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We study static, spherically symmetric black hole solutions of the Einstein equations with a positive

cosmological constant and a conformally coupled self-interacting scalar field. Exact solutions for this

model found by Martı́nez, Troncoso, and Zanelli were subsequently shown to be unstable under linear

gravitational perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of

static, spherically symmetric solutions that have a regular horizon—and satisfy the weak and dominant

energy conditions outside the horizon—is a singular subset of a two-dimensional space parametrized by

the horizon radius and the value of the scalar field at the horizon. The singularity of this space of solutions

provides an explanation for the instability of the Martı́nez, Troncoso, and Zanelli spacetimes and leads to

the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole

solutions for this system that contain a cosmological horizon in the exterior of its event horizon.

DOI: 10.1103/PhysRevD.77.104035 PACS numbers: 04.50.�h, 04.20.�q, 04.30.�w, 04.70.�s

I. INTRODUCTION

When one considers possible fields interacting with a
black hole, the simplest source of matter that one could
naively take into account corresponds to a single real scalar
field. However, when this field is minimally coupled and
the spacetime is asymptotically flat, the so-called no-hair
conjecture [1–3] indicates that this class of black hole does
not exist. Much effort has been focused on this problem
and recent works dealing with this issue can be found in
[4]. Nonetheless, this conjecture can be circumvented in
different ways as we show.

A black hole solution, where the scalar field is confor-
mally coupled, i.e., when the corresponding stress-energy
tensor is traceless, was found in [5]. In this three-
dimensional black hole, the scalar field is regular every-
where and the spacetime is asymptotically anti–de Sitter
(AdS) because a negative cosmological constant is in-
cluded. This black hole solution can be extended by con-
sidering a conformal self-interacting potential. This was
done in [6], where exact black hole solutions are found for
a minimally coupled scalar field and a one parameter
family of potentials. A previous four-dimensional and
asymptotically flat black hole [7] was reported back in
the 1970s, but the scalar field diverges at the horizon.
The presence of a cosmological constant allows one to
find exact four-dimensional black hole solutions, where
the scalar field is regular on and outside the event horizon
[8–11]. Numerical black hole solutions can also be found

in four [12–16] and five dimensions [17]. Further exact
solutions in the context of low energy string theory were
found in [18].
Some interesting aspects of these black hole solutions

are studied in [19]. In particular, the analysis of stability
against linear perturbations for the de Sitter conformally
dressed black hole [8] done in [20] is relevant for the
discussion presented here.
In this work, we study the space of static, spherically

symmetric solutions of the Einstein equations with a posi-
tive cosmological constant and a conformally coupled self-
interacting scalar field [Martı́nez, Troncoso, and Zanelli
(MTZ) model]. Conformally coupled scalar fields in gen-
eral relativity have been used to model quantum effects in
semiclassical theories [21]. This model has a well-posed
initial value formulation [22] and was shown to reproduce
better than the minimally coupled scalar field—the local
propagation properties of Klein-Gordon fields on
Minkowski spacetime [23]. Our interest, however, comes
from the fact that this model allows nontrivial static black
holes solutions [8]. These solutions belong to a restricted
class [Eq. (12)] of spherically symmetric static spacetimes,
and are given in Eqs. (13) and (14) (solution MTZ1) and
(16) (solution MTZ2). Note that a generic spherically
symmetric static spacetime metric admits the local form
(10). In this work we address the following question: Are
there other static, spherically symmetric black hole solu-
tions for the MTZ model, satisfying the dominant and
strong energy condition between the event and cosmologi-
cal horizon, besides MTZ1 and MTZ2? Using a combina-
tion of analytical and numerical methods we conclude that
the answer to this question is negative.
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The paper is organized as follows: in the next section we
review the MTZ model and sketch the derivation of the
MTZ1 and MTZ2 solutions. We also prove that MTZ1 is
unstable under spherically symmetric gravitational pertur-
bations. MTZ2 had already been found to be unstable
under spherically symmetric gravitational perturbations,
this being our original motivation to study the space of
spherically symmetric static solutions of the MTZ system.
This is done in Sec. III, where the full set of Einstein and
scalar field equations is reduced to a second order ordinary
differential equation (ODE) system. In Sec. IV we analyze
the restrictions that the existence of a regular event horizon
imposes on the solutions, if we also require that the energy-
momentum tensor satisfies appropriate energy conditions.
Acceptable local solutions are found to be parametrizable
with the horizon radius r0 and the value of the scalar field at
the horizon, a0 :¼ �ðr0Þ. (The subset of allowed values is
displayed in Fig. 2.) To address the issue of the global
behavior of these local solutions, the field equations were
numerically integrated away from the horizon. Some illus-
trative examples are presented in Sec. V, where the differ-
ent behaviors as we move away from the event horizon are
shown. We find that solutions that satisfy the energy con-
ditions near the event horizon contain, in general, a coor-
dinate singularity for some finite r outside the event
horizon. We show that the isotropy spheres reach a maxi-
mum radius r at this point and contract as the proper
distance from the horizon further increases. This explains
why r is not an appropriate coordinate in this region. We
provide an appropriate coordinate extension in Sec. VA. A
numerical integration beyond the coordinate singularity,
described in Sec. VB, suggests that, generically, the met-
rics contain a curvature singularity (the energy density
diverges) at some finite proper distance from the extension
point.

Mostly for completeness we include in Sec. VC an
analysis of the metrics that violate the energy conditions.
A compilation of the main results, together with some final
comments and our conclusions are given in Sec. VI.

II. THE MTZ MODEL

In the MTZ model [8] the action for gravity conformally
coupled to a scalar field � with a quartic self-interaction
potential and an electromagnetic field F�� is given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�� g��@��@��� 1

6
R�2

� 2��4 � 1

8�
F��F��

�
; (1)

where � is a coupling constant. Variation of this action
with respect to the metric, scalar field and Maxwell poten-
tial gives the following set of Euler-Lagrange equations:

G�� þ�g�� ¼ T�
�� þ TEM

�� ; (2a)

h�� 1
6R�� 4��3 ¼ 0; (2b)

r�F�� ¼ 0; (2c)

where the stress-energy tensors are

T�
�� ¼ @��@��� 1

2g��g
��@��@��

þ 1
6½g��h�r�r� þG����2 � �g���

4; (2d)

and

TEM
�� ¼ 1

4�

�
g��F��F�� � 1

4
g��F��F

��

�
: (2e)

Under conformal transformations � ! ��1�, F�� !
F��, g�� ! �2g��, Eqs. (2b) and (2c) are invariant, and

T�
�� ! ��2T�

��, TEM
�� ! ��2TEM

�� . This is the motivation

behind the choice of the nonminimal coupling and quartic
self-interaction of the scalar field.

