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A proof is given that the space L of solutions of the linearized vacuum Einstein equation around a
Schwarzschild black hole is parametrized by two scalar fields, which are gauge invariant combinations of
perturbed algebraic and differential invariants of the Weyl tensor and encode the information on the odd (−)
and even (þ) sectors L�. These fields measure the distortion of the geometry caused by a generic
perturbation and are shown to be pointwise bounded on the outer region r ≥ 2M.
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Introduction.—The formation of black holes in gravita-
tional collapse is a fascinating prediction of Einstein’s
general relativity, which is backed by growing astrophysi-
cal evidence of their existence and abundance in the
Universe. The mathematical modeling of these objects,
however, is a field where a number of crucial problems are
still open, the most salient ones being ruling out the
alternative of formation of a naked singularity in gravita-
tional collapse, that is, establishing the validity of some
form of Penrose’s cosmic censorship conjecture, and
proving the stability and, thus, the physical relevance, of
the known general relativity black hole solutions. Although
the first such solution was found by Karl Schwarzschild a
few months after Einstein’s field equations were published,
its stability under perturbations has not yet been fully
established. Even the proof of the linear stability of the
Schwarzschild black hole remains incomplete, as only its
modal linear stability, defined as the boundedness of the
potentials that generate isolated harmonic modes, has been
proved. In this Letter, we show that the geometric
information of the most general linear perturbation is
encoded in two spacetime scalar fields Φ� made from
perturbed curvature invariants. These fields measure the
distortion of the geometry and are shown to be pointwise
bounded. Besides giving a definite answer to the problem
of the linear stability of the Schwarzschild black hole, the
techniques we introduce are likely to apply to the rotating
Kerr black hole [1].
The linearized Einstein’s equation (LEE) describes the

propagation of a perturbation δgαβ of the metric as a wave
on the background spacetime (M, gαβ)

∇γ∇γδgαβ þ∇α∇βðgγδδgγδÞ − 2∇γ∇ðαδgβÞγ ¼ 0: (1)

Trivial solutions of this equations are obtained by relabel-
ing the points of M by means of an infinitesimal diffeo-
morphism Vα, under which

gαβ → gαβ þ £Vgαβ ¼ gαβ þ∇αVβ þ∇βVα: (2)

Two solutions of Eq. (1) that differ by £Vgαβ ¼ ∇αVβ þ∇βVα are, therefore, physically equivalent; this is the gauge
invariance of linearized gravity. The problem of linear
stability of a stationary vacuum metric gαβ is that of finding
out whether the effects on the geometry of a solution of
Eq. (1) are bounded by the initial data of the wave or not.
The study of the linear stability of a Schwarzschild black

hole M has a long history that dates back to the 1957
pioneering work of Regge and Wheeler [2], where the
spherical symmetry of the background was used to split the
metric perturbation into what were termed even (þ) and
odd (−) modes of harmonic numbers (l, m). Since these
modes do not mix at the linear level, pure modes are
analyzed. A master variable ϕ�

ðl;mÞ defined on the (t, r)
space [the orbit space M=SOð3Þ] is extracted for single
modes, and the LEE is reduced to a two-dimensional scalar
wave equation on the orbit space

∂2ϕ�
ðl;mÞ

∂t2 þH�
lϕ

�
ðl;mÞ ¼ 0; H�

l ≡ −
∂2

∂x2 þ fU�
l (3)

where f ¼ 1 − 2M=r and x is a “tortoise” radial coordinate,
defined by dx=dr ¼ 1=f. For the oddmodes Eq. (3), known
as the Regge-Wheeler equation, was worked out in Ref. [2],
and the potential is

U−
l ¼

�
lðlþ 1Þ

r2
−
6M
r3

�
: (4)

The more intricate system of even perturbations was sim-
plified to the form of Eq. (3) by Zerilli in 1970 [3]; the
potential for these modes is

