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Ciudad Universitaria, 5000 Córdoba, Argentina
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Abstract

The coupled equations for the scalar modes of the linearized Einstein equations
around Schwarzschild’s spacetime were reduced by Zerilli to a (1+1) wave
equation ∂2�z/∂t2 + H�z = 0, where H = −∂2/∂x2 + V (x) is the Zerilli
‘Hamiltonian’ and x is the tortoise radial coordinate. From its definition, for
smooth metric perturbations the field �z is singular at rs = −6M/(�−1)(� + 2),
with � being the mode harmonic number. The equation �z obeys is also
singular, since V has a second-order pole at rs. This is irrelevant to the black
hole exterior stability problem, where r > 2M > 0, and rs < 0, but it
introduces a non-trivial problem in the naked singular case where M < 0, then
rs > 0, and the singularity appears in the relevant range of r (0 < r < ∞). We
solve this problem by developing a new approach to the evolution of the even
mode, based on a new gauge invariant function, �̂, that is a regular function of
the metric perturbation for any value of M. The relation of �̂ to �z is provided
by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that
�̂ and �z obey are related as a supersymmetric pair of quantum Hamiltonians
H and Ĥ. For M < 0, Ĥ has a regular potential and a unique self-adjoint
extension in a domain D defined by a physically motivated boundary condition
at r = 0. This allows us to address the issue of evolution of gravitational
perturbations in this non-globally hyperbolic background. This formulation is
used to complete the proof of the linear instability of the Schwarzschild naked
singularity, by showing that a previously found unstable mode belongs to a
complete basis of Ĥ in D, and thus is excitable by generic initial data. This is
further illustrated by numerically solving the linearized equations for suitably
chosen initial data.
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1. Introduction

The linear stability under gravitational perturbations of the negative mass Schwarzschild
spacetime was first considered in [1], where a proof of stability for the vector (or odd) modes
is given. For the scalar (even) modes, reconsidered in [2], the problem is far more subtle,
because the behavior of the Zerilli potential Vz [3, 4] at x = 0 (which corresponds to the r = 0
Schwarzschild singularity) implies a one-parameter ambiguity [1] in boundary conditions at
this point (parameterized by θ ∈ S1, see equation (21)), and also because Vz has a second order
pole at r = rs := −6M/(� − 1)(� + 2) which falls within the domain of interest for negative
M. None of these problems are present in the positive mass case, for which the relevant range
is r > 2M (mapped over −∞ < x < ∞), and rs < 0.

The ambiguity in boundary conditions at x = 0 was addressed to in [1, 2], where it was
shown that �z ∼ x1/2 as x → 0+ is to be selected in order that the first-order corrections to
the Riemann tensor algebraic invariants do not diverge faster than their zeroth-order piece as
the singularity is approached, a natural requirement if one wants the first-order formalism to
provide approximate solution of Einstein’s equations that can be consistently interpreted as
arbitrarily small perturbations of the unperturbed metric. This choice also selects perturbations
with finite energy, using the energy notion obtained by going to second-order perturbation
theory [1, 2]. The singularity of Vz at r = rs is called a ‘kinematic’ in [2], because it is
due to the fact that, as defined, the Zerilli function �z has a simple pole at this point for
generic smooth gravitational perturbations (see [2] and lemma 1, equation (18)). In the Zerilli
formulation [3, 4], the initial value problem (IVP) for linearized gravity around the M < 0
Schwarzschild spacetime can then be posed as follows: given �z(t = 0, x), �̇z(t = 0, x)

defined for x > 0, both satisfying (18) and vanishing as x1/2—or faster—for x → 0+, find the
unique �(t, x) obeying the singular equation (9)–(12) in the half space x > 0, and giving this
data for t = 0.

The purpose of this paper is to solve this rather bizarre IVP. The exterior black hole
(r > 2M > 0) Zerilli equation is entirely free of difficulties, it is a (1 + 1) wave equation in a
complete Minkowskian space (the horizon lying at the tortoise coordinate value x = −∞), with
a smooth potential, and initial data can be evolved by H mode expansion. The difficulties for
the M < 0 case cannot be overcome by introducing alternative radial variables or integrating
factors, which can be easily seen to merely move the singularity from the coefficients of
the differential equation to the measure that makes its radial piece self adjoint. Solving the
IVP for M < 0 allows us to complete the proof in [2] that the negative mass Schwarzschild
spacetime is unstable under linear gravitational perturbations, as part of a program to study
the linear stability of the most notable nakedly singular solutions of Einstein’s equation [5, 6],
in connection with cosmic censorship. Unstable (exponentially growing in time) modes
were not only found for the negative mass Schwarzschild spacetime [2], but also for the
|Q| > M Reissner–Nördstrom and the |J | > M2 Kerr naked singularities [5, 6]. The
instability for the negative mass Schwarzschild–(A)dS and the negative mass Reissner–
Nördstrom spacetimes were proved in [7]. The unstable smooth solutions of the M < 0
Schwarzschild linearized Einstein equations in [2] satisfy the desired boundary condition at
r = 0 and decay exponentially for large r. It is argued in [2] that they can be excited by initial
data compactly supported away from r = 0, but this cannot be proved if we do not know
how to evolve initial data. In this paper, we show how the IVP for even perturbations on a
negative mass Schwarzschild spacetime can be solved by using the technique of intertwining
operators (see [8] and references therein). An intertwining operator I = ∂/∂x + g(x) is
constructed such that for regular metric perturbations �̂ := I�z is smooth and belongs to
L2((0,∞), dx). �̂ satisfies a Zerilli-like equation 0 = [∂2/∂t2 + Ĥ]�̂, Ĥ := −∂2/∂x2 + V̂ ,
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with a potential V̂ that is free of singularities and such that Ĥ has a unique self-adjoint
extension in a domain D ⊂ L2((0,∞), dx), that corresponds precisely to our physically
motivated choice of boundary condition at x = 0.

These two key differences with the standard Zerilli approach allow us to give a
comprehensive answer to the linear stability problem of M < 0 Schwarzschild spacetime,
as we can show that physically sensible initial data supported away from the singularity
generically excites the unstable modes found in [2]. As is shown in section 3, this is not
related to the x = 0 boundary conditions; if a perturbation is initially supported away from
the singularity, the unstable modes are excited before the excitation reaches the singularity.