Note that the trace of T�
�� vanishes on shell:

T� :¼ T�
��g�� ¼ �

�
h�� R

6
�� 4��3

�
; (3)

whereas TEM :¼ TEM
�� g

�� vanishes identically. Thus, tak-

ing the trace of Eq. (2a) gives

R ¼ 4�: (4)

We should stress here that (4) does not follow from (2a)
alone, but from the system (2a), (2b), (2d), and (2e).
It is interesting to comment on those solutions of the

field equations (2) for which � � �0, with �0 � 0 a
constant (we are not interested in the pure Einstein-
Maxwell case � � 0). In this case, the system (2) reduces
to �

1��2
0

6

�
G�� þ ð�þ ��4

0Þg�� ¼ TEM
�� ; (5a)

Rþ 24��2
0 ¼ 0; (5b)

r�F�� ¼ 0: (5c)

Taking the trace of (5a) and using (5b) gives

�2
0 ¼ � �

6�
: (6)

Thus (5a) takes a simple form:�
1þ �

36�

�
½G�� þ�g��� ¼ TEM

�� ; (7)

and (5b) gives again (4). Note that these are Einstein-
Maxwell equations with an effective Newton’s constant

Geff ¼ ð1þ �
36�Þ�1G [8], thus the case where ð1þ �

36�Þ<
0 (negative Geff) is somewhat pathological because it is
equivalent to having repulsive gravitational forces [8].
The theory with a coupling constant � tuned with the

cosmological constant as
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� ¼ � �

36
(8)

is particularly interesting, since it seems to admit a wider
set of solutions. We will call these theories special from
now on, and call � � ��=36 theories generic. For special
theories and constant scalar field configurations, �0

2 ¼ 6
and the field equations (5) become

0 ¼ TEM
�� ; (9a)

R� 4� ¼ 0; (9b)

r�F�� ¼ 0: (9c)

Note that the Euler-Lagrange equation for the metric,
Eq. (9a), gives no information about the metric, but implies
F�� ¼ 0. This does not mean that the gravitational field is

unconstrained, as one might first be led to think, since the
Euler-Lagrange equation for the scalar field forces R ¼
4� in this case, so we do get an equation for the metric
[note in passing the R ¼ const follows just from the scalar
field equation (2b) when � ¼ const].

In this paper we will consider only the case F�� ¼ 0 and

will explore the space of static, spherically symmetric
solutions:

ds2 ¼ �N2ðrÞdt2 þ N1ðrÞdr2 þ r2d�2; � ¼ �ðrÞ:
(10)

Since all solutions of the field equations satisfy (4), we will
oftentimes replace Eq. (2b) with the much simpler equation

h�� 2
3��� 4��3 ¼ 0: (11)

We were naturally led to consider this problem from the
linear stability analysis in [20] of the exact solutions found
in [8]. These exact solutions are all of the form

ds2 ¼ �NðrÞdt2 þ NðrÞ�1dr2 þ r2d�2; � ¼ �ðrÞ:
(12)

The first one that we analyze, which we call here solution
MTZ1, has a constant scalar field (6). For generic theories
NðrÞ is obtained by imposing on (12) the condition G�� ¼
��g��, which follows from (5a), or more directly from

(7). For the special theories (8), as explained above, the
Euler-Lagrange equation for the metric is trivial, and the
only constraint on (12) is R ¼ 4�, and comes from the
Euler-Lagrange equation (5b) for the scalar field. Since this
condition on the metric is less restrictive than the one for
generic theories, we get a wider set of solutions for special
theories (two integration constants, Q and M below, in-
stead of one):

NðrÞ ¼ 1� 2M

r
��

3
r2; �ðrÞ ¼

ffiffiffiffiffiffiffiffiffi
��

6�

s
;

� � ��=36;

(13)

NðrÞ ¼ 1� 2M

r
þ Q

r2
��

3
r2; �ðrÞ ¼ ffiffiffi

6
p

;

� ¼ ��=36:

(14)

In other words, requiring R ¼ 4� to the metric (12) gives
NðrÞ as in (14). Adding the extra condition R�� ¼ �g��

forces Q ¼ 0. Note that (13) is the Schwarzchild-(A)dS
metric in the generic case, Reissner-Nordström (A)dS for
special theories (with Q the ‘‘source’’ of a scalar field
instead of the square of the electric charge).
Since we are only interested in static black hole solu-

tions with a physically acceptable stress-energy-
momentum tensor, we require that the singularity at r ¼
0 be hidden behind an event horizon, and that T�

�� satisfies
appropriate energy conditions in the NðrÞ> 0 region be-
tween the event and cosmological horizons, which we
assume are located at r > 0, using if necessary the invari-
ance of the metric under ðr;MÞ ! ð�r;�MÞ. MTZ1 has

T�
�� ¼ G�� þ�g�� ¼ 0 in the generic case. A straight-

forward calculation shows that for the special theory (14)

T�� ¼ Q

r4
ðt̂�t̂� � r̂�r̂� þ �̂��̂� þ �̂��̂�Þ (15)

in the natural orthonormal basis t̂� ¼ N�1=2@t, r̂� ¼
N1=2@r, �̂

� ¼ r�1@�, and �̂� ¼ ðr sinð�ÞÞ�1@�. Thus, the

strong and dominant energy conditions are satisfied in both
cases as long as Q> 0.
The second type of F�� ¼ 0 solution in [8] for the

system (1) and the ansatz (12), which we call MTZ2, holds
only for the special theories � ¼ ��=36. The metric is
that of a Reissner-Nordström (A)dS black hole, the mass
being an integration constant that appears both in the
metric and the scalar field:

� ¼
ffiffiffi
6

p
M

r�M
; N ¼

�
1�M

r

�
2 ��

3
r2: (16)

To avoid naked singularities, we restrict one to the case
�> 0, then N ! �1 as r ! 1, N ! 1 as r ! 0þ, and
the singularity at r ¼ 0 is not naked only if NðrÞ has three
positive roots. This can only happen if 0<M<ffiffiffi
3

p
=ð4 ffiffiffiffi

�
p Þ ¼: l=4. In this case, the three positive roots are

r1 ¼ l

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

l

s �
< r2 ¼ l

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M

l

s �
< r3

¼ l

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M

l

s �
: (17)

This solutions are black holes on a cosmological back-
ground, with an inner horizon r1, a regular event horizon
r2, and a cosmological horizon r3 [8].
It will be useful for our discussion to review the deriva-

tion of the MTZ metrics from the ansatz (12). Notice that
the Einstein plus scalar field equations imply that the
functions NðrÞ and �ðrÞ must satisfy four equations, and
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therefore the set of solutions is severely restricted.
Assuming as stated that F�� ¼ 0, and the form (12) for

the metric, an appropriate combination of the Einstein
equations implies that � satisfies the equation,

�
d2�

dr2
� 2

�
d�

dr

�
2 ¼ 0: (18)

This admits the solution �ðrÞ ¼ 0, leading to vacuum
black holes with � � 0, and also a general solution of
the form,

�ðrÞ ¼ 1

C1rþ C2

; (19)

where C1 and C2 are constants. The two kinds of solutions,
MTZ1 and MTZ2, are obtained by choosing C1 ¼ 0 or
C1 � 0, then solving the remaining field equations. There
is no other solution to the field equations of the form (12).