Uþ
l ¼ μ2r2½ðμ2 þ 2Þrþ 6M� þ 36M2ðμ2rþ 2MÞ

r3ðμ2rþ 6MÞ2 ; (5)

where μ2 ¼ ðlþ 2Þðl − 1Þ. Note that V�
l ≡ fU�

l are
positive and go to zero at both the x → −∞ (black hole
horizon) and x → ∞ (spacelike infinity) limits; thus,H�

l in
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Eq. (3) is formally equivalent to a positive definite quantum
Hamiltonian acting on the space of square integrable
functions of x. The gauge invariance of ϕ�

ðl;mÞ was proved
by Moncrief in Ref. [4]; Sengupta and Gerlach [5] showed
how to recast theRegge-Wheeler equations and their relation
to oddmetric perturbations as covariant equations in the two-
dimensional orbit space (for a quick review, see Section II of
Ref. [6], where the even sector is worked out). If wewrite the
Schwarzschild metric as [5]

gαβdzαdzβ ¼ gabdxadxb þ r2ðxÞĝijdyidyj; (6)

where ĝijdyidyj ¼ dθ2 þ sin2θdϕ2 is the metric on the unit
sphere and gabdxadxb is the Lorentzian metric on the orbit
space [given by −ð1 − 2M=rÞdt2 þ dr2=ð1 − 2M=rÞ in
Schwarzschild coordinates] and let gab, Db, ϵab be the
inverse metric, covariant derivative, and volume form of
the orbit space and ĝij, D̂k, ϵ̂ij those of the unit sphere, then
the Regge-Wheeler and Zerilli equations (3) read

gabDaDbϕ
�
ðl;mÞ −U�

l ϕ
�
ðl;mÞ ¼ 0: (7)

To reconstruct the metric perturbation, a real orthonormal
basis of spherical harmonics Sðl;mÞ is used,

D̂iD̂iSðl;mÞ ¼ −lðlþ 1ÞSðl;mÞ: (8)

Odd l > 1 modes in the Regge-Wheeler gauge are

δgðl;m;−Þ
ai ¼ ½ϵacgcbDbðrϕ−

ðl;mÞÞ�½ϵ̂kiĝkjD̂jSðl;mÞ�; (9)

δgðl;m;−Þ
ab ¼ 0; δgðl;m;−Þ

ij ¼ 0 (10)

where ϕ−
ðl;mÞ is an arbitrary real solution of Eq. (7). For

l ¼ 1,

Jml ¼ ĝli½ϵ̂kiĝkjD̂jSðl;mÞ� (11)

is a basis ofKilling vectors on the sphere, tangent to rotations
around three orthogonal axes (e.g., J3 ¼ ∂=∂ϕ), and a gauge
can be found such that the only nonzero components of an

arbitrary linear combination of the δgð1;m;−Þ
ai in standard

coordinates are [see equation (11) in Ref. [6]]

δgð1;−Þti ¼ −r−1
X3
m¼1

δamJmi: (12)

This perturbation corresponds to turning on an infinitesimal
angular momentum in the direction δ~a ¼ ðδa1; δa2; δa3Þ.
The odd l ¼ 0mode is void, whereas the even l ¼ 0mode
amounts to a change of the black hole mass

δgð0;þÞ
tt ¼ 2δM

r
; δgð0;þÞ

rr ¼ 2δM
rð1 − 2M=rÞ2 : (13)

Even l ¼ 1 modes are pure gauge, whereas higher even
modes are involved expressions on (ϕþ

ðl;mÞ, Sðl;mÞ) that we
need not spell out here (see, e.g., Refs. [5,6]).
The Zerilli and Regge-Wheeler equations allow us to

analyze isolated modes and to establish a basic notion of
linear stability, based on the fact that they admit separable
solutions of the form ϕ ¼ eαtχðxÞ (we suppress indices for
simplicity). From Eq. (3), it can easily be shown that αmust
be purely imaginary, α ¼ iω, since α2χ ¼ −Hχ and H is
positive definite. Since the perturbation of any geometric
field is obtained by applying a linear differential operator to
δgαβ, it will also be oscillatory and, thus, bounded in time.
Exponential growth for nonseparable solutions of Eq. (3)
can be ruled out using the positive definite conserved
energy of Eq. (3). An integral bound of the formR jϕðl;mÞðt; xÞj2dx ≤ Cðl;mÞ was obtained in Ref. [7], where
the possibility of unbounded growth in narrowing intervals
was also ruled out by proving that a pointwise bound can be
placed on the ϕ�

ðl;mÞ

jϕ�
ðl;mÞj ≤ K�

ðl;mÞ; r > 2M; (14)

with K�
ðl;mÞ a constant obtained from the (l, m, �) piece of

the initial data.
Nonmodal stability.—The most general linear perturba-

tion of the Schwarzschild black hole is of the form

δgð1;−Þαβ ðδ~aÞ þ δgð0;þÞ
αβ ðδMÞ þ

X
m;P¼�
l≥2

δgðl;m;PÞ
αβ ½ϕ; S�: (15)

The first two terms in Eq. (15), given in Eqs. (12) and (13),
are deviations within the Kerr family and are time inde-
pendent: no dynamical process can lead to a change in mass
or angular momentum in the linear regime; these processes
show up at second order [8]. The series in Eq. (15), whose
completeness follows from the theorems in Section 2.3 of
Ref. [9], does not contribute to any of these charges and
encodes the dynamics of the perturbation. The ϕ�

ðl;mÞ are an
infinite set of potentials whose derivatives enter individual
terms in this series, and two extra derivatives must be taken
to calculate the perturbed Riemann tensor and analyze the
effects of the perturbation.
In order to evaluate whether a perturbation “grows big”

or not, we first need to parametrize the space L of solutions
of the LEE (1) with geometrically meaningful quantities.
For this purpose, it is important to understand how the
different modes in Eq. (15) behave under the action of the
symmetry group of the Schwarzschild metric. The iso-
metries of the background commute with the LEE, Eq. (1).
When applied to a linearized solution gαβ þ δgαβ, they keep
gαβ fixed while acting on δgαβ as linear operators in L. The
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isometry group of the Schwarzschild metric is
Rt × T × SOð3Þ × P, where Rt is the subgroup of time
translations, SOð3Þ are the proper rotations, and T and P
are the Z2 subgroups of time inversion T∶ðt; r; θ;ϕÞ →
ð−t; r; θ;ϕÞ and parity transformation P∶ðθ;ϕÞ → ðπ −
θ;ϕþ πÞ. The (l, m) labels are attached to modes
constructed from the Sðl;mÞ spherical harmonics and
their first and second derivatives. These derivatives are
the components of eigentensors of the Laplacian on the
sphere [9].
The “square angular momentum” operator

J2 ¼
X3
m¼1

ð£JmÞ2 (16)

acting on Eq. (9) gives

J2δgðl;m;�Þ
αβ ¼ −lðlþ 1Þδgðl;m;�Þ

αβ ; (17)

and if we used the standard spherical harmonics Yðl;mÞ
instead of a real basis, δgðl;m;�Þ

αβ would also be a (complex)
eigentensor of £J3 , with eigenvalue im. The meaning of
“even” and “odd” modes (introduced with quotes in the
original work [2]) is more obscure; it tells us whether the
perturbation behaves as a scalar field or not

P�δg
ðl;m;�Þ
αβ ¼ �ð−1Þlδgðl;m;�Þ

αβ : (18)

A more significant interpretation can be given, as we now
proceed to explain. For vacuum spacetimes, every algebraic
invariant of the Riemann tensor can be written as a
polynomial in four basic invariants

Q ¼ 1

48
ðCαβγδ þ iC�

αβγδÞCαβγδ ¼ Qþ þ iQ−;