In section 2, we give a brief account of Zerilli’s approach to (even type) gravitational
perturbations of Schwarzschild spacetime, stressing the problems that arise in the negative
mass case. We exhibit the unstable modes found in [2], and introduce the new field �̂, which
is smooth for smooth metric perturbations, no matter the sign of M, and obeys an equation
free of singularities for any M. The main results of this paper are listed in a theorem, proved
in section 4, from which the negative mass Schwarzschild spacetime linear instability follows
as a corollary. In section 3, we illustrate, by means of numerical integrations of the linearized
equations, how the unstable linear mode found in [2] for the negative mass Schwarzschild
spacetime is excited by perturbations with different initial data. Section 5 summarizes our
results.

2. Scalar gravitational perturbations of the Schwarzschild spacetime

In the Regge–Wheeler gauge [10], the scalar perturbations for the angular mode (�,m) are
described by four functions H0(r, t),H1(r, t),H2(r, t) and K(r, t), in terms of which the
perturbed metric takes the form

ds2 = −
(

1 − 2M

r

)
(1 − εH0Y�,m) dt2 + 2εH1Y�,m dt dr +

(
1 − 2M

r

)−1

(1 + εH2Y�,m) dr2

+ r2(1 + εK Y�,m)(dθ2 + sin2(θ) dφ2), (1)

where Y�,m = Y�,m(θ, φ) are standard spherical harmonics on the sphere. The linearized
Einstein equations for the metric (1), obtained by disregarding terms of order ε2 or higher,
imply H0(r, t) = H2(r, t), and a set of coupled differential equations for H1,H2 and K.

Of particular interest to us is the following unstable solution found in [2] for the negative
mass case:

K(t, r) = (λ + 1)(r − 2M)k

6M
exp

[
k(t − r)

2|M|
]

H1(r, t) = −H2(t, r) = −λ(λ + 1)[2(λ + 1)r − 6M]r(r − 2M)k−1

36M2
exp

[
k(t − r)

2|M|
] (2)

where

k = (� − 1)�(� + 1)(� + 2)

6
(3)

and

λ = (� − 1)(� + 2)

2
. (4)

The above solution has the following properties (see section 7 in [2]): (i) it is exponentially
growing in time, (ii) it is smooth for r > 0, exponentially decaying for large r; (iii) it has a
fast decay as r → 0+ that guarantees that the first-order algebraic and differential invariants
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of the Riemann tensor do not diverge faster than their zeroth-order piece, a condition of
self-consistence of the perturbation procedure, (iii) it has finite gravitational energy EG

EG = − 1

8π

∫

(3)

G
(2)
ab ηaζ b d
(3), η = (1 − 2M/r)−1/2∂/∂t, ζ = ∂/∂t, (5)

where G
(2)
ab is the second-order correction to the Einstein tensor and 
(3) is the spacelike

hypersurface orthogonal to ηa (for details see [1, 2, 11]).
As shown below, the evolution of generic initial data with compact support away

from the singularity will excite these singular modes, which implies that the negative mass
Schwarzschild spacetime is linearly unstable. We first recall Zerilli’s approach to the linearized
problem, in order to exhibit the difficulties in dealing with the evolution of initial data for the
Schwarzschild spacetime in the negative mass case, and develop an alternative approach to
the linearized problem that allows us to overcome these problems.

2.1. Solution of the even mode linearized Einstein equations: Zerilli’s approach

The linearized Einstein’s equation for (1) gives a coupled system of partial differential
equations involving K,H1 and H2 [10]. This system can be decoupled by introducing the
Zerilli function �z(t, r), by the replacements [3],

K = q(r)�z +

(
1 − 2M

r

)
∂�z

∂r

H1 = h(r)
∂�z

∂t
+ r

∂2�z

∂t∂r
(6)

H2 = ∂

∂r

[(
1 − 2M

r

) (
h(r)�z + r

∂�

∂r

)]
− K,

where λ is defined in (4) and

q(r) = λ(λ + 1)r2 + 3λMr + 6M2

r2(λr + 3M)
,

h(r) = λr2 − 3λrM − 3M2

(r − 2M)(λr + 3M)
.

(7)

Note that relations (6) can be inverted and give

�z(r, t) = r(r − 2M)

(λ + 1)(λ r + 3M)

(
H2 − r

∂K

∂r

)
+

r

λ + 1
K. (8)

The full set of linearized Einstein’s equations then reduce to Zerilli’s wave equation

∂2�z

∂t2
+ H�z = 0, (9)

where

H = − ∂2

∂x2
+ V (10)

looks like a quantum Hamiltonian operator with potential

V = 2

(
1 − 2M

r

)
λ2r2 [(λ + 1)r + 3M] + 9M2(λr + M)

r3(λr + 3M)2
, (11)

and x is the ‘tortoise’ coordinate, related to r by

dx

dr
=

(
1 − 2M

r

)−1

. (12)
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Figure 1. The left panel shows the � = 2 Zerilli potential for M = 3 as a function of x. The black
hole horizon is located at x = −∞. Note that the potential is smooth and positive. The right panel
shows the � = 2 Zerilli potential for M = −2. The naked singularity is located at x = 0. The
‘kinematic’ double pole is at x � 0.761.