As far as we know, a linear stability analysis of MTZ1
has not yet been done. In what follows we sketch the
construction of some particular unstable modes for the
theory (8), of the restricted form,

��ðr; tÞ ¼ 0; �grrðr; tÞ ¼ FðrÞ expðktÞ;
�gttðr; tÞ ¼ �AFðrÞ expðktÞ; (20)

where � indicates the perturbed part, and A is constant.
Unstable modes would result if we find appropriate solu-
tions for the perturbation equations with k real and posi-
tive. Replacing this ansatz in Einstein’s and the scalar field
equation, and keeping only linear terms in F, the only
nontrivial equation that results is of the form,

d2F

dr2
¼ P1ðrÞ

r7NðrÞ
dF

dr
þ P2ðrÞ

r10NðrÞ2 FðrÞ þ
k2

A
FðrÞ; (21)

where P1 and P2 are polynomials in rwith coefficients that
depend only on �, M, Q, and A, which are therefore
regular in the relevant range in r, that is for rH � r �
r�, with r ¼ rH (the event horizon), and r ¼ r� (the
cosmological horizon) corresponding to single zeros of
N. It can be checked that, the general solution of (21),
near one of the zeros of N, which are the singular points of
(21), is of the form,

FðrÞ ’ c1ðr� rpÞ þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr� rpj

q
; (22)

where c1 and c2 are arbitrary constants, and rp is either rH
or r�. This means that the general solution of (21) vanishes
at the horizons, but only those solutions with c2 ¼ 0 at
both r ¼ rH and r ¼ r� are acceptable as perturbations,
because for c2 � 0 the derivatives of FðrÞ are singular.
This implies that appropriate solutions, if they exist, satisfy
a boundary value problem, with k2 the corresponding
eigenvalue. Considering now a numerical integration of
(21), there is no difficulty in imposing regularity for, say,
r ¼ rH, but, for general A and k the resulting solution

would be singular for r ¼ r�. We notice, however, that
for large enough k and r not close to the horizons, (21)
behaves approximately as

d2F

dr2
’ k2

A
FðrÞ: (23)

Therefore, if we take A < 0, FðrÞ will oscillate between
positive and negative values in the region rH � r � r�.
This implies that, for A < 0, imposing the condition that c2
vanishes for both r ¼ rH and r ¼ r� turns (21) into a
boundary value problem determining the allowed values
of k. Note that (22) guarantees that the perturbation will
vanish at both horizons. Clearly, there is no upper bound on
the allowed k values. Therefore, the linear perturbation
problem leads to solutions that diverge arbitrarily fast
from MTZ1. Figure 1 illustrates a ‘‘shooting’’ approach
to the problem of finding appropriate values for k: Q, M,
and � were chosen so that rH ¼ 2 and r� ¼ 16, and (21)
was numerically integrated from r ¼ rH, setting c2 ¼ 0 at
this horizon [see Eq. (22)]. Generically, the solution at r ¼
r� will also be of the form (22), but with c2 � 0, then F0
will diverge there. Requiring that F0 be finite at both
horizons gives a discrete set of possible k values. The left
panel of the figure shows a numerical integration per-
formed with k ¼ 1:0; the right panel shows a numerical
integration with k ¼ 1:2. The fact that at both horizons the
behavior is as in (22) guarantees the vanishing of F. It is
clear from Fig. 1 and continuity arguments, that, for some
value of k in this interval there is a solution with a finite
derivative at r�.
The analysis carried out in [20] indicates that the solu-

tions MTZ2 are also unstable under linear, spherical per-
turbations. Once again, if one attempts to solve the linear
perturbation equations for the spherically symmetric mode,
one finds solutions that grow in time arbitrarily fast [20].
This may be traced to the fact that the perturbation ‘‘po-
tential’’ (of the Regge-Wheeler–like equation) is singular
for r ¼ 2M, a rather peculiar situation, since the metric
(16) and the scalar field are smooth in the range between
the event and cosmological horizons, in particular, at r ¼
2M, since r2 < 2M< r3.
More generally, the problem of solving the linearized

equations for arbitrary (i.e., not restricted to spherically
symmetric) perturbations can be approached by decom-
posing in angular modes in the usual way, and projecting
onto S2 harmonic vector and scalar fields, but, as we have
checked, this leads to an extremely intricate set of equa-
tions that is difficult to deal with. Notice however that in
order to prove instability, it is certainly sufficient to exhibit
a single unstable mode, as was done above for MTZ1 and
in [20] for MTZ2.
An important point is that under the radial perturbations

above and in [20], the perturbed metrics leave the restricted
family gtt ¼ �1=grr, getting into the general space of
static and spherically symmetric spacetimes (10). This
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suggests that the peculiar behavior of the MTZ solutions
under perturbations may be related to the restricted nature
of the space of solutions of the form (12). For instance, the
perturbation method might not be applicable because in the
general case N2 � 1=N1, there are solutions which are
locally arbitrarily close to the unperturbed one in the
family (10), but with very different global behavior. This,
as we show in this paper, is precisely the case for the MTZ
family of solutions.

III. THE EINSTEIN EQUATIONS

We generalize the metric ansatz of [8] by considering
instead of (12), a static spherically symmetric metric and
scalar field of the form (10):

ds2 ¼ �N2ðrÞdt2 þ N1ðrÞdr2 þ r2d�2; � ¼ �ðrÞ:
Recall from the previous section that (4) always hold, and
thus (2b) can be replaced with (11). Inserting (10) in (N1

times) Eq. (11) gives

0 ¼ �00 þ 1

2
�0

�
N0

2

N2

� N0
1

N1

þ 4

r

�
� 2

3
N1�½6��2 þ��:

(24)

Also,G�� :¼ G�� þ�g�� � T�
�� is diagonal, withG�� /

G��, thus (2a) gives three nontrivial equations. The first

two are

0 ¼
�
6r2N1

N2

�
Gtt ¼ �N1

0

N1

r½ð�2 � 6Þ þ r�0��
� N1½ð�2 � 6Þ þ 6r2ð�þ ��4Þ�
þ ½4r��0 þ ð�2 � 6Þ þ 2r2��00 � r2�02�; (25)

0 ¼ 6r2Grr ¼ �N2
0

N2

r½ð�2 � 6Þ þ r�0��
þ N1½ð�2 � 6Þ þ 6r2ð�þ ��4Þ�
� ½3r2�02 þ 4r��0 þ ð�2 � 6Þ�: (26)

The G�� equation is seen (after some work) to actually
follow from (24)–(26), so it will not be needed. The field
equations conform a system of three ODEs, (24)–(26), on
three unknown functions N1, N2, and �.
It is apparent from (25) and (26) that the case where