C ¼ 1

96
ðCαβ

γδ þ iC�
αβ

γδÞCγδ
ϵμCϵμ

αβ ¼ Cþ þ iC−; (19)

where Cαβγδ is the Weyl tensor and C�
αβγδ ≔

1
2
ϵαβ

ϵμCϵμγδ is
its dual. Note that ϵαβγδ, the volume form of spacetime, is
odd under parity, P�ϵαβγδ ¼ −ϵαβγδ, and thatQ− and C− are
“pseudoscalar”; i.e., their construction requires the volume
form besides the metric, they are orientation dependent and
pick up an extra minus sign under P, their (l, m) piece
transforming as ð−1Þlþ1. For the Schwarzschild spacetime,

Q ¼ M2

r6
; C ¼ M3

r9
; (20)

the vanishing of the pseudoscalars being forced by the facts
that they must be odd under P but cannot depend on the
angular variables (since they must vanish under £Jk). In
addition to Q and C, differential invariants of the Weyl
tensor are required to fully characterize a vacuum metric,
the simplest one being

X ¼ 1

720
ð∇εCαβγδÞð∇εCαβγδÞ ¼ M2

r9
ðr − 2MÞ:

Under a perturbation, the first-order variation δI� of a
(pseudo) scalar invariant I� of the Weyl tensor (such as Q,
C, X, and Y above) is a linear functional of δgαβ that
commutes with all symmetries, and then

ð−1ÞlδIþ½δgðl;m;−Þ
αβ � ¼ PδIþ½δgðl;m;−Þ

αβ �
¼ δIþ½P�δg

ðl;m;−Þ
αβ �

¼ −ð−1ÞlδIþ½δgðl;m;−Þ
αβ �; (21)

which implies that δIþ½δgðl;m;−Þ
αβ � ¼ 0. Similarly,

δI−½δgðl;m;þÞ
αβ � must be zero. Thus, (odd) even perturbations

can be better characterized as those exciting perturbations
of curvature (pseudo) scalars.

If we calculate δQ−½δgðl;m;−Þ
αβ � from Eq. (15), we get a

rather complicated expression which simplifies if we make
use of the LEE together with their derivatives, leaving a
strikingly simple expression

δQ− ¼ −6M2

r7
Sð1;mÞδam þ 3M

r6
X
l>1;m

ðlþ 2Þ!
ðl − 2Þ! ϕ

−
ðl;mÞSðl;mÞ:

(22)

The above equation shows that the local curvature pseu-
doscalar δQ− encodes all the information carried by the
most general odd perturbation, as the nonlocal quantities
δ~a and ϕ−

ðl;mÞ can be recovered by integrating δQ− against

Sðl;mÞ on the sphere. Moreover, Eq. (22) together with
Eqs. (7) and (8) implies that

Φ− ≡ r5

3M
δQ− (23)

satisfies a simple four-dimensional wave equation on the
Schwarzschild spacetime

�
∇α∇α þ 8M

r3

�
Φ ¼ 0; (24)

(Φ ¼ Φ−). This equation is also satisfied by the potential
Φo

− ¼ P
l≥2;mðϕ−

ðl;mÞ=rÞSðl;mÞ, in terms of which the

dynamical terms of the metric perturbation (9) can be
compactly written in a covariant way as

X
ðl>1;mÞ

δgðl;m;−Þ
αβ ¼ r2

3M
�Cα

γδ
β∇γ∇δðr3Φo

−Þ: (25)

Theorem: Nonmodal linear stability of the Schwarzschild
black hole (odd sector).—The space L− of solutions of the
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LEE around a Schwarzschild black hole mod gauge
transformations is parametrized by the gauge invariant
pseudoscalar field δQ−. For any perturbation with compact
support on Cauchy surfaces of the Kruskal extension,

jδQ−j < K−=r6; (26)

on the exterior wedge r ≥ 2M, with K− a constant that
depends on the perturbation data on a t slice.
Proof: The only thing that remains is to prove the bound