We will choose the integration constant such that x = 0 at r = 0, then

x = r + 2M ln

∣∣∣∣ r − 2M

2M

∣∣∣∣ . (13)

2.1.1. Case M > 0, stability of the Schwarzschild black hole exterior metric. For M > 0,
the exterior static region r > 2M of the Schwarzschild black hole gets mapped under (13) onto
−∞ < x < ∞, with the black hole horizon sitting at x = −∞. The potential V in Zerilli’s
equation is positive definite and behaves as V ∼ exp(x/(2M)) as x → −∞, V ∼ x−2 as
x → ∞ (see figure 1). Equation (8) indicates that a smooth metric perturbation with compact
support in the exterior region corresponds to a smooth Zerilli function in L2(R, dx). The fact
that �0

z := �z |(t=0,x) and �̇0
z := ∂/∂t�z |(t=0,x) can be freely chosen, together with (6), takes

proper account of the constraints among the initial data for H1,H2 and K. To solve the Zerilli
wave equation (9) from a given initial data

(
�0

z , �̇
0
z

) ∈ L2(R, dx) ⊗ L2(R, dx), we can use
that H is a self-adjoint operator in L2(R, dx) to expand �0

z and �̇0
z using a complete set ψE

of eigenfunctions of H (HψE = EψE). Equation (9) then reduces to the following ordinary
differential equations for aE(t) := ∫

ψE(x)∗�z(t, x) dx:

äE = −EaE,

ȧE(0) = ȧ0
E :=

∫
ψ∗

E�̇0
z dx, (14)

aE(0) = a0
E :=

∫
ψ∗

E�0
z dx,

whose solution is

aE(t) =

⎧⎪⎨
⎪⎩

a0
E cos(

√
Et) + ȧ0

EE−1/2 sin(
√

Et), E > 0

a0
E + t ȧ0

E, E = 0

a0
E cosh(

√−Et) + ȧ0
E(−E)−1/2 sinh(

√−Et), E < 0.

(15)

Since the Zerilli Hamiltonian H is positive definite, we can use the above equations to obtain
L2 bound for � at time t in terms of its data [12] as∫

|�|2 dx � 2

(∫
|�0|2 dx +

∫
�̇0H−1�̇0 dx

)
, (16)
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where the inverse of H is defined using its spectral decomposition. The detailed analysis in
[12] also gives the following uniform bound for the Zerilli function in terms of the initial
data:

|�z(t, x)|2 �
∫ (∣∣�0

z

∣∣2
+

1

2
�0

zH�0
z +

1

2

∣∣�̇0
z

∣∣2
+ �̇0H−1�̇0

)
dx. (17)

This proves that the exterior, static region of a Schwarzschild black hole is stable.

2.1.2. Case M < 0, stability of the Schwarzschild naked singularity. For M < 0 the range
of interest is r > 0 (then x > 0), and a number of difficulties arise due to the fact that q and
h in (7) are singular at r = rs := −3M/λ > 0, and that this point belongs to the domain of
interest. This implies that �z is singular at rs, as is also evident from equation (8). The kind
of singularity in �z is characterized in the following lemma.

Lemma 1. If M < 0, a metric perturbation is smooth if and only if its Zerilli function at any
fixed time is C∞ in open sets not containing rs, and admits a Laurent expansion

�z =
∑

j�−1

cj (r − rs)
j , c0 = λ2c−1

3M(3 + 2λ)
. (18)

If initial data �0
z and �̇0

z are given, both functions satisfying (18), the evolution equation will
preserve (18), i.e., this condition will hold at all times.

Proof. From (6) and (7), the metric perturbation will be smooth if and only if h(r)�z + r
∂�z

∂r

and q(r)�z + (1 − 2M/r)
∂�z

∂r
are smooth. Both conditions lead to (18), added to smoothness

in open sets not containing rs. A straightforward calculation shows that if ψ satisfies (18) then
so does Hψ . This guarantees that this condition will hold at later times if it is satisfied by the
initial data. �

In particular, Zerilli functions for smooth metric perturbations are generically not square
integrable (no matter which measure we use, either dx = dr/(1 − 2M/r) or dr) due to the
pole in (18). As an example, the smooth M < 0 metric perturbation (2) has the singular Zerilli
function

�unst
z = r (r − 2M)k

2λr + 6M
exp

[
k(t − r)

2|M|
]

=: exp

[
kt

2|M|
]

ψunst. (19)

Given that �z is a singular function of the metric perturbation, it is not a surprise that the
coefficients of the differential equation it obeys are singular. This explains the second-order
pole of the Zerilli potential at rs (and the name ‘kinematic’ given in [2] to this singularity.)
Note that the approach for solving Zerilli’s equation in the M > 0 case completely breaks
down when M < 0 since (i) �z �∈ L2((0,∞), dx) and (ii) V has the kinematic singularity.
In particular, the associated quantum-mechanical problem with Hamiltonian H and domain
x ∈ (0,∞) is not relevant in this case because of (i), as discussed in detail in section 7 of [2].
Furthermore, since (9) is a wave equation in the half space x > 0, we need to specify boundary
conditions at x = 0, besides the initial values of �0

z and �̇0
z , to have a unique solution. The

fact that the potential has a singularity at the boundary,

V � −1/(4x2) + · · · for x → 0+, (20)

implies that there is an infinite number of (formally, i.e., ignoring the kinematic singularity)
self-adjoint extensions of H := −∂2/∂x2 + V , parameterized by θ ∈ S1, obtained by

6
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demanding that the Zerilli function behaves as

�z � cos(θ)

[(
x

|M|
)1/2

+ · · ·
]

+ sin(θ)

[(
x

|M|
)1/2

ln

(
x

|M|
)

+ · · ·
]

(21)

for x � 0 (the terms in square brackets are the leading terms of two linearly independent local
solutions of the eigenvalue equation H� = E�,E shows up at higher orders). Note that both
linearly independent local solutions in (21) are square integrable near x = 0, the potential
belongs to the ‘limit circle class’ at x = 0 [14]. This issue was analyzed in detail in [1] (see
also [13, 14]) where it was concluded that θ = 0 is a physically motivated choice, since it
corresponds to finite energy perturbations with first-order contributions to the Kretschmann
invariant not diverging faster than its zeroth-order piece. These results were confirmed in [2],
where it was further shown that every algebraic and some of the differential invariants made
out of the Riemann tensor share this property with the Kretschmann invariant. Given that this
guarantees the self-consistency of the linearized treatment, we will be restricting our attention
to the case �z ∼ x1/2 from now on.

The question left open in [2] is how to evolve initial perturbation data in the M < 0 case,
since the H mode expansion technique used for M > 0 does not apply to the M < 0 case. In
the following section, we introduce a field �̂ which is smooth for smooth metric perturbation
and evolves according to a wave equation with a smooth potential for any sign of M, thus
providing a solution to the initial value problem in the negative mass case.

