � 0.
This means that, for a positive value of �0, the mass of
the wormhole appears to be positive for observers located
at ��, and negative for the ones at ��, with a vanishing
total mass M � M� �M� � 0.

For the wormhole (40) the total mass also vanishes since
the contribution to the surface integral (96) coming from
each boundary reads

 M� � �6�V 3; (100)

so that M � M� �M� � 0.
Note that M� are concrete examples of Wheeler’s con-

ception of ‘‘mass without mass.’’
Spacetime horns.—For the spacetime horns (47) and

(48), the masses also vanish. This can be easily verified
from (97), the fact that I3 � 0 (since ~R � 0), and that the
warp factor of the base manifold, C � e�, satisfies �C2 �
C02� � 0.

VI. DISCUSSION AND COMMENTS

An exhaustive classification for the class of metrics (4)
which are solutions of the Einstein-Gauss-Bonnet theory in
five dimensions has been performed. In Sec. II, it was
shown that, for generic values of the coupling constants,
the base manifold �3 must be necessarily of constant
curvature, and consequently, the solution reduces to the
topological extension of the Boulware-Deser metric, for
which f2 � g2 is given by (6). It has also been shown that
the base manifold admits a wider class of geometries for
those special theories for which the Gauss-Bonnet cou-
pling acquires a precise relation in terms of the cosmologi-
cal and Newton constants, given by (7).

Remarkably, the additional freedom in the choice of the
metric at the boundary, which determines �3, allows the
existence of three main branches of geometries in the bulk
(Sec. II).

The geometrically well-behaved metrics among this
class correspond to the case of negative cosmological
constant.

If the boundary metric is chosen to be such that �3 is an
arbitrary, but fixed, base manifold, the solution is given by
(33), and describes black holes whose horizon geometry

3The action of the contraction operator I� over a p-form �p �
1
p!��1�p

dx�1   dx�p is given by I��p �
1

�p�1�!�

�����1�p�1
dx�1    dx�p�1 , and @� stands for the boundary

of the spacelike section.
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inherits the metric of the base manifold. These solutions
generalize those in [12,13], for which �3 was assumed to
be of constant curvature, which, in the case of spherical
symmetry, reduce to the metrics in [9,14].

If the metric at the boundary is chosen so that the base
manifold �3 possesses a constant negative Ricci scalar,
two different kinds of wormhole solutions in vacuum are
obtained. One of them, given in (39), was found previously
in [15] and describes a wormhole connecting two asymp-
totic regions whose metrics approach that of AdS space-
time, but with a different base manifold. The other
solution, given in (40), describes a brand new wormhole
connecting an asymptotically locally AdS spacetime at one
side of the throat, with a nontrivial curved and smooth
spacetime on the other side. Note that, in view of Yamabe’s
theorem [18], any compact Riemannian manifold has a
conformally related Riemannian metric with constant
Ricci scalar, so that there are many possible choices for �3.

For boundary metrics for which the base manifold �3

has vanishing Ricci scalar, a different class of solutions is
shown to exist. For these ‘‘spacetime horns’’ the warp
factor of the base manifold is an exponential of the proper
radial distance, and generically possesses a singularity as
�! �1. As explained in Sec. III, this singularity is
weaker than that of the five-dimensional Schwarzschild
solution with negative mass, and it is also weaker than
that of a conifold.

It has also been shown that, if �3 is of constant curva-
ture, due to a certain class of degeneration of the field
equations for the theories satisfying (7), there is a special
case where the metric admits an arbitrary redshift function.
This degeneracy is a known feature of the class of theories
considered here [19]. A similar degeneracy has been found
in the context of Birkhoff’s theorem for the Einstein-
Gauss-Bonnet theory [20,21], which cannot be removed
by a coordinate transformation [22]. Birkhoff’s theorem
has also been discussed in the context of theories contain-
ing a dilaton and an axion field coupled with a Gauss-
Bonnet term in [23].

