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Abstract 

The structure of the moduli space of N = l supersymmetric gauge theories is analyzed from an 
algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet 
theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. 
The results are then used to prove an anomaly matching theorem. The theorem is used to study 
anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching 
results for this case. © 1998 Elsevier Science B.V. 

PACS: ll.30.Pb; ll.15.-q 

1. Introduction 

One important constraint on the moduli  space of  vacua of  supersymmetric gauge 

theories [ 1,2] is that the massless fermions in the low-energy theory should have the 

same flavor anomalies as the fundamental fields, i.e. the ' t  Hooft consistency conditions 

should be satisfied [3] .  These conditions are considered a particularly stringent test on 

the spectrum of  massless fermions, which is usually obtained from symmetry arguments 

and renormalization group flows. It is found that for some theories the classical moduli  

space A-4ct or a suitable quantum modified version -/~A of it satisfies ' t  Hooft consistency 

conditions at every point. Other theories fail ' t  Hooft 's  test at some vacua, and it is 

believed that in the infrared, these theories correspond to the weak coupling sector 

of  a dual theory with a different gauge group and matter content [2] .  In this paper, 

sufficient condit ions on the fundamental chiral field content t~ i for a theory to satisfy 
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the 't Hoofi conditions is established. This is usually done by first finding a basic set of 

gauge invariants q~.J(~b) and the constraints among them, then checking point by point 

the matching of flavor anomalies between the fundamental fields and the composites 
at each point on the moduli space. This procedure involves tedious calculations, and 

does not offer a systematic approach to the problem of determining whether .AAcl (or 

a suitable quantum modified version of it) gives the right description of the infrared 

sector or not. Our results establish simple sufficient conditions on the fundamental fields 

that guarantee 't Hoofl's consistency conditions will be satisfied. The novelty of our 

approach is that no explicit calculation of anomalies is required at any time; it is not 
even required to know what the basic gauge invariants are. 

This paper fills in the details omitted in Ref. [4]. The outline of the paper is as 
follows. We devote Section 2 to a review of the connection between .A//cj and the 

algebraic quotient of U under the action of the complexification G of the gauge group. 

The results in Ref. [5] are rederived and additional information related to the structure 
of gauge orbits in U and the geometry of Mcl is provided. Methods to determine 

the dimension of Mcl before finding the invariants and their constraints are presented. 
A number of examples illustrating how naive expectations fail to be true in special 
situations is also given in this section. In Section 3, we analyze anomaly matching at 

points on the classical moduli space. The proof of the anomaly matching theorem makes 
use of the connection between A//cl and the vector space U spanned by the fundamental 
matter fields ~b i provided by the map 7r • U ~ Mcl, 7"r(~b) = ~i(~b). Knowledge of 

the algebraic geometric construction of .A//d and details related to this map is essential. 
In Section 4 we give a rigorous proof of the fact that the flavor anomalies of the 

massless modes at the vacuum ~0 equal those of the full vector space V of the gauge- 
invariant composites (i.e. ignoring all constraints) when A'/ is the set of critical points 

of an invariant superpotential. We apply this result to: (i) extend the matching theorem 
to cases where the superpotential W is not trivial, (ii) globalize the point-by-point 

result of the matching theorem, and (iii) prove that anomaly matching conditions are 
compatible with integrating out fields. 

Our results guarantee the matching of flavor anomalies between the UV and .A.4d 

for the large family of s-confining theories introduced in Ref. [6] and those theories 

obtained from them by integrating out matter fields, which have a quantum modified 
moduli space. As an application, in Section 5 we analyze in detail the well-known case 

of supersymmetric QCD. We first repeat the analysis of Ref. [ 1 ], and find all points at 
which anomalies match by performing explicit calculations, then show how the matching 
follows readily from our results with virtually no calculations. Extensions of the results 
to dual theories will be described elsewhere. 