½ð�2 � 6Þ þ r�0�� � 0 is special. If such a solution exists

then � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6r2 þ C

p
=r and Eqs. (25) and (26) force C ¼ 0

(i.e., � ¼ ffiffiffi
6

p
), and � ¼ ��=36. Under these conditions

the remaining field equation, Eq. (24), is also satisfied. This
is of course solution MTZ1 in the special case � ¼
��=36, Eq. (14).
If, on the other hand, ½ð�2 � 6Þ þ r�0�� 6�0 (in particu-

lar, �2 6�6), we find, after some work on (24)–(26) that

d2�

dr2
¼ ½ð2ð9���2�þ 3��4Þr2 þ 3�2 � 18Þ�0 � 2r�ð�2 � 6Þð6��2 þ�Þ�N1

3rð6��2Þ � ð6��2 þ ð�0Þ2r2 þ 2r��0Þ�0

rð6��2Þ ;

(27)

and also that we can write T�
�� just in terms of N1, N2, �, and �0, using the orthonormal basis t̂� ¼ N�1=2

2 @t, r̂
� ¼

N�1=2
1 @r, �̂

� ¼ r�1@�, and �̂� ¼ ðr sinð�ÞÞ�1@�:

T�� ¼ 	t̂�t̂� þ prr̂�r̂� þ p��̂��̂� þ p��̂��̂�: (28)

Here

FIG. 1. Numerical integration of Eq. (21) from r ¼ rH to r ¼ r�. Equation (22) guarantees that F will vanish at both horizons,
however, F0 will generically diverge at r ¼ r� if it is finite at r ¼ rH, except for a discrete set of k values. The allowed k values can
be spotted by a numerical ‘‘shooting’’ algorithm. This is illustrated in the figure: the left panel shows a numerical integration for
k ¼ 1:0, the right panel a numerical integration for k ¼ 1:2. It follows that there is an allowed value k0, with 1:0< k0 < 1:2. The
integrations were performed for a special theory (8), setting � ¼ 48

4745 , Q ¼ 146
16 �, and M ¼ 1755

16 , which gives rH ¼ 2 and r� ¼ 16.
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	 ¼ ð�12�5r2�þ ð�r2 � 3Þ�3 þ ð18� 18�r2Þ�Þ�0 þ 6��6rþ ð�36r�þ�rÞ�4 � 6�r�2

3rð�6þ�2Þð�6þ�2 þ r��0Þ
þ 6�r2�03 þ ð18rþ 9r�2Þ�02 þ ð3�3 � 18�Þ�0

3rð�6þ�2Þð�6þ�2 þ r��0ÞN1

;

pr ¼ ð�1þ�r2Þ��0 þ r�2ð6��2 þ�Þ
rð�6þ�2 þ r��0Þ � 3

�0ðr�0 þ�Þ
rð�6þ�2 þ r��0ÞN1

;

p� ¼ p� ¼ �2ð6��2 þ�Þ
3ð�2 � 6Þ ��0ðr�0 þ 2�Þ

rð�2 � 6ÞN1

:

These formulas do not hold, of course, at those isolated
points where ð�6þ r��0 þ�2Þ ¼ 0 or �2 ¼ 6. The fact
that this system is singular at points where �2 ¼ 6 is
clearly related to the singular nature of the linearized
equations for perturbations of MTZ2 (16) at r ¼ 2M,
where � ¼ ffiffiffi

6
p

[20]. This is so because the perturbed
metric [Eq. (9)] and scalar field [Eq. (11)11] in [20] are,
in the static case, of the form (10). In principle, whether a
solution is also singular at such a point depends critically
on the behavior of the numerators of Eq. (27). The exact
solutions (16) represent cases where this singularity is
canceled, but other possibilities should be expected.

For the MTZ1 solution in the special case � ¼ ��=36,
Eq. (14), we cannot use (28), and the energy-momentum
tensor in this case is given by (15). For (13), using (28) we

get the expected result T�
�� ¼ 0.

IV. SOLUTIONS WITH A REGULAR HORIZON

In this section we consider solutions of the field equa-
tions that (i) contain a regular event horizon at r ¼ r0, with
r0 > 0, and (ii) satisfy the weak and dominant energy
conditions in some open neighborhood r0 < r < rþ 

outside the horizon.

The regular horizon condition implies that there exists a
neighborhood of r ¼ r0, where the functionsN1,N2, and�
admit expansions of the form,

� ¼ a0 þ a1ðr� r0Þ þ a2ðr� r0Þ2 þ � � � ;
N1 ¼ b�1ðr� r0Þ�1 þ b0 þ b1ðr� r0Þ þ � � � ;
N2 ¼ c1ðr� r0Þ þ c2ðr� r0Þ2 þ c3ðr� r0Þ3 þ � � � ;

(29)

where ai, bi, and ci are constant coefficients. The proper
signature of the metric imposes b�1 > 0 and c1 > 0,
although c1 is otherwise arbitrary because of the freedom
of rescaling of t. We also impose a0 � 0, making use of the
invariance of the equations under� ! ��. We will find it
convenient to introduce the dimensionless horizon radius

z0 :¼ r0
ffiffiffiffi
�

p
: (30)

In sec. IVB we arrive at a description of the subset of the
(z0, a0) plane for which conditions (i) and (ii) above are
satisfied in the special case � ¼ ��=36 (see Fig. 2).

Replacing the expansions (29) in Eqs. (24)–(26) we
obtain relations between the coefficients by equating
powers in r� r0. From the algebraic equations obtained
by matching the lowest order nontrivial terms we learn that
the ‘‘special’’ case � ¼ ��=36 requires separate
treatment.

A. Generic theories ð� � ��=36Þ
To lowest order we obtain

a1 ¼ 2r0a0ða02 � 6Þð6�a02 þ�Þ
3a0

2 � 2a0
2�r0

2 þ 6�a0
4r0

2 � 18þ 18�r0
2
;

(31)

o

o

1

6
1/2

MTZ2

z

a

1/2

dS

3 /2

SdS

MTZ1

FIG. 2. Allowed regions in the (z0, a0) plane for static
spherically symmetric local solutions of the special theory � ¼
��=36 having a regular horizon, Eqs. (10) and (29) and satisfy-
ing the weak and dominant energy condition in some exterior
neighborhood of the horizon. There is one solution per point
except at the subset a0 ¼

ffiffiffi
6

p
, 0< z0 < 1, where there are

(infinitely) many solutions per point. The horizon radius is r0 ¼ffiffiffiffi
�

p
z0 and the value of the scalar field at the horizon is �ðr0Þ ¼

a0. The a0 ¼ 0, z0 < 1 solutions are Schwarzschild—de Sitter,
the MTZ1 solutions lie on the segment a0 ¼

ffiffiffi
6

p
, 0< z0 < 1,

the MTZ2 solutions on the lower edge z0 ¼
ffiffiffiffi
18

pffiffi
6

p þa0
of the shaded

a0 >
ffiffiffi
6

p
region.
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b�1 ¼ �3r0ð�6þ a0
2Þ

18� 3a0
2 � 18�r0

2 � 6�a0
4r0

2 þ 2a0
2r0

2�
:

(32)

This suggests that we study the cases (A) a1 ¼ 0 and (B)
a1 � 0 separately.