In the sense of the AdS/CFT correspondence [24], the
dual CFT living at the boundary, which in our case is of the
form S1 ��3, should acquire a radically different behav-
ior according to the choice of �3, since it has been shown
that the bulk metric turns out to be very sensitive to the
geometry of the base manifold. Notice that the existence of
asymptotically AdS wormholes raises some puzzles con-
cerning the AdS/CFT conjecture [25–27].

It is worth pointing out that an interesting effect occurs
for geodesics with angular momentum for the generic class
of spacetimes given by (49), among which the wormholes
and spacetime horns are included. In a few words, there are
regions for which the effective potential cannot have a
minimum, since the gravitational force points in the same
direction as the centrifugal force. Therefore, within these
regions, there is at most a single turning point, and con-
sequently bounded orbits cannot exist.

In Sec. IV, it was shown that the geometrically well-
behaved solutions have finite Euclidean action. In the case
of black holes, the Euclidean action reduces to the free
energy in the canonical ensemble. It has also been shown
that black holes whose base manifolds are such that its
Einstein-Hilbert action I3 is negative, have a nontrivial
ground state, for which its Euclidean action is an increas-
ing function of the Yamabe functional, and therefore, its
value is further extremized when the base manifold �3 is of
constant curvature.

In the case of wormholes, the Euclidean continuation is
regular for an arbitrary Euclidean time period �, and they
can be regarded as instantons with vanishing Euclidean
action and mass. For the spacetime horns, their regularized
action and mass vanish; so that in this sense, the singularity
is as tractable as it is for a vortex.

It is simple to see that the class of solutions discussed
here can be embedded into the locally supersymmetric
extension of the five-dimensional Einstein-Gauss-Bonnet
for the choice of coefficients (7) [28,29]. As a conse-
quence, the black holes (33) admit a ground state with
unbroken supersymmetries whose Killing spinors were
explicitly obtained in [30]. In this case the base manifold
must necessarily be Einstein.

For the special coefficients (7), the freedom in the choice
of the base manifold allows one to consider, as a particular
case, base manifolds of the form �3 � S1 � �2. This can
be performed for all the branches, but not for the degener-
ate one. This means that compactification to four dimen-
sions for the black holes (33), the wormholes (39) and (40),
and the spacetime horns (47) and (48) is straightforward.
Therefore, the dimensionally reduced solutions possess the
same causal behavior as their five-dimensional seeds, but
they are supported by a nontrivial dilaton field with a
nonvanishing stress-energy tensor. Further compactifica-
tions have been found in Refs. [31–33]. The dimensional
reduction of the Einstein-Gauss-Bonnet theory has been
discussed in Ref. [34], and for the special choice of coef-
ficients (7), it has been discussed recently in Ref. [35],
including new exact solutions.

For the Einstein-Gauss-Bonnet theory, black holes with
nontrivial horizon geometry have also been discussed in
Refs. [36,37]; it is worth pointing out that the stability of
Gauss-Bonnet black holes is fairly different than that of the
Schwarszchild solution [38–42]. Solutions possessing
NUT charge have been found in [43]. Wormhole solutions
for this theory, in the presence of matter that does not
violate the weak energy condition, have been shown to
exist provided the Gauss-Bonnet coupling constant is nega-
tive and bounded according to the shape of the solution
[44]. Thin shells wormholes for this theory have been
discussed recently in [45]. For the pure Gauss-Bonnet
theory, i.e., for the action (2) with �1 � �0 � 0, wormhole
solutions in vacuum, for which there is a jump in the
extrinsic curvature along a spacelike surface, have been
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shown to exist recently [46]. Higher dimensional worm-
hole solutions have also been discussed in the context of
braneworlds, see, e.g., [47] and references therein.

As a final remark, it is worth pointing out that the results
found here are not peculiarities of five-dimensional gravity,
and similar structures can be found in higher dimensional
spacetimes [48].
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