2. Supersymmetric vacua and algebraic geometry 

In this section, we will review some of the properties of supersymmetric vacua in 
supersymmetric gauge theories, and their connection with algebraic geometry. Many of 
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the results are well known in the physics or mathematics literature. Including the results 

here will allow us to define our notation, and also to make the paper more self-contained. 

2.1. SUSY gauge theories 

The physical objects that we will consider in this paper are supersymmetric gauge 

theories with gauge group Gr, where Gr is the direct product of a compact connected 
semisimple Lie group and (possible) U( 1 ) factors. We will assume that all the U( 1 ) 's  

are compact, i.e. that the fields have rational charges. The action of the gauge theory is 

S[05] = / d4xd4005teV05 + / daxd20 [ +  ZrW'~W,, + W(05) + c.c. 1 , (1) 

where 05 is a set of chiral superfields transforming as a (reducible) representation of 
G,., W,~ is the gauge chirai superfield, g is the gauge coupling constant, V is the gauge 

vector superfield, 

V = VAT A, (2) 

T a are the generators of the Lie algebra of Gr, and W is the superpotential. V and W, 
are related by W,, = -¼DDD,,V. For simplicity of notation, we have assumed that G,. 

is a simple Lie group with coupling constant g; if not, there is a different coupling 
constant for each simple factor in Gr. The action equation (1) will in general also have 
a global flavor symmetry group F, and a U(1)R symmetry. 

The set of inequivalent vacua of a supersymmetric gauge theory is referred to as 

the moduli space. The classical moduli space 3.4cl is determined by studying gauge- 
inequivalent constant field configurations that are critical points of the superpotential W, 

and satisfy the D-flatness condition 

05tTa05 = 0, V T a E Lie (Gr)  , (3) 

where Lie(G~) is the Lie algebra of Gr, and has dimension de. The action equation 
(1) has a larger invariance than the gauge symmetry Gr. It is also invariant under local 
transformations of the form 

05 ----+ eiAATA05, e CaTA ---+ ei(AA)tTAeCaTAe--iAATa, (4) 

with A a chiral superfields [7]. This implies invariance under G, the complexification of 

Gr. This result was used in Ref. [5] to show that the moduli space of supersymmetric 
vacua is an algebraic variety. We will review the analysis given in Ref. [ 5 ] here because 
we need additional details about the construction of the moduli space and the structure 
of G-orbits not discussed previously. 

Any classical supersymmetric vacuum configuration can have only a constant expec- 
tation value for the scalar component of the superfield. Thus classical supersymmetric 
vacua are a subset of U, the vector space of all constant field configurations 05. U has 
dimension du, the number of chiral superfields. If 05 is a point in U, the G-orbit of 05 
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will be denoted by G,;b. If ,;b is a critical point of  the superpotential W, then so are 

all points of  G~b since W is G-invariant. The set of  critical points of  W in U will be 
denoted by U w. 

2.2. Algebraic  geometry  

The mathematical objects that we will consider in this paper are affine algebraic sets (a 

special case of  varieties) over the field of  complex numbers, l Let C[x l  . . . . .  x , ]  be the 

ring of  polynomials in n complex variables xl . . . . .  x,. Let p , ( x j  . . . . .  x , ) ,  ce = 1 . . . . .  k 

be a finite set of  polynomials in the n variables. Then the algebraic set V(p~,) is the set 

{xi  E C I p,~(x) = 0 V a}.  It can be thought of  as a curve in C" given implicitly by 

the polynomial equations p ,  = 0. The ideal (Pl . . . . .  Pk) is the ideal generated by the 

polynomials p,~, i.e. the set of  polynomials of  the form y'~,~ f , p ~ ,  where f,~ are arbitrary 

polynomials in C[x l  . . . . .  x,,]. Clearly, any polynomial in (Pl . . . . .  Pk) vanishes at all 

points on V ( p , ) .  The set of  polynomials that vanish on an algebraic set X (such as 

V ( p , )  ) will be denoted by I ( X ) ,  and tbrms a finitely generated ideal of  C[xl  . . . . .  x,,]. 