Case A.1, a0 ¼ 0: in this case, by solving iteratively for
the higher order terms, assuming r0 > 0, we are led to the
Taylor expansion of Schwarzschild—dS (S-dS) space:

�ðrÞ ¼ 0; N1ðrÞ ¼
�
1� r0ð3��r0

2Þ
3r

��r2

3

��1
;

N2ðrÞ ¼ c1r0
ð�r0

2 � 1ÞN1ðrÞ
: (33)

Matching N1 ¼ 1� 2M=r��r2=3 ¼ � �
3r ðrþ r1Þ�

ðrþ r2Þðrþ r3Þ gives r1 ¼ �ðr2 þ r3Þ. We want, say r2 ¼
r0 (event horizon), r3 ¼ cosmological horizon, then 0<
r2 < r3. This implies M ¼ �ðr2 þ r3Þr2r3=6> 0 and

z0 < 1: (34)

Case A.2, a0 ¼
ffiffiffi
6

p
: this leads to b�1 ¼ 0, see Eq. (32).

Interestingly, no solution with a regular horizon and

�ðr0Þ ¼
ffiffiffi
6

p
exists in the generic theory if we assume the

scalar field admits a Taylor expansion around the horizon.

Case A.3, a0 ¼
ffiffiffiffiffiffi
��
6�

q
: in this case we obtain, once again,

aj ¼ 0 for j > 0, i.e., � ¼
ffiffiffiffiffiffi
��
6�

q
, together with

N1ðrÞ ¼ r0
1��r0

2
ðr� r0Þ�1 þ ð1��r0

2Þ�2

þ�r0ð4��r0
2Þ

3ð1��r0
2Þ3 ðr� r0Þ

þ r0ð3�r0
2 þ 1��2r0

4Þ
3ð1��r0

2Þ4 ðr� r0Þ2 þ � � � ;

which is the Taylor expansion around r ¼ r0 of MTZ1,
Eq. (13), written as

N1ðrÞ ¼
�
1þ r0ð�r0

2 � 3Þ
3r

��r2

3

��1
:

Case B, a1 � 0: This case is extremely complex to deal
with in the general situation. Since the main motivation of
this work is to understand the behavior of the linearized
field equations around the solution MTZ2 (16) for the

theory � ¼ � �
36 , we restrict our attention to special theo-

ries from now on.

B. Special Theories � ¼ ��=36

To lowest order, for the special theories we obtain

a1 ¼ �2�r0a0ða02 � 6Þ
18� r0

2�ða02 þ 18Þ ;

b�1 ¼ 18r0
18� r0

2�ða02 þ 18Þ :
(35)

This suggests that we study the cases a0 ¼ 0 and a0 ¼ffiffiffi
6

p
separately.
Case A, a0 ¼ 0: To no surprise, we are led back to

Schwarzschild–de Sitter space, Eqs. (33) and (34).

Case B, a0 ¼
ffiffiffi
6

p
: The higher order terms of (24)–(26)

imply give aj ¼ 0, j > 0, i.e., any solution with �ðr0Þ ¼ffiffiffi
6

p
must satisfy�ðrÞ ¼ ffiffiffi

6
p

for all r. From the comments in
Sec. II, we know that the only field equation for the metric
in this case is R ¼ 4�, which reads

� N00
2

N1N2

þ ðN0
2Þ2

2N1N
2
2

þ N0
1N

0
2

2N2
1N2

� 2N0
2

rN1N2

þ 2N0
1

rN2
1

þ 2ðN1 � 1Þ
r2N1

¼ 4�: (36)

In principle, this gives us an infinite number of solutions
for the ansatz (10), since, given, say N2, R ¼ 4� is a first
order ODE forN1. In particular, givenN2 as in (29) and any
b�1 > 0, the algebraic equations for the remaining bj’s

admit a solution. Inserting this solution in the energy-

momentum tensor T�
�� ¼ G�� þ�g�� and using the or-

thonormal basis in (28) gives

	 ¼ 	0 þOððr� r0ÞÞ; 	0 :¼ b�1ð1��r0
2Þ � r0

b�1r0
2

;

(37)

and

p�

	
¼ �pr

	

¼ 1þ
�
2c1b�1ð2�r0

2 � 1Þ þ 4c1r0 þ 2c2r0
2

r0c1½r0 þ b�1ð�r0
2 � 1Þ�

�
ðr� r0Þ

þOððr� r0Þ2Þ: (38)

The condition 	0 > 0 is equivalent to

1� z0
2

z0
>

1ffiffiffiffi
�

p
b�1

, 0< z0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�b�1

2
q

� 1

2
ffiffiffiffi
�

p
b�1

;

(39)

and thus z0 < 1, as happens for generic theories, Eq. (34).
To satisfy the strong energy condition in some open r
interval r0 < r < r0 þ 
 we require that the ðr� r0Þ coef-
ficient in (38) be negative, and this can always be satisfied
by a proper choice of c2, thus proving that there are local
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solutions satisfying the energy conditions right outside a
regular horizon.

It is not hard to see that, out of the infinitely many
solutions for the ODE (36), the only one satisfyingN1N2 �
1 is MTZ1 (14). Given MTZ1 with positive � and positive
Q [required by the energy conditions, see (15)], one can
easily see that in order to avoid naked singularities the
quartic polynomial r2NðrÞ has to have four real roots, one
negative and three positive: �r4 < 0< r1 < r2 < r3, with
r2 ¼ r0 the event horizon and r3 the cosmological horizon.
Then matching (14) with

NðrÞ ¼ � �

3r2
ðrþ r4Þðr� r1Þðr� r2Þðr� r3Þ; (40)

gives r4 ¼ ðr1 þ r2 þ r3Þ, a positive mass

M ¼ ðr1 þ r2Þðr1 þ r3Þðr2 þ r3Þ
2

P
i�j�3

rirj
; (41)

and

� ¼ 3P
i�j�3

rirj
; Q ¼ ðr1 þ r2 þ r3Þðr1r2r3ÞP

i�j�3

rirj
: (42)

In particular, given the domain 0< r1 < r2 < r3 <1, one

finds that z0 ¼ r2
ffiffiffiffi
�

p
satisfies the constraint [compare to

(34) and (57)]

0< z0 < 1: (43)

Case C, a0 � 0,
ffiffiffi
6

p
: In this case we find that all the

coefficients in (29) may be written, e.g., in terms of r0, and
a0. The leading terms are of the form,

� ¼ a0 þ 2ða20 � 6Þ�r0a0
�r20a

2
0 þ 18�r20 � 18

ðr� r0Þ

þ 4ða20 � 6Þ2�2r20a0
ð�r20a

2
0 þ 18�r20 � 18Þ2 ðr� r0Þ2 þ � � � ;