(26);Φ− satisfies Eq. (24) which, following Ref. [10] where
the Klein Gordon equation on the Schwarzschild back-
ground is studied, can be written as 0 ¼ ð∂2

t − ∂2
x þ

V1 − D̂kD̂kV2ÞðrΦÞ. We find from Eq. (4) that V1 ¼ −ð1 −
2M=rÞ6M=r3 and V2 ¼ ð1 − 2M=rÞ=r2 are both bounded
for r ≥ 2M; therefore, the proof in Appendix A of Ref. [10]
applies to Eq. (24) as well as the symmetry argument in the
main text and implies that jΦ−j < K0

−=r, fromwhereEq. (26)
follows.
Even perturbations are more difficult to deal with for two

reasons. (i) The dependence of Eq. (5) on l indicates that
the set of Zerilli functions ϕþ

ðl;mÞ is not directly related to

the harmonic components of a four-dimensional scalar field
and (ii) although the scalar invariant Qþ is excited by the
even modes, the excitations δQþ are not gauge invariant
because Qþ does not vanish in the background and, under
the gauge transformation (2),

δQþ → δQþ þ £VQþ ¼ δQþ þ Vr∂rQþ (27)

and similarly for Cþ. Problem (ii) is absent in the odd
sectorbecauseQ− ¼ 0 ¼ C−.To tackle it,wecouldsubstitute
δQþ with any gauge invariant combination of perturbed
scalars. However, when computing δQþ and δCþ in the
Regge-Wheeler (RW) gauge we find that δQþ=δCþ ¼
∂rCþ=∂rQþ, and this fact, together with Eq. (27), implies
that all such gauge invariants will vanish under a genuine
perturbation and so are useless. Thus, we need to incorporate
differential invariants, such as X in Eq. (21), which do not
satisfy simple equations. The simplest gauge invariant com-
bination of the enlarged set of perturbed scalars is

Φþ ¼ ð9M − 4rÞδQþ þ 3r3δX: (28)

Wewill use it tomeasure theeffect of evenperturbationson the
geometry. To deal with reason (i), we use the factorization
property [11]

H�
l ¼ A�

lA
∓
l − El

2; A�
l ¼ � ∂

∂xþWl; (29)

Wl ¼ El þ
6Mðr − 2MÞ

r2ððlþ 2Þðl − 1Þrþ 6MÞ ;

El ¼ 1

12M
ðlþ 2Þ!
ðl − 2Þ! : (30)

Thus, Aþϕ−
ðl;mÞ solves the even Eq. (3) if ϕ−

ðl;mÞ solves the
odd one. This suggest that we write even metric perturba-
tions using odd potentials through ϕþ

ðl;mÞ ¼ Aþϕ−
ðl;mÞ. A

lengthy calculation using the LEE then reduces Φþ in
Eq. (28) to

−
2MδM
r5

þ
X
3≤j≤7

Mj−3

rj
½M∂rΦð1;jÞ þM2∂2

tΦð2;jÞ þ Φð3;jÞ�;

Φðk;jÞ ¼
X

ðl≥2;mÞ
Pðk;jÞ

ϕ−
ðl;mÞ
r

Sðl;mÞ; 1 ≤ k ≤ 3; (31)

where Pðk;jÞ are polynomials in l.
Theorem: Nonmodal linear stability of the

Schwarzschild black hole (even sector).—The space Lþ
of solutions of the linearized Einstein equations around a
Schwarzschild black hole mod gauge transformations is
parametrized by the gauge invariant scalar field Φþ in
Eq. (28). For any perturbation with compact support on
Cauchy surfaces of the Kruskal extension,

jΦþj < Kþ=r3 (32)

on the exterior wedge r ≥ 2M, with Kþ a constant that
depends on the perturbation data on a t slice.
Proof: A generic even perturbation is parametrized by

the Zerilli potentials entering δgðl≥2;m;þÞ
αβ and δM [see

Eq. (15)]. In terms of these, using the LEE one finds

Φþ ¼−
2MδM
r5

þ M
2r4

X
l≥2

ðlþ 2Þ!
ðl− 2Þ! ½∂xþZlðxÞ�ϕþ

ðl;mÞSðl;mÞ;