In general, l ( V ( p , ) )  D_ (p, . . . . .  pk), but equality need not hold. It is possible to define 

the algebraic set X as the zero set of  polynomials gi, i = 1 . . . . .  s that generate I ( X ) .  

In this case, X -- V ( g i ) ,  and I ( X )  = (gl . . . . .  g,~). If  this is the case we say that the 

e q u a t i o n s  gi( xl . . . . .  Xn) = O, i = 1 . . . . .  S correctly  define X. 

An irreducible algebraic set is one that cannot be written as a proper union of  two 

algebraic sets. Any algebraic set can be written as a finite union of irreducible algebraic 

sets in a unique way. The tangent space TpX at a point p of  the algebraic set X C_ C" 

correctly defined by polynomials g i ( x )  is the vector subspace ker(Ogi/cVXj)p of C". 

The dimension dx of an irreducible algebraic set X is dx = minpcx dim TpX. There are 

alternative equivalent definitions of Tt, X and different ways of  calculating dimensions of  

irreducible algebraic sets (see Refs. [9 ,8]) .  The natural complex valued functions on 

an algebraic set X are the restrictions to X of polynomials in its ambient vector space. 
These are called regular functions, and the set of  regular functions is the coordinate ring 

C [ X ] .  Note that two polynomials f j  and f2 in C[xl  . . . . .  x , ]  define the same regular 

function on X if and only if f l  - .f2 C I ( X ) .  This defines an equivalence relation in 

C[xl  . . . . . .  r,,] and, clearly, C [ X ]  = C[xl  . . . . .  x , , ] / l ( X ) .  Regular functions from the 
algebraic set X _C C" to the algebraic set Y C C m are naturally defined to be those 

that can be written as the restriction to X of  m polynomials in C". All the geometric 

properties of  X are encoded in C [ X ] ,  and X can be constructed from C [ X ] .  This fact 

plays a key role in the discussion of  the next subsection. 

It is natural to use the Zariski topology in studying algebraic geometry. The Zariski- 

closed sets of  C" are algebraic sets, by definition. The fact that this correctly defines 
a topology in C" is non-trivial, and is a consequence of  the Hilbert basis theorem, 
which implies that an infinite intersection of  algebraic sets is an algebraic set. In the 

rest of  this paper, we will mainly use the Zariski topology, so open and closed sets will 

J We will use the notation of  Refs. [ 8,91. 
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always mean with respect to the Zariski topology. In a few places, we will also need 
to use the more familiar metric-topology on C", and we will state this explicitly. The 

Zariski topology might seem a little strange to readers used to thinking about the more 
familiar metric topology. In C, for example, the Zariski-closed sets are C, a finite set of 

points, or the null set. Thus the Zariski-closure of the set of integers in C is the entire 

space C. In contrast, the metric-closure of the set of integers is itself. Regular functions 
f : X --~ Y from the algebraic set X C C" into the algebraic set Y C C m are continuous 

in the induced Zariski topology, whereas most other functions which are continuous in 
the metric topology tail to be Zariski continuous. Thus, the Zariski topology allows us 

to get the strongest results when dealing with regular function. As an example, a regular 
function f : C --~ C that vanishes on the integers Z, must vanish on the closure Z = C, 

which is a fancy way of saying that the only complex polynomial with infinite roots is 
the trivial one. 

The natural groups to study in algebraic geometry are linear algebraic groups. Let 
M,,(C) be the space of all n x n complex matrices. GL(n ,C)  is the set detM ~'0 in 

M,,(C). G C GL(n, C) is a linear algebraic group if it is the intersection of GL(n, C) 

with an algebraic set in M,,(C). The group SU(n) is not an algebraic group, because 

the constraint that the matrix be unitary is not a polynomial relation; it involves complex 

conjugation. The complexification of SU(n) is the group SL(n, C), which is an algebraic 
group since the condition that the determinant be unity is a polynomial relation in the 

elements of the matrix. The complexification of all compact connected semisimple Lie 
groups are algebraic groups. The vacuum structure of supersymmetric gauge theories 
will depend on G ,  the complexification of the gauge group Gr. G is an algebraic group, 
but Gr need not be. 