N1 ¼ 18r0
ð18� 18�r20 ��r20a

2
0Þðr� r0Þ

� 36ð�r20a
2
0 � 9Þ

ð18� 18�r20 ��r20a
2
0Þ2

þ � � � ;

N2 ¼ c1

�
ðr� r0Þ þ 2ð�r20a

2
0 � 9Þ

r0ð18� 18�r20 ��r20a
2
0Þ
ðr� r0Þ2

þ � � �
�
;

(44)

where, as already noticed, c1 > 0, but it is otherwise
arbitrary. This implies that the condition for the existence
of a regular horizon leads, in general, to a two-parameter
(r0 and a0) family of solutions. We notice, for reference,
that the exact solution MTZ2 (16) corresponds to the one
parameter subfamily for which

r0 ¼
ffiffiffi
3

p

2
ffiffiffiffi
�

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 4M

ffiffiffiffiffiffiffiffiffi
3�3

pp
2�

; a0 ¼
ffiffiffi
6

p
M

r0 �M
;

0 � M � 1

4

ffiffiffiffi
3

�

s
(45)

with c1 chosen as

c1 ¼ ð18� 18�r20 ��r20a
2
0Þ

18r0

in (16). The limit caseM ¼ 0 gives just de Sitter spacetime
with no scalar field.
As explained in Se. II, MTZ1 and MTZ2 are the only

solutions with N1 ¼ N2. It is important to check that the
expansions (44) are consistent with this fact. From (44) we
obtain

N1N2 ¼ 18r0c1
18� r0

2ða02 þ 18Þ�

� 24c1�r0a0
2B

½�18þ r0
2ða02 þ 18Þ��4 ðr� r0Þ2

� 16c1�a0
2½�r0

2ða02 � 66Þ þ 9�B
½�18þ r0

2ða02 þ 18Þ��5 ðr� r0Þ3

þOððr� r0Þ4Þ; (46)

where

B ¼ 324þ r0
4ða02 � 6Þ2�2 � 36r0

2ð6þ a0
2Þ�: (47)

Therefore, the condition N1ðrÞN2ðrÞ ¼ 1 can be imposed
only if a0 ¼ 0, which is trivial, or if B ¼ 0. In this case,
solving for a20 in terms of the other constants, we find two

solutions, but only one of these leads to acceptable coef-
ficients in (44). This solution is given by

a20 ¼
18þ 6�r0

2 � 12
ffiffiffi
3

p
r0

ffiffiffiffi
�

p
�r20

¼ 6ð ffiffiffi
3

p � zoÞ2
z0

2
(48)

and it can be checked that this coincides with (45).
Another interesting issue is that of analyzing the limit

a0 !
ffiffiffi
6

p
in (44). The limit gives � � ffiffiffi

6
p

, and well-
defined expansions forN1 andN2 that can be seen to satisfy
the required condition on the metric, R ¼ 4�. Thus, this is

one of the infinitely many � � ffiffiffi
6

p
solutions referred to in

case B above, certainly not MTZ1 (14), since a0 !
ffiffiffi
6

p
in

(46) gives

N1ðrÞN2ðrÞ ¼ 3r0c1
3� 4�r0

2
þ 12c1�r0

ð4�r0
2 � 3Þ3 ðr� r0Þ2

þOððr� r0Þ3Þ
� const: (49)

We may obtain important information regarding the
physical acceptability of the solutions (44) by considering
the behavior of the energy-momentum tensor near the
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horizon. Imposing the strong and dominant energy conditions on (44) places restrictions on the range of the parameters (r0,
a0). In the notation of Eq. (28),

	 ¼ 1

18
�a20 �

2�a20
9r0

ðr� r0Þ þOððr� r0Þ2Þ; (50)

and

pr

	
¼ �1� 8½�r20a

2
0 � 6ð ffiffiffi

3
p þ r0

ffiffiffiffi
�

p Þ2�½�r20a
2
0 � 6ð ffiffiffi

3
p � r0

ffiffiffiffi
�

p Þ2�
3r20ð�r20a

2
0 � 18þ 18�r20Þ2

ðr� r0Þ2 þOððr� r0Þ3Þ;

p�

	
¼ 1þ 4½�r20a

2
0 � 6ð ffiffiffi

3
p þ r0

ffiffiffiffi
�

p Þ2�½�r20a
2
0 � 6ð ffiffiffi

3
p � r0

ffiffiffiffi
�

p Þ2�
3r20ð�r20a

2
0 � 18þ 18�r20Þ2

ðr� r0Þ2 þOððr� r0Þ3Þ:
(51)

Therefore, the solutions satisfy the weak energy condi-
tion (positive energy density) for all a0, but they violate the
dominant energy condition (absolute value of the stresses
not larger than energy density) in the neighborhood of the
horizon unless a0 and r0 are restricted by the conditions,

6ð ffiffiffi
3

p � r0
ffiffiffiffi
�

p
Þ2 � �r20a

2
0 � 6ð ffiffiffi

3
p þ r0

ffiffiffiffi
�

p
Þ2: (52)

At the limits we have pr=	 ¼ �1, and p�=	 ¼ 1. The
upper limit is further restricted by the condition,

�r20a
2
0 < 18� 18r20� (53)

imposed by the conditionN1 > 0. All together this implies,

6ð ffiffiffi
3

p � z0Þ2
z0

2
� a0

2 <
18ð1� z0

2Þ
z0

2
: (54)

Note from (45) and (48), that MTZ2 (16) saturates the
lower bound above, and that the allowed interval for a0

2

is nonempty only if

z0 <

ffiffiffi
3

p
2

: (55)

The restrictions for case C can then be summarized by any
of the two equivalent conditions:

6<
6ð ffiffiffi

3
p � z0Þ2
z0

2
� a0

2 <
18ð1� z0

2Þ
z0

2
; (56)

[the first bound in the chain of inequalities following from
(55)], or ffiffiffi

3
p

1þ a0ffiffi
6

p � z0 <

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20
6 þ 3

q <

ffiffiffi
3

p
2

; (57)

(the last bound in the chain of inequalities following from
a0

2 > 6). This completes the discussion of case C.
Let us recapitulate on what we have found by seeking

local solutions of the form (29) for the special theories� ¼
��=36, satisfying the weak and dominant energy condi-
tions outside the horizon. We have used the � ! ��
symmetry of the field equations to restrict our considera-
tions to �ðr0Þ ¼: a0 � 0 and found that

(i) If a0 ¼ 0 then �ðrÞ � 0 and the metric is
Schwarzschild–de Sitter. The constraint z0 < 1 is
required to assure there is an event horizon hiding
the singularity, and an exterior cosmological
horizon.

(ii) For 0< a0 <
ffiffiffi
6

p
there are no solutions satisfying the

weak and dominant energy conditions outside the
horizon.