2.2. Solution of the even mode linearized Einstein equations: alternative approach

As explained above, the quantum-mechanical problem associated with H is not directly
relevant to the gravitational perturbation problem when M < 0. Zerilli’s function succeeds
in reducing the full set of linearized Einstein’s equations to a single wave equation, however,
for M < 0, this function is singular in the relevant r > 0 range. The ‘kinematic’
singularity at rs = −3M/λ in (8) indicates that physically acceptable Zerilli functions
have a simple pole at rs (lemma 1). Thus, even if H could be extended to a self-adjoint
operator in some subspace of L2(R, dx), this space would not be the natural setting for
physically acceptable gravitational perturbations, which, because of the kinematic singularity,
correspond, generically, to functions that are not square integrable.

In terms of the Zerilli function, the evolution problem in the negative mass case is given
data �0

z , �̇
0
z both satisfying the conditions in lemma 1, and vanishing as x1/2 when x → 0+ (i.e.

(21) with θ = 0), find �z for later times. The approach of solving this problem by separation
of variables in Zerilli’s wave equation and expanding by H modes fails. A satisfactory solution
to the evolution problem requires finding a new field �̂ that decouples the linearized equations
obeyed by K,H1 and H2 -as �z does-, and that is a smooth function of K,H1 and H2 for any
value of M. In this section, we show how this is done. We will state without proof our main
result (theorem below), and illustrate for the � = 2 mode, case in which the explicit formulae
are relatively simple. We will defer the proof of the theorem to section 4.

Theorem 1. Let ψ0 be the solution of Hψ0 = 0 given in equations (52) and (55). Define
g := ψ ′

0/ψ0 (a prime denotes derivative with respect to x) and the operators

I := ∂

∂x
− g, (22)

Î := ∂

∂x
+ g. (23)

7
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Let V be the potential in Zerilli’s equation. Then,

(i)

I
[

∂2

∂t2
− ∂2

∂x2
+ V

]
=

[
∂2

∂t2
− ∂2

∂x2
+ V̂

]
I

with V̂ = V − 2g′ smooth in the relevant domain (r > 2M if M > 0, r > 0 if M < 0).
(ii) For any value of M, a metric perturbation (1) with the Zerilli function �z is smooth if and

only if �̂ := I�z is smooth in the relevant domain.
(iii) For M < 0, V̂ � 3/(4x2) as x → 0+. As a consequence Ĥ := ∂2

∂x2 + V̂ (x) has a
unique self-adjoint extension in a domain D ⊂ L2((0,∞), dx), defined by the boundary
condition �̂ � x3/2 as x → 0+ (see [13, 14]). Moreover, for �z as in (21), I�z ∈ D if
and only if θ = 0. Thus, D is the set of physically relevant perturbation functions �̂.

(iv) Assume that M < 0 and that
(
�0

z , �̇
0
z

)
is an appropriate initial data set, i.e., it satisfies

the conditions in lemma 1 and the boundary condition θ = 0 in (21). Note from (iii) that
both I�0

z and I�̇0
z belong to D. Let �̂ be the unique solution in D for the wave equation[

∂2

∂t2 + Ĥ
]
�̂ = 0 on the half space x > 0, subject to the initial conditions �̂ |(t=0,x)= I�0

z

and ∂/∂t�̂ |(t=0,x)= I�̇0
z . This solution can be obtained by Ĥ mode expansion as is done

in equations (14) and (15). The Zerilli field at all times is then given by

�z(t, x) =
∫ t

0

(∫ t ′

0
Î�̂(t ′′, x) dt ′′

)
dt ′ + t�̇0

z + �0
z . (24)

Let us clarify some aspects related to the above theorem. Generically, �z has a pole at
rs (lemma 1), and so does g, then the operators I and Î are singular. The singularities cancel
in such a way that �̂ := I�z is smooth in the domain of interest, that is, I removes the
singularity in �z. In the same way, −2g subtracts the pole in V to produce a smooth V̂ . As an
example, for � = 2 we have [1]

ψ0 = r(r3 + 3Mr2 − 6M3)

8M4(3M + 2r)
(25)

and thus

V̂ = 6(r − 2M)(2r7 + 5Mr6 − 9M2r5 − 33M3r4 − 24M4r3 + 36M5r2 + 36M6r − 36M7)

r4(r3 + 3Mr2 − 6M3)2
,

(26)

whose only singular point lies at r � 1.2M , which is outside the domain of interest both for
positive or negative M. The � = 2 unstable mode (19) for M < 0 becomes

�̂unst = e2(t−r)/|M| r3 (r − 2M)4

4r3 + 12Mr2 + 24M3
=: e2t/|M|ψ̂unst, (27)

which is also C∞ in the domain of interest. In figure 2, we exhibit V̂ for � = 2 and M = 3
(left), and V̂ for � = 2 and M = −2, superposed with the unstable mode ψ̂unst (right).

Since the Einstein’s linearized equations reduce to the single equation[
∂2

∂t2
+ Ĥ

]
�̂ = 0, �̂ ∈ D (28)

and Ĥ is self-adjoint in D, we can then solve this equation by Ĥ-mode expansion, in the same
way as is done with �z when M > 0. This gives an answer to the issue of evolution in the non
globally hyperbolic spacetime in a way entirely analogous to that developed in [15], the only

8
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Figure 2. The left panel shows the potential V̂ , for � = 2 and positive mass M = 3, as a function
of x. The black hole horizon is located at x = −∞. The right panel shows V̂ for � = 2 and
M = −2 (solid line), and the unstable mode ψ̂unst given (27) (dotted line). This mode satisfies
Ĥψ̂unst = −ψ̂unst.

difference being that the radial part of the equations dealt with in [15] is positive, essentially
self-adjoint operators. Note that we can work entirely in ‘�̂-space’ with no reference to the
Zerilli function (as will be done in the following section), and that our alternative formulation
also works in the positive mass case. The usefulness of equation (24) lies in the simpler
connection that is between the Zerilli field and the perturbed metric elements H1,H2 and K,
equations (6). If we want to construct the perturbed metric elements from �̂, the shortest way
seems to be inserting (24) in (6). Note that (24) is not an evolution equation. It just tells us
how to recover the information lost after applying ÎI to the Zerilli function (see section 4).
In fact, we need to solve first the evolution problem for �̂(t, x), and then use the solution
�̂(t, x) in the integrand in (24) to obtain the corresponding solution for �z(t, x).