Zl ¼
μrðr− 3MÞ− 6M2

r2ðμrþ 6MÞ ; μ¼ ðl− 1Þðlþ 2Þ: (33)

By expanding Φþ in spherical harmonics we get δM and
½∂x þ ZlðxÞ�ϕþ

ðl;mÞ, from where ϕþ
ðl;mÞ can be solved. The

parametrization of Lþ then follows. The alternative form
(31), obtained by replacingϕþ

ðl;mÞ ¼ Aþϕ−
ðl;mÞ in Eq. (33), is

used to prove Eq. (32). EveryΦðk;jÞ field in Eq. (31) and then
every ∂2

tΦðk;jÞ field satisfies the wave equation Eq. (24); its
absolute value is then bounded by a constant times r−1, and
its r derivative is bounded by a constant on the r ≥ 2M
region, as proved by a direct transcription of the results in
Section 3.6 of Ref. [12]. Then, Eq. (32) follows.
In conclusion, we have shown the following. (i) The

information on arbitrary metric perturbations is contained
inΦ� given in Eqs. (23) and (28). These are gauge invariant
curvature scalars that can be measured locally, unlike RW
and Zerilli potentials, which require integrations on the
sphere. (ii) For generic perturbations, the initial data places
a pointwise bound for Φ� in the outer region.

PRL 112, 191101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
16 MAY 2014

191101-4



I would like to thank Sergio Dain, Reinaldo Gleiser,
Jacek Jezierski, and Robert Wald for pointing out errors
in the first version of this manuscript. This work was
partially funded from Grants No. PICT-2010-1387, No. PIP
11220080102479, and No. Secyt-UNC 05/B498. The
GRTENSOR package (grtensor.org) was used to calculate
perturbed curvature invariants.

*gdotti@famaf.unc.edu.ar
[1] B. Araneda and G. Dotti (to be published).
[2] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
[3] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).
[4] V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974).

[5] U. H. Gerlach and U. K. Sengupta, Phys. Rev. D 19, 2268
(1979).

[6] O. Sarbach and M. Tiglio, Phys. Rev. D 64, 084016 (2001).
[7] R. M. Wald, J. Math. Phys. (N.Y.) 20, 1056 (1979); 21,

218(E) (1980).
[8] R. J. Gleiser, Classical Quantum Gravity 14, 1911 (1997);

G. Khanna, R. Gleiser, R. Price, and J. Pullin, New J. Phys.
2, 3 (2000).

[9] A. Ishibashi and H. Kodama, Prog. Theor. Phys. Suppl. 189,
165 (2011).

[10] B. S. Kay and R. M. Wald, Classical Quantum Gravity 4,
893 (1987).

[11] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Clarendon, Oxford, England, 1983), p. 160.

[12] S. Dain and G. Dotti, Classical Quantum Gravity 30,
055011 (2013).

PRL 112, 191101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
16 MAY 2014

191101-5

http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/PhysRevLett.24.737
http://dx.doi.org/10.1016/0003-4916(74)90173-0
http://dx.doi.org/10.1103/PhysRevD.19.2268
http://dx.doi.org/10.1103/PhysRevD.19.2268
http://dx.doi.org/10.1103/PhysRevD.64.084016
http://dx.doi.org/10.1063/1.524181
http://dx.doi.org/10.1063/1.524324
http://dx.doi.org/10.1063/1.524324
http://dx.doi.org/10.1088/0264-9381/14/7/023
http://dx.doi.org/10.1088/1367-2630/2/1/303
http://dx.doi.org/10.1088/1367-2630/2/1/303
http://dx.doi.org/10.1143/PTPS.189.165
http://dx.doi.org/10.1143/PTPS.189.165
http://dx.doi.org/10.1088/0264-9381/4/4/022
http://dx.doi.org/10.1088/0264-9381/4/4/022
http://dx.doi.org/10.1088/0264-9381/30/5/055011
http://dx.doi.org/10.1088/0264-9381/30/5/055011