(iii) If a0 ¼
ffiffiffi
6

p
then �ðrÞ � ffiffiffi

6
p

, and there are infinitely
many solutions ðN1ðrÞ; N2ðrÞÞ, for every z0 < 1 [see
Eq. (36)], some of them satisfying the energy
conditions.

(iv) If a0 >
ffiffiffi
6

p
then there is one solution satisfying the

desired energy conditions for every pair (a0, z0)
satisfying (57).

The situation is summarized in Fig. 2.
The natural question to ask at this point is what is the

global behavior of the local solutions analyzed above.
Since solving the system (24)–(26) analytically is out of
consideration, numerical integrations were performed. The
results are gathered in the following section.

V. SPECIAL THEORIES: NUMERICAL ANALYSIS
OF THE �ðr0Þ >

ffiffiffi
6

p
SOLUTIONS

The equivalent conditions given in Eqs. (56) and (57)
provide a range of values for r0 and a0 such that, locally,
the field equations have a solution with a regular event
horizon, with the strong and dominant energy conditions
being satisfied right outside the horizon. The question that
naturally arises then is what is the behavior of these
solutions as we move away from r ¼ r0. Since we do not
know of any exact solutions in this range besides the
borderline MTZ2, we considered a numerical integration
of the system (24)–(26), using the expansions (44) to
construct appropriate initial data. A numerical integration
requires assigning definite numerical values to the parame-
ters. We took c1 ¼ 1, � ¼ 3, and r0 ¼ 1=4, and consid-

ered different values of a0 in the interval 3
ffiffiffi
6

p � a0 <
ffiffiffiffiffiffi
78

p
[Eq. (56)]. To check the accuracy of the numerical proce-
dure [24], we analyzed as a first example the MTZ2 data

a0 ¼ 3
ffiffiffi
6

p
, which corresponds to M ¼ 3=16 in Eq. (16).
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With this choice of a0 we have �2 ¼ 6 for r ¼ 3=8, and
the equations are formally singular, because of vanishing
denominators, for this value of r, with the result that the
numerical integration stops at that point. Nevertheless, the
numerical solution is well behaved for any r close to but
smaller than 3=8, in correspondence with the regularity of
the exact solution, with a five digit agreement between the
exact and numerical solutions in the plotted range, Fig. 3.

Next we considered, for the same value of r0, a number

of different allowed values of a0 larger than 3
ffiffiffi
6

p
. The

general behavior turned out to be qualitatively the same
in all cases: the numerical integration shows a singular
behavior in N1, as r approaches a critical value r ¼ rS,

whileN2 and� approach finite limits, with� ! �c >
ffiffiffi
6

p
.

This is illustrated in Fig. 4. It is also found numerically that
Tt
t , as well as other invariants, approaches a finite limit as

N1 diverges. This raises the possibility that the singular
behavior for r ¼ rS is only a coordinate effect. In the next
section we show that this is effectively the case.

A. A coordinate singularity and extensions of the
solutions

A detailed numerical analysis of the behavior of N1, N2,
and � near the singular point r ¼ rS indicates that, in
general, we have, for r < rS, and r ’ rS

N1ðrÞ ’ B1

rS � r
; N2ðrÞ ’ C0 þ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS � r

p
;

� ’ A0 þ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS � r

p
;

(58)

where A0, A1, B1, C0, and C1 are constants that depend on

the solution, and A0 >
ffiffiffi
6

p
. This suggests the introduction

of a new coordinate R, defined by

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS � r

p
: (59)

For this new coordinate the metric takes the form,

ds2 ¼ � ~N2dt
2 þ ~N1dR

2 þ ðrS � R2Þ2d�2; (60)

where

~N 1 ¼ 4R2N1; ~N2 ¼ N2: (61)

The resulting Einstein and scalar field equations in the
new coordinate R are rather long, and we do not display
them here. We find that, just as in the case of the r
coordinate, they are equivalent to a set of three equations

for ~N1, ~N2, and ~�. The system has singular coefficients for
R ¼ 0, but admits regular solutions in the neighborhood of
R ¼ 0, with ~N1, ~N2, and � having expansions of the form,

~N1 ¼ ~B0 þ ~B1Rþ ~B2R
2 þ � � � ;

~N2 ¼ ~C0 þ ~C1Rþ ~C2R
2 þ � � � ;

� ¼ ~A0 þ ~A1Rþ ~A2R
2 þ � � � ;

(62)

where ~Ai, ~Bi, and ~Ci are constants, and ~B0 ¼ 4B1, ~C0 ¼
C0, and ~C1 ¼ C1, in agreement with (58). Since the trans-
formation (59) is defined only for R> 0 while (60) is
defined also for R< 0, the coordinate change (59) provides
a smooth extension of the original metric (10) through the
singular point r ¼ rS.
We are again here confronted with the lack of explicit

exact solutions, and, therefore, we must resort to a numeri-

FIG. 3. Numerically generated MTZ2 solution with � ¼ 3,
r0 ¼ 1=4, and a0 ¼ 3

ffiffiffi
6

p
. The vertical axis displays the correct

values of the scalar field, the scales of N1 and N2 are arbitrary
and were independently chosen to fit the range of � values.
Notice the smooth behavior as � approaches the regular
singularity at � ¼ ffiffiffi

6
p

.

FIG. 4. Numerically generated solution with � ¼ 3, r0 ¼
1=4, and a0 ¼ 3

ffiffiffi
6

p þ 0:3. The vertical axis displays the correct
values of the scalar field, while the scales for N1 and N2 are
arbitrary and were independently chosen to fit the range of �
values. As r ! rS, � approaches a critical value �c >

ffiffiffi
6

p
and

N1 diverges. The critical value �c ’
ffiffiffi
6

p
in this example because

r0 and a0 are close to the MTZ2 values.
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cal integration to obtain information on the properties of
these solutions. This is considered in the next section.

B. Numerical analysis of the continued metrics

Given the form (60) for the metric, a regular horizon at
R ¼ RH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rS � r0
p

would be characterized by the func-

tions ~N1, ~N2, and � admitting expansions

~N1 ¼
~b�1

RH � R
þ ~b0 þ � � �

~N2 ¼ ~c1ðRH � RÞ þ ~c2ðRH � RÞ2 þ � � � ;
� ¼ ~a0 þ ~a1ðRH � RÞ þ � � � ;

(63)

where ~ai, ~bi, and ~ci are constants. Given a particular
solution for (10), with a regular horizon characterized by
given values of r0 and a0, and the remaining coefficients
given by (44), for which the singularity appears at r ¼ rS,
we have the following relations for the coefficients of the
leading terms:

~a 0 ¼ a0; ~c1 ¼ 2c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS � r0

p
;

~b�1 ¼
36r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs � r0

p
18� ða02 þ 18Þr02�

:
(64)

We use (64) as initial data for a numerical integration of
the equations for ~N1, ~N2, and � in the region RH > R> 0.
The numerical integration stops for R ¼ 0, but shows that
~N1, ~N2, and ~� display a regular behavior arbitrarily close
to R ¼ 0, and allows one to extract the leading coefficients
~Ai, ~Bi, and ~Ci in (62) to compute initial data for the
numerical integration of the equations in the region R<
0, i.e., beyond rS.