2.3. SUSY QED 

It is instructive at this point to go over the well-known example of SUSY QED, which 

is a U( 1 ) supersymmetric gauge theory with two chiral superfields Q and Q with charges 
+ 1, respectively. The set of all constant field configurations is C 2 = {(Q, Q) } for SQED. 
In SQED, the group G = U ( I )  c is the set of transformations (Q,Q)  --~ (zQ, O./z),  

where z 6 C, z 40 ,  as can be seen from Eq. (4). The G-orbits are illustrated in Fig. 1. 

They are the curves M = { (Q ,Q)  [ QQ = M 4 0 } ,  the curve A = {(Q,0)  ] Q 4 0 } ,  

the curve B = {(0, Q) I Q 4 0}, and the origin O = { (0 ,0 ) ) .  The decomposition of 
U into G-orbits is quite complicated, even for the simple example of SQED. G-orbits 
need not be closed. The orbits M and O are closed, and the orbits A and B are not. The 
closure of the G-orbit of ~b is denoted by G~b. A very useful result is that the closure 
of a G-orbit in the Zariski topology is equal to its closure in the metric topology.2 The 
closure of the two orbits A and B are the curves (Q, 0), and (0, Q),  where Q and Q are 
no longer restricted to be non-zero. The closure G~b of orbits G~b of an algebraic group 
are irreducible algebraic sets. The closures of G-orbits are given by the polynomial 

2 Closed = Z-Closed. 
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Fig. I. The structure of gauge orbits in supersymmetric QED. The orbits are connected. They appear discon- 
nected because the figure only shows the restriction of the configuration space to real values of Q and Q. The 
orbits M and O are closed, and A and B are not closed. M, and A U B U O are fibers. 

equations QQ = M tor / f / ,  0 = 0 for A, Q = 0 for/~, and Q = 0, 0 = 0 for O, each of  

which is an irreducible algebraic set. 

2.4. Algebraic quotients and the moduli space 

The power of  algebraic geometry lies in the interplay between geometric properties 

of  the algebraic set X and algebraic properties of  its coordinate ring C [ X ] .  The key 

properties of  the ring C[X]  are: (i) C [ X ]  has no nilpotents (that is, f E C [ X ] ,  

f ' "  = 0 implies f = 0), and (ii) C[X]  is finitely generated. It turns out (Ref. [8] ,  ch. I, 

Section 2, Theorem I) that these are also sufficient conditions for a given ring A over 

C to be isomorphic to the coordinate ring of some algebraic set X~t, A % C [ X 4 ] .  The 

construction of  XA is in fact very simple: take a set t~ . . . . .  t,, of  generators of A. In 
general, A is not a tree algebra; there are polynomial equations among the generators 

gi(t l  . . . . .  t,,) = 0, i = I . . . . .  k. One shows that X.a = V(gi) C C", the equality being 
valid only in the case of  a free algebra. Now assume X = U w C_ U, the G-invariant 

algebraic set of  critical points of a polynomial G-invariant superpotential W, and let 

du be the dimension of  U. There is a natural representation of  G on C[uW] ,  namely 

C [ U  Wj ~ f ~ g o f ,  g o f ( x )  = f ( g - l x ) ,  g C G. Under this representation the 

homogeneous polynomials of  degree d lbrm invariant subspaces. For reductive linear 
algebraic groups (G is reductive if any regular representation is completely reducible), 

the subring c [ u W ]  c" of G-invariant polynomials is finitely generated, as follows from 

Theorem 4.1.1 in Ref. [9].  As c [ u W ]  G does not have nilpotent elements, it can be 

thought of  as the coordinate ring of an algebraic set UW//G = XcluWl¢;. I f p  G . . . . .  p,~ is 
a minimal set of  generators of  C[UW] ~;, then u W / / G  C C" is the algebraic set defined 

by the constraints between the p~'s.  There is a natural regular map ~ : U w ~ u W / / G  by 