Corollary 1. The negative mass Schwarzschild solution is unstable.

Proof. The spectrum of the operator Ĥ in D contains the negative eigenvalue −k2 (k given in
(3)), with eigenvector ψ̂unst = CIψunst, where ψunst is given in (19) and C is a normalization
constant. Let a0

−k2 and ȧ0
−k2 be the projections of �̂0 and ˙̂�0 onto this mode, (see equation (14)),

then from (14) and (15) applied to (28) we obtain

�̂(t, x) =
[
a0

−k2 cosh(kt) +
ȧ0

−k2

k
sinh(kt)

]
ψ̂unst(x) + �(t, x), (29)

where �(t, x) is a linear combination of modes ψE , with E �= −k2. Since the above
decomposition is orthogonal

∫ ∞

0
|�̂|2 dx >

[
a0

−k2 cosh(kt) +
ȧ0

−k2

k
sinh(kt)

]2

and thus exponentially growing for large t. �

Numerical evidence indicates that ψ̂unst is the only negative eigenvalue of Ĥ. If this is the
case, then � is bounded and uniformly bounded in a similar way as the positive mass Zerilli
function is, equations (16) and (17).
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Figure 3. Left: evolution of initial data centered at r = 2, with a strong projection onto the
unstable mode. Right: time evolved unstable mode component for this data.

3. Numerical integration of the evolution equations

Numerical integrations of the wave equation[
∂2

∂t2
− ∂2

∂x2
− V̂

]
�̂ = 0 (30)

subject to the boundary condition �̂ � x3/2 as x → 0+ were carried out for � = 2,M = −1
using the Maple built in integrator for partial differential equations, working in the standard
radial coordinate. The boundary condition at r = 0 was enforced by imposing Robin type
boundary conditions in the form 3�̂ − ∂�̂/∂r = 0 at r = 10−4. We also set �̂ = 0 at r = 10
and restricted the initial data and evolution time so that this condition is trivially satisfied. In
all cases we set ˙̂�0 = 0 for simplicity. We evolved different �̂0 initial data sets to see how the
unstable (19) mode gets excited, and the resulting numerical solution �̂ was contrasted with
its expected projection a0

−k2 cosh(kt)ψ̂unst(x) onto the unstable mode.
In the case of figure 3, �̂0 = exp(−10(r − 2)2)�(r − 0.0002),� a step function. If

normalized, this function gives a projection a0
−k2 � 0.79 onto the unstable mode. The unstable

mode dominates for t � 1.6, and it is noticeable from t = 0. The evolution of two stable wave
packets moving oppositely is also evident in the plot.

The left panel in figure 4 shows the evolution up to t = 2.7 of the data �̂0 =
exp(−10(r − 4)2)�(r − 0.0002), ˙̂�0 = 0, which has a milder projection onto the unstable
mode (a0

−k2 � 0.07 when normalized). The right panel contrasts �̂(t = 0, r), �̂(t = 3, r)

and the unstable mode properly scaled by the cosh(6) factor. Note that the unstable mode is
noticeable starting at t � 1.5.

To have a smaller overlap with the unstable mode we use �̂(t = 0, r) = − exp(−10(r −
4)2)�(r − 0.0002) sin(10(r − 4)) (figure 5, left panel). The graph may mistakenly (see
equation (29)) suggest that the unstable mode is not excited before the ingoing wave packet
reaches the singularity. The right panel in this figure exhibits the evolution of the projection
of the initial data onto the unstable mode. This mode is initially highly suppressed because
a0

−k2 � 6 × 10−3.
Finally, the left panel in figure 6 exhibits the evolution of data which is almost orthogonal(

a0
−k2 � −2 × 10−10, ȧ0

−k2 = 0
)

to the unstable mode. The excitation of the unstable mode
reaches an amplitude ∼2 × 10−8 and so is unnoticeable in the displayed time range. The right
panel of the figure shows the initial data (dotted line), the result of the evolution at t = 1 (thin
solid line) and the evolved data at t = 3 (thick solid line).
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Figure 4. Left: evolution of initial data centered at r = 4. Right: �̂ at t = 0 (thick solid line),
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4. Proof of the theorem

The alternative �̂ to the Zerilli field as a means of describing the even modes of linear
gravitational perturbations is suggested by the ‘intertwining’ potential technique in quantum
mechanics [8], whose original motivation is that of replacing a one-dimensional quantum-
mechanical Hamiltonian with another Hamiltonian having a more elementary potential. We
have actually used an intertwiner to replace a potential with a singularity at rs with one free of
such singularity, with the added benefit that the resulting Hamiltonian has a unique self-adjoint
extension that happens to agree with the boundary condition at r = 0 that is natural to the
problem! Intertwiners appear also the context of supersymmetric quantum mechanics [9],
pairs of supersymmetric Hamiltonians being related by an intertwiner constructed using a zero
energy wavefunction.

4.1. Intertwining operators

Consider a two-dimensional wave equation with a space dependent potential V[
∂2

∂t2
− ∂2

∂x2
+ V (x)

]
� = 0, (31)

and a linear operator I = ∂
∂x

− g(x) such that [8]

I
[
− ∂2

∂x2
+ V (x)

]
=

[
− ∂2

∂x2
+ V̂ (x)

]
I (32)

for some potential V̂ (x). Since I commutes with ∂/∂t , any solution � of (31) gives a—
possibly trivial—solution �̂ := I� for the equation[

∂2

∂t2
− ∂2

∂x2
+ V̂ (x)

]
�̂ = 0. (33)

Separation of variables � = exp(iωt)ψ(x) (�̂ = exp(iωt)ψ̂(x)) reduces (31) and (33) to
Schrödinger-like equations

Hψ =
[
− ∂2

∂x2
+ V (x)

]
ψ = ω2ψ, (34)

Ĥψ̂ =
[
− ∂2

∂x2
+ V̂ (x)

]
ψ̂ = ω2ψ̂. (35)

If we do not specify boundary conditions, there will be two linearly independent solutions of
(34) for any chosen complex ω. Let us denote any two such solutions as ψ

(j)
ω , j = 1, 2. Note

from (32) that Iψ
(j)
ω are (possibly trivial) solutions of (35).