The main result is that in this extension we find that� !ffiffiffi
6

p
, while ~N1 ! 0, and ~N2 ! 1 as R ! � ffiffiffiffiffi

rS
p

. The en-

ergy density 	, is found to diverge as R ! � ffiffiffiffiffi
rS

p
.

This situation may be analyzed in general by noticing
that R ! � ffiffiffiffiffi

rS
p

corresponds to r ! 0þ in (10) if we

change variables to r ¼ rS � R2, so that r ! 0 as R !
� ffiffiffiffiffi

rS
p

. The numerical results suggest that ð�2 � 6Þ ! 0,
and N1 ! 0 as some power of r, while both N2 and 	
diverge. The detailed behavior near the singularity de-
pends, however, on some rather delicate cancellations of
diverging terms, and, up to the accuracy achieved so far, we
can only draw qualitative conclusions out of the numerical
results [25]. To this extent, it appears that the extensions
end at a (naked) singularity, and that the solutions cannot
be further extended. This would imply that the only solu-

tion with a0 >
ffiffiffi
6

p
containing a region limited by event and

cosmological horizons, where the energy-momentum ten-
sor is compatible with the weak and dominant energy
conditions, is the exact solution MTZ2 found in [8].

Nevertheless, for the problem of understanding the in-
stability found in [20] we need to study the neighborhood

of theMTZ2 curve in Fig. 2, and this includes the dominant

energy violating cases where 6ð ffiffiffi
3

p � r0
ffiffiffiffi
�

p Þ2 � �r20a
2
0.

These are considered in the next section.

C. Solutions violating the dominant energy condition

A numerical analysis of solutions with

6ð ffiffiffi
3

p � z0Þ2=z02 > a0
2,—i.e., violating the dominant en-

ergy condition near the horizon and thus (56)—reveals a

smooth behavior of the metric for r > r0, with � ! ffiffiffi
6

p
,

and N1 ! 0þ, N2 ! 0þ as r increases past some value
larger than r0. The most remarkable feature of these solu-
tions is that the energy density 	ðrÞ decreases from its
value at the horizon r ¼ r0, changing sign at some r1 >
r0, with 	 taking larger and larger negative values as r
increases. As already mentioned, the numerical integration
breaks down for sufficiently large values of r, but not
before the divergence of j	j is clearly established, leading
to the conclusion that solutions outside the allowed regions
shown in Fig. 2 contain features that make them physically
unacceptable.
It is interesting that when a0 is slightly smaller than the

lower bound forced in (56), which, as we said, corresponds
to the MTZ2 solution (16), the numerically generated
solution remains close to the MTZ2 solution for r ’ r0,
and then they depart completely from each other as we
move away from the horizon. This is a coordinate inde-
pendent statement, since it is exhibited, e.g., by a qualita-
tively different behavior of the energy density in both
cases.

VI. SUMMARYAND CONCLUSIONS

We have studied the theory (1) with F�� ¼ 0, �> 0,

and � ¼ ��=36, and arrived at a comprehensive under-
standing of the space M of static, spherically symmetric
local solutions with a regular horizon that satisfy the strong
and dominant energy conditions in an open set bounded by
the horizon. The diagram in Fig. 2 shows the (a0, z0) plane

[z0 :¼
ffiffiffiffi
�

p
r0, a0 ¼ �ðr0Þ, r0 the horizon radius]. We have

proved that there is a one to one, ongoing correspondence

between the set of a0 �
ffiffiffi
6

p
solutions inM, and the (a0 �ffiffiffi

6
p

) shaded region of this plane. Among these, the only
known exact solutions are MTZ2, Eq. (16) and � � 0

Schwarzschild—de Sitter spacetime. The case a0 ¼
ffiffiffi
6

p
is rather peculiar, for every point in the segment a0 ¼ffiffiffi
6

p
, 0< z0 < 1 there is not just one, but infinitely many

local solutions of the field equations admitting a regular
horizon, some of them satisfying the weak and dominant
energy conditions. To this set belongs the other known
exact solutions, MTZ1 given in Eq. (14).
Numerical integrations of the field equations away from

the horizon indicate that those solutions in the a0 >
ffiffiffi
6

p
shaded area (Fig. 2) are not physically relevant, since they
develop a singularity with infinite energy density, not
protected by a horizon. It is rather interesting that, between
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this singularity and the horizon, a coordinate singularity
was numerically spotted, and appropriate new coordinates
could be constructed to cross over it. The spheres of
symmetry [i.e., the orbits of the SOð3Þ isometry group]
have a radius [square root of ð4�Þ�1 times their area] that
grows from the horizon radius r0 up to a maximum value rS
(where the coordinate change is required), and then col-
lapses to zero as we approach the above mentioned (space-
like) naked singularity.

The unshaded lower region (Fig. 2) in the a0 >
ffiffiffi
6

p
portion of the (a0, z0) plane corresponds to uninteresting
solutions of the field equations. They not only violate the
strong energy condition near the horizon, but also have an
energy density 	 that, as we move away from the horizon,
becomes negative, and apparently unbounded as r in-
creases (no coordinate change is needed for these
solutions).

One of the main purposes of the present work was to
obtain an understanding for the extreme instability under
perturbations found in [20] for the metric (16). From a
simple perspective, given the family of solutions (16), one
would expect that under a sufficiently small perturbation
the system would radiate some gravitational and scalar
field energy to both horizons, and eventually settle to a
static solution of the type (16), perhaps with different
values of r0 and a0 (or M in the notation of [8]), and
therefore, the results of [20] appear as difficult to under-
stand. The present analysis, however, indicates that the
parameter space for the static spherically symmetric solu-
tions of the MTZ system indeed presents a sharp disconti-
nuity at the exact solution, with neighboring solutions
displaying properties that depart completely from those
of the solution (16). In particular, the analysis of
Sec. VA shows that the coordinate system used both in
[8,20] is inadequate for the perturbative study, because of

the coordinate singularity intrinsic to that system. But the
same analysis shows that even if the coordinate singularity
is avoided, there are solutions that approach arbitrarily
close to (16) near the black hole event horizon at r ¼ r0,
but then depart from each other with totally different
geometrical properties. In fact, in accordance with (48),
for a given�, the MTZ2 solution is obtained only if a0, r0,
and � are ‘‘fine-tuned’’ so that (48) is satisfied, and any
departure from that relation leads either to solutions with a
divergent behavior for finite r (before a cosmological
horizon is reached), or to solutions with no cosmological
horizon, but with a divergent behavior for the energy
density.
The final conclusion of our analysis is that there appear

to be no physically acceptable stable solutions of the MTZ
system that can be interpreted as black holes with a cos-
mological horizon in the exterior of its event horizon.
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