U w ~ (xl  . . . . . .  ~d,j) --~ (p~;(xt . . . . . .  ~d,, ) . . . . .  p,~(xl . . . . .  Xd,,) ) obtained by evaluation 
of  the generating polynomials. The pair (7"r, u W / / G )  is called algebraic (or categorical) 
quotient of  U W under the action of G in the mathematics literature. The basic property 
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of the quotient is that, by construction, 7r, : C [ u w / / G ]  ~ C[uW] c is an isomorphism 

(as algebras over C) between the coordinate ring of uW/ /G  and the ring of invariant 

polynomials in U w. Therefore, given any algebraic variety Z and G-invariant regular 

map f : U w -~ Z, there exists a unique regular map f : UW//G --~ Z such that 

f = f o ~, a property that uniquely determines the quotient. Further details of this 

construction, including properties one through three quoted without proof below, can be 
found in Problems 11.2.6-1,2 in Ref. [9], and also in Ref. [ 10]. Using these, we prove 
other results required to understand the ultraviolet-infrared global anomaly matching. We 

assume G is reductive, as is always the case in physically interesting theories. Property 

(P5) establishes the anticipated contact with supersymmetric moduli spaces: points in 
uW/ /G  are in one to one correspondence with closed orbits in U w. As the latter are in 

one to one correspondence with physically inequivalent classical supersymmetric vacua, 

u W / / G  is the classical moduli space A//cl of the theory (1). This picture breaks if G 

fails to be reductive (Subsection 2.6). The fiber of ~r(~b), 7r-l(~'(~b)) is in general a 
reducible algebraic set. It can be written as the union 7r -~ (Tr (~b)) = Xl U . . .  U X, of 

G-invariant irreducible algebraic sets. (Note that Xi are G-invariant, but need not be a 

single G-orbit.) Then X1 A . . .  A Xn is a closed G-invariant subset of 77" -1 (~-(~b)), and 
contains the unique closed G-orbit. 

One can now connect the algebraic construction of uW/ /G discussed above with the 

classical moduli space A,'/cl of supersymmetric vacua [5]. In Ref. [5] it is proven that 

every G-orbit contains a (unique) D-fiat point if and only if the orbit is closed. Every 
fiber contains exactly one closed G-orbit, and thus exactly one D-fiat point which is 

also a critical point of W. Thus the gauge-inequivalent field configurations that satisfy 
the D-flatness condition and 27W = 0 are in one-to-one correspondence with fibers 
7r - I  (~-(~b)). This means that uW/ /G  c is isomorphic to A//d, the classical moduli space 
of the supersymmetric gauge theory, the result shown in Ref. [5]. 

In studying anomaly matching conditions, one needs to compute anomalies in the full 
theory (UV-theory) and for the massless modes (IR-theory). The UV anomalies are 
computed using the fields ~b, i.e. using U, and the IR anomalies are computed using the 

classical moduli space A//ct or its quantum modification .AAA. The classical moduli space 

2~4d "~ U//G, so the anomaly matching conditions require knowledge of the structure 
of the G-orbits in U. 

2.5. Collection of  mathematical results 

We will collect here a number of useful results from Refs. [9,10] that will be needed 
later in this article. Some of them have already been discussed earlier in this section. 
The basic setting is the algebraic quotient 7"r : U w --+ UW//G of the variety U w given 

by the critical points of W under the action of a reductive algebraic group G. 
(P1) 7r is surjective. 
(P2) If C C U w is closed and G-invariant, then ~ ( C )  is closed in uW/ /G  and 

(Trlc, ~ ( C ) )  is the algebraic quotient of C under the action of G. 
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(P3) If  {Zi}ic/ is any collection of  closed G-invariant subsets of  U w, then rr (:3iZi) = 
: ~ : ( Z i ) .  

(P4) If  U w is irreducible, uW//G is irreducible. The proof lbllows from (P I )  and 

Lemma A.I .16 of  Ref. 19]. 