The conditions for the existence of an intertwining operator can be obtained by applying
(32) to an arbitrary function ψ , and then isolating terms in ψ and ψ ′ := ∂ψ/∂x (the higher
derivative terms cancel out). The coefficient of ψ ′ gives

V̂ = V − 2g′. (36)

Adding the condition from the ψ coefficient gives (g′ + g2 − V )′ = 0, i.e. g′ + g2 = V − ω2
o

for some constant ωo. This last condition is more transparent if written in terms of
ψωo

:= exp
( ∫ x

g(x ′) dx ′), which satisfies ψ ′
ωo

/ψωo
= g and[

− ∂2

∂x2
+ V

]
ψωo

= ω2
oψωo

. (37)

From this follows [8],

12
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Lemma 2. From any solution to (37) it is possible to construct an intertwining operator
I = ∂

∂x
− g(x) by choosing g = ψ ′

ωo
/ψωo

. This gives V̂ = V − 2g′ in (32).

Lemma 2 collects the results we need from [8], but we need to elaborate further on these
results to get some information about the possible ways to invert the effect of I. To fix
the notation, let ψ

(j=1)
ωo

= ψωo
, and ψ

(j=2)
ωo

be a linearly independent solutions to (37). The
kernel of I is the span of ψ

(j=1)
ωo

, since 0 = Iψ = ψ ′ − ψ
(j=1)′
ωo

/
ψ

(j=1)
ωo

ψ implies that ψ is

proportional to ψ
(j=1)
ωo

. The form of an intertwiner Î = ∂
∂x

− h(x) satisfying

Î
[
− ∂2

∂x2
+ V̂ (x)

]
=

[
− ∂2

∂x2
+ V (x)

]
Î (38)

can be guessed from lemma 2 by noting that since V̂ − 2h′ = V = V̂ + 2g′, the only
possible way back to V is that H

(
1
/
ψ

(j=1)
ωo

) ∝ (
1
/
ψ

(j=1)
ωo

)
. That this is actually the case

can be checked by a direct calculation using our previous results, from where we obtain
Ĥ

(
1
/
ψ

(j=1)
ωo

) = ω2
o

/
ψ

(j=1)
ωo

. We will set ψ̂
(j=2)
ωo

:= 1
/
ψ

(j=1)
ωo

and choose ψ̂
(j=1)
ωo

such that

Î ψ̂
(j=1)
ωo

= ψ
(j=1)
ωo

. It follows that Î := ∂
∂x

+g(x) satisfies (38), and a simple calculation shows
that ÎIψ = (

ω2
o − H

)
ψ , i.e., the non-trivial kernels of I and Î combine in such a way that

the kernel of ÎI is the two-dimensional ω2
o eigenspace of H. Note that we have shown that

we can label the solutions to (37) and its hat version as such that

ψ(j=1)
ωo

= Î ψ̂ (j=1)
ωo

,

Iψ(j=2)
ωo

= ψ̂(j=2)
ωo

= 1
/
ψ(j=1)

ωo
, (39)

Iψ(j=1)
ωo

= Î ψ̂ (j=2)
ωo

= 0.

We have proved the following.

Lemma 3. The kernel of I = ∂
∂x

− ψ
(j=1)′
ωo

/
ψ

(j=1)
ωo

is the subspace spanned by ψ
(j=1)
ωo

. If

Î = ∂/∂x + ψ
(j=1)′
ωo

/
ψ

(j=1)
ωo

, then (38) holds, also

ÎI = (ω2
o − H), (40)

and the solutions of Hψω = ω2ψω and Ĥψ̂ω = ω2ψ̂ω can be labeled such that equations (39)
hold.

In the supersymmetric quantum mechanics context, ωo = 0 and ψ
(j=1)
ωo

satisfies
appropriate boundary conditions to make it an eigenfunction of H. Moreover, it corresponds
to the lowest eigenvalue of H. In this case, H and Ĥ are isospectral, except for ω2

o = 0, which
is missing in the spectrum of Ĥ. Equations (39) then lead to the situation depicted in figure 2.1
in [9]. In the above construction, however, we do not require any specific boundary condition
on the function ψ

(j=1)
ωo

used to construct the intertwining operator.
The intertwining operator (32) will be useful whenever V̂ is simpler than V. However,

information is lost when solving (33) instead of (31), and we need to know how to recover it.
This problem is addressed in the lemma below.

Lemma 4. Assume �(t, x) satisfies the wave equation (31) with initial conditions �(0, x) =:
�0(x) and ∂�/∂t (0, x) =: �̇0(x). Let �̂ := I�, �̂0 := I�0 and ˙̂�0 := I�̇0(x), then

(i) �̂ satisfies the wave equation (33) with initial conditions �̂(0, x) = �̂0 and
∂�̂/∂t (0, x) = ˙̂�0.
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(ii) If ωo �= 0, �(t, x) can be obtained from �̂(t, x) by means of

�(t, x) = cos(ωot)�̂
0 +

sin(ωot)

ωo

˙̂�0 +
1

wo

(
sin(ωot)

∫ t

0
cos(ωot

′)Î�̂(t ′, x) dt ′

− cos(ωot)

∫ t

0
sin(ωot

′)Î�̂(t ′, x) dt ′
)

. (41)

For ωo = 0 we have

�(t, x) =
∫ t

0

(∫ t ′

0
Î�̂(t ′′, x) dt ′′

)
dt ′ + t ˙̂�0 + �̂0 (42)

Proof. (i) is trivial. To prove (ii) note from lemma 3, equation (40), that

Î�̂ = ÎI� = (
ω2

o − H
)
� = (

ω2
o + ∂2/∂t2)�, (43)

where we have used that � satisfies (31) in the last equality. The solution to (43), regarded as
a differential equation in t on �, is