(P5) There is a unique closed G-orbit in every fiber of the map 7r. 

(P6) Two points ~bi, i = 1,2 lie in the same fiber if and only if Gq~l N G~b2 v~ (3.3 

From now on, we shall assume that U w is irreducible. Then .Add = UW//G is irre- 

ducible, and we can use the results of  Ch. 1, Section 6.3 of Ref. [8] .  

The dimensions of  various objects are defined as follows: 
de,: the real dimension of the Lie Algebra Lie(Gr) of  the gauge group G,., which is 

equal to the complex dimension of  Lie(G).  

du: the dimension of  U. 
duw: the dimension of  U w. 

dr: the number of  generators of  the ring of G-invariant polynomials C[UW] C. 

d~4: the dimension of the classical moduli space .Add = UW//G C_ V = C a''. 

d: the maximum dimension of  a G-orbit in U w. (Note that G-orbits can have different 

dimensions, so d is the maximum possible dimension. Also, d ~< da.)  

d/: the minimum dimension of  a fiber in U w. 

Let T A, A = 1 . . . . .  d<; be a basis for Lie(Gr) ,  the Lie Algebra of  the gauge group 

G,.. The dimension of  a G-orbit through & equals the rank of  the du x de, matrix A(~b) 

with columns TAO. Note that the entries of  A(&) are polynomials of degree one in &. 

Let ,A/(&), J ~ rain(de,  du) be the set of  all j x j minors of A(~b), and Z/ the set of  

polynomials in & obtained by taking the determinants of  the elements of  Aj. The rank 

of  A(~b) equals the maximum value of  j for which there is a polynomial in ZJ which 

does not vanish at ~b. The set O< i of points in U whose orbits have dimension less than 

j is the closed set O<. i = V(Zi),  obtained by requiring that all j x j minors have zero 

determinant. The complement is then an open set. Hence "maximum rank" of  a matrix 

valued function on an algebraic set with regular entries is then an example of  an open 
condition, i.e. it defines an open set. The same type of argument shows that the set of  

smooth points of an irreducible algebraic set Y is open in Y. These results together with 

a straighttbrward application of  Ref. [8 ] Ch. 1, Section 6.3 imply 
(P7) The following is a list of non-empty open subsets of  U w and .A,4cl. Quantities 

with a ^ belong to ~/cl, and without a ^ belong to U w. The inclusion sign means 

the left-hand side is a non-empty open set contained in the right-hand side, but 
equality need not hold. 
• 0L C_{q~ .Add id im(7" r  l(~:))=duw d ~ } .  

• 03 = {~ c Add [ 4~ is a regular point of AAd}. 

• 0 3 =  {~E.A4c,  [dim(or '(q~)) = d r } .  
• Oi=Tr-J(Oi) ,  i= 1,2,3.  

• O~ = {~b ~ U I dim(G~b) = d}. 

3 Fibers are called extended orbits in Ref. 151. This characterization of fibers follows fl'om (P3) and the 
fact that 7r(G~) consists of a single point. 
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Using these non-empty open sets, and the result that non-empty open subsets of an 
algebraic set are dense, and any two non-empty open sets have a non-empty intersection 

(Lemma A.l.12 in Ref. [9] ) allows one to prove 
(P8) The dimension of .AAcl equals that of U w minus the minimum dimension of a fiber. 

Proof: take a point ~ E 01 n 03. Then dvw - d ~  = df .  

(P9) The minimum dimension of fibers is greater than or equal to the maximum di- 
mension of G-orbits. Proof: Take q~ E 03 N O4. As 7r is G-invariant, T6G05 C_ 

T,/,Tr - j  (Tr(qS)), so that d <<. df .  (Here TpX denotes the tangent space of X at the 

point p.) 
We tinally quote an important theorem due to Knop [11], and prove a result that is 

used in Section 5. 