�(t, x) = cos(ωot)F (x) + sin(ωot)K(x) +
1

wo

×
(

sin(ωot)

∫ t

0
cos(ωot

′)Î�̂(t ′x) dt ′ − cos(ωot)

∫ t

0
sin(ωot

′)Î�̂(t ′x) dt ′
)

(44)

if ω2
0 �= 0, and

�(t, x) =
∫ t

0

(∫ t ′

0
Î�̂(t ′′, x) dt ′′

)
dt ′ + tR(x) + Q(x) (45)

if ωo = 0. The unknown functions of x, F and K (Q and R) are ‘integration constants’
of (43), they contain the information about � that we have lost when applying ÎI.
Fortunately, this information is just the initial conditions, since it can readily be seen that
F(x) = �(0, x) = �0(x) and ωoK(x) = ∂�/∂t (0, x) = �̇0(x) (Q(x) = �(0, x) =
�0(x), R(x) = ∂�/∂t (0, x) = �̇0(x)). This gives (41) from (44), and (42) from (45). �

4.2. Intertwining operator for the negative mass Zerilli equation

Let H be the Zerilli Hamiltonian, and assume an intertwiner is constructed using a solution of
Hψω = ω2ψω. Since generic solutions of this equation behave as (18) (lemma 2 in [2]), there
is a chance that the transformed potential (36) be nonsingular at rs, the singularity of V being
removed by −2g′, and this may well be a consequence of

�̂ = � ′
z − ψ ′

ω

ψω

�z (46)

being a smooth function of the perturbed metric. All these expectations turn out to be right, at
least, if we use the generalization to arbitrary harmonic number � of the solution of

Hψ0 = 0 (47)

found in [1] for � = 2. We will first prove the smoothness of V̂ , then that of �̂.

14
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4.2.1. Smoothness of V̂ . Given V of the form (11), M < 0, the transformed potential is

V̂ = V − 2(ψ ′
0/ψ0)

′. (48)

Let us first consider the behavior of V̂ at the kinematic singularity r = rs . Using the fact that
ψ0 is a solution to (47), and turning to r (instead of x) derivatives, we find

V̂ = 2(r − 2M)2

r2ψ2
0

(
dψ0

dr

)2

− V (r). (49)

Now, if ψ(r) is any solution to (47),

ψ(r) = a0(r − rs)
−1 +

a0(� + 2)2(� − 1)2

12M(�2 + � + 1)
+ a3(r − rs)

2 + O((r − rs)
3) (50)

where a0 and a3 are arbitrary constants. Replacing in (49), assuming a0 �= 0, and expanding
in powers of (r − rs), we find

V̂ = (�2 + � + 2)(� + 2)3(� − 1)3

216M2

+

[
(�2 + � + 1)(� + 2)4(� − 1)4

648M3
− 4(�2 + � + 1)2a3

3a0

]
(r − rs) + O((r − rs)

2) (51)

which shows that V̂ is smooth for r = rs , provided a0 �= 0 (if a0 = 0, V̂ has a second-order
pole at rs.) We consider therefore, ψ0 of the form,

ψ0 = χ(r)

6M + r(� + 2)(� − 1)
(52)

with χ smooth in r � 0. Replacing (52) in (47), we find that χ satisfies

d2χ

dr2
+

[6M2 + 2rλ(3M − r)]

r(r − 2M)(3M + λr)

dχ

dr
− [6M2 + 2rλ(3M + λr)]

r2(r − 2M)(3M + λr)
χ = 0, (53)

then

V̂ = 2(r − 2M)2

r2χ2

(
dχ

dr

)2

− 4(r − 2M)2λ

r2(3M + λr)χ

dχ

dr
− (r − 2M)(6M2 + λr(2λr + 4M))

r4(3M + λr)
(54)

is smooth at r = rs if χ is smooth. The only remaining possible singularities for r > 0 would
correspond to the zeros of χ for r > 0, since V is smooth except at rs. It turns out that (53)
admits, for every � � 2, a polynomial solution of the form,

χ(r) =
�+2∑
n=1

(n − 2) [(n − 4)�(� + 1) + n − 1] �(� + n − 1)

2n�(n)2�(� − n + 3)(−M)n
rn, (55)

which, for � = 2 reduces to the solution (25) found in [1],

χ(r) = − 3r

2M
+

3r3

4M3
+

r4

4M4
(56)

which is positive for M < 0 and r > 0. Similarly, for M < 0, and � � 3 we have

χ(r) = r

|M|
[

3

2
− �(� + 2)(�2 − 1)

32

r2

|M|2 +
�(� + 2)(�2 − 1)

96

r3

|M|3

+
�(�2 + � + 4)(� + 3)(�2 − 4)(�2 − 1)

6144

r4

|M|4 + · · ·
]

(57)

where all the remaining terms, indicated by dots, are non-negative for r > 0. The fourth-
degree polynomial given explicitly between the brackets in (57) is positive for r = 0 and for
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sufficiently large r. Therefore, it can only have a zero if its derivative vanishes at least at one
point for r > 0. One can check that for r > 0 there is only one root given by

r0 = 4|M|(
√

6�(�2 − 1)(� + 2) − 108 − 6)

(� − 2)(� + 3)(�2 + � + 4)
. (58)

This must correspond to a minimum of the polynomial in r > 0. Replacing r = r0 in (57) we
find

χ(r0) � 16(ρ − 6)((�3 − �)(� + 2) − 18)((�3 − �)(� + 2)(ρ − 18) + 288)

(�2 + � + 4)4(� − 2)4(� + 3)4
(59)

where ρ =
√

6�(�2 − 1)(� + 2) − 108. The right-hand side of (59) is positive for � � 3. We
conclude that χ(r) > 0 for r > 0. This completes the proof of the smoothness of V̂ . The
explicit form of V̂ as a function of r for generic � > 2 is very complicated but, fortunately, it
is not required for the rest of our analysis. In any case, it is possible to obtain several features
of V̂ directly from (54). First, since χ is a polynomial of degree � + 2, we find that for large r,

V̂ = (� + 2)(� + 1)

r2
+ O(r−3) > 0. (60)

Also, from (55), for r → 0 we have, in general

V̂ = 12M2r−4 − 2M(�2 + � + 3)r−3 + O(r−2) = 3

4x2
+

�2 + � − 1

4|M|1/2x3/2
− �(� + 1)

4|M|x + O(x−1/2).

(61)

Thus, the general local solution of the differential equation Ĥψ̂E = Eψ̂E , for x → 0+ is of
the form

ψ̂E = a0(x
3/2 + · · ·) + b0(x

−1/2 + · · ·), (62)

which is not square integrable near x = 0 unless b0 = 0. This last condition can easily be
checked to correspond precisely to the θ = 0 boundary condition for the local solutions of
H� ∝ � in (21).

4.2.2. Smoothness of ψ̂ . We need only check smoothness at rs, and this follows from
equations (49) and (18), which imply that ψ̂ = Iψz admits a Taylor expansion around r = rs .
Of particular relevance is the transformed of Iψunst which, from the above results, belongs to
D and thus is a negative energy eigenfunction of Ĥ, which, therefore, has, at least, one bound
state. This, by the way, implies that V̂ must have a region where it takes negative values, as
can be explicitly checked for particular values of �, and is illustrated in figure 2 (right panel).

4.3. Intertwining operator for the positive mass Zerilli equation

4.3.1. Smoothness of V̂ . The intertwining transformation is equally applicable when M > 0.
One can check that equations (49) and (52)–(55) are still valid if M > 0. From (54) we see
that for r � 2M , the only possible singularities of V̂ correspond to zeros of χ(r), then we
need to prove that χ(r) has no zeros in r � 2M . This can be seen as follows: first we note that
near r = 2M , (53) has only one regular solution, and this must correspond to the polynomial
solution (55). Expanding this solution in powers of (r − 2M) we find

χ(r) = a0 +
(4λ2 + 6λ + 3)a0

2(2λ + 3)M
(r − 2M) +

λ(λ + 1)a0

4M2
(r − 2M)2 + O((r − 2M)3), (63)

where a0 is a constant. This implies that χ and dχ/dr are both non-vanishing and have the
same sign and, therefore, χ is increasing if χ(r = 2M) > 0, decreasing if χ(r = 2M) < 0.
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Then, in order to have a zero for r > 2M , there must be a point where dχ/dr = 0. But from
(54) we note that for r > 2M , at any point where dχ/dr = 0 we must have χ , and d2χ/dr2

with the same sign, namely, this corresponds to a minimum for positive χ and a maximum
for negative χ . But since, e.g., for χ(r = 2M) > 0, the function is already increasing, and
the condition dχ/dr = 0 cannot be satisfied for r > 2M , implying that χ(r) has no zeros for
r � 2M , and similarly for χ(r = 2M) < 0. Thus V̂ (r) is regular for r � 2M , it vanishes as
(r − 2M) for r → 2M (see (54)), and as 1/r(�+2)(�+1) for large r. In this respect, it is similar
to the Zerilli potential V (r). One can see, however, that V̂ (r) is not positive definite, (see
figure 2, left panel for an example), making the proof of the stability of the exterior region of
a Schwarzschild black hole more complicated in the context of the �̂ formulation.

4.3.2. Smoothness of �̂. The proof for M < 0 holds also for positive mass.

4.4. Proof of the theorem

Parts (i), (ii) and (iii) of the theorem were proved in the two previous subsections. Part (iv)
follows from lemma 4 and a uniqueness argument: since there is a unique solution in D of
the equation Ĥ�̂ = 0 with initial condition (�̂0, ˙̂�0) ∈ D × D, and I�z is such a solution if
�z solves Zerilli’s equation with initial data (�0, �̇0) and boundary condition �z � x1/2 for
x � 0, it must be �̂ = I�z, then part (iv) follows from lemma 4 and the fact that ωo = 0 for
the intertwiner I that we use.

5. Summary

The propagation of gravitational perturbations on a negative mass Schwarzschild background
is a subtle problem for two reasons. First, this space is not globally hyperbolic. As a
consequence, the perturbation equations can be reduced to a single 1 + 1 wave equation with
a space-dependent potential for the so-called Zerilli function, restricted to a semi-infinite
domain x > 0, (t, x) being standard inertial coordinates on two-dimensional Minkowski
space, x = 0 the position of the singularity. This implies that a physically motivated choice
of boundary conditions at x = 0 is required. There is a unique choice dictated simultaneously
by two conditions [1, 2]: (i) that the linearized regime be valid in the whole domain, and, in
particular, that the invariants made out of the Riemman tensor behave such that their first-order
piece does not diverge faster than their zeroth-order piece as the singularity is approached;
(ii) that the energy of the perturbation, as measured using the second-order correction to the
Einstein tensor [1] be finite. The second problematic issue with the standard approach is not
essential, but related to a choice of variables: the Zerilli function �z is a singular function
of the first-order metric coefficients. As a consequence, the wave equation it obeys has a
potential with a ‘kinematic’ singularity, and it is not clear how to evolve initial data, since
the usual approach of separation of variables leading to a well-behaved quantum Hamiltonian
operator for the x coordinate breaks down.

We have introduced an alternative diagonalization of the linearized even mode Einstein’s
equation around a Schwarzschild spacetime, using a field �̂ which is smooth for regular
metric perturbations, regardless the sign of the mass M. This field obeys a wave equation
with a smooth potential that can be solved by separation of variables. Moreover, the spatial
piece of the modified wave equation has a unique self-adjoint extension that naturally selects
the boundary condition that is physically relevant. The connection between the two fields is
provided by an intertwining operator, �̂ = �z − ψ ′

0/ψ0�z =: I�z, similar to the operators
linking supersymmetric pairs of quantum Hamiltonians. We have also shown that, in spite
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of the fact that I has a non-trivial kernel, it is possible to evolve the perturbation equations
using, at two different steps, the initial condition for the Zerilli function. A straightforward
application of this formalism allows us to show that the unstable mode found in [2] can actually
be excited by initial data compactly supported away from the singularity. This closes a gap in
our proof in [2] of the linear instability of the negative mass Schwarzschild spacetime.
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