Theorem 1 (Knop, Ref. [1 l ] ) .  If G is semisimple, G~b has maximum dimension, and 
' is surjective. ~-(~b) is smooth, then 7r~b 

Theorem 
(a) 7r -1 

(b) d ~  
If also d 

2. If dim(G~bo) = d (maximal) and G~bo is closed, then 

(¢ r (4~o) )  = G,/,o. 
= du w - d. 

= de, then 
' is surjective. (c) ~r,b,, 

Finally, if qSo is also a smooth point 
' = Lie(G)OSo and 7r(c;b0) is smooth. (d) ker ~-6o 

Proo f  

(a) Assume (a) is false, and pick any point ~bl E Tr-l(~r(~bo)) \ G~o. Because of 
(P6), GOl AG~bo 5/0. Therefore there is a sequence gn E G and a point go E G such 

that g,7~bl ~ g0~b0. Given any point gcko E Gqbo, g g o l g j p l  --~ gdpo, so g~o E G~b~. 
Thus G~b0 is a proper subset of G~bl, which implies that dim(G~b0) < dim(G~bl) 
(Lemma A.I.18 of Ref. [9] ), i.e. dim(Gq~l) > d, which is a contradiction, since 
G-orbits have maximum possible dimension d. 

(b) (P9) and (a) implies d f  = d, and (b) follows using (P8). 
(c) By Luna's theorem [12] (quoted in Ref. [10], Theorem 6.1) G~bo closed implies 

there is an &ale slice at q~o. In the case dim GO0 = do the existence of the slice 
implies that any curve ~ ( t )  through q~o = ~(0)  can be lifted to a curve ~b(t) in U w 

satisfying q~(0) = ~b0 and 7r(~b(t)) = 0~(t). This is equivalent to the surjectivity of 
77- t 

,;bo' 

(d) If ~bo is smooth then dim T~o Uw = duw. From (b) and (c) we have: dM ~< 
dim T~r(,~o).Adcl = rank ¢r~,, = duw - dim ker 7"r~o ~< dtj~ - dim T~oGdpo = duw - d = 

dM. Thus, these are all equalities and (d) follows. 

Conditions (c) and (d) ensure that the tangent to the moduli space is isomorphic 
to the massless modes of the theory determined from the ultraviolet Lagrangian at 
the classical level, i.e. by looking at the massless modes of the quadratic part of the 
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Lagrangian in unitary gauge. 

2.6. Examples 

2.6.1. SUSY QED 

We have already discussed this case. The space X is C 2, since there are two complex 

fields Q and ~). The ring C [ X ]  is the ring of polynomials in two indeterminates, 
C [Q ,~ ) ] .  The ring C [ X ]  6 is the set of  gauge-invariant polynomials C[Q~)] ,  freely 

generated by the single polynomial M = Q{~. The algebraic set Y defined by C[Y] = 

C[Q~)]  = C [ X ]  a is thus C. The map ~r : X --~ Y takes (Q, 1~) to the point M = QQ in 
Y. The fiber of  a point M --/0 E Y is the closed orbit M discussed in Section 2.3. The 
fiber of  M = 0 is A U B U O. Note that C = Y = X/ /U(1)  c = C 2 / / U ( I )  c is a smooth 

algebraic set, with no singular points. Nevertheless the fiber of  M = 0 is different in 
structure from that of  the points M :¢ 0. The fibers or- J (M)  are closed irreducible and 

smooth one-dimensional algebraic sets fbr M ~ 0. 1r - I  (0) is the reducible and singular 

algebraic set Q{~ = 0, and contains three G-orbits, A, B and O. It can be written as 

the union of two irreducible components, Xl given by Q = 0 and )(2 given by ~) = 0. 

Their intersection, Xt A X2, is the origin O = (0, 0),  and is the unique closed G-orbit in 

~--J (0) .  The smooth points Z of ~r - j  (0) form the open set A U B. The complement 
~ - J  (0) \ Z is the origin O and is a smooth closed algebraic set that contains the unique 

closed G-orbit. ~ '  is surjective at all points of ~ - - I ( M  4= 0) and at all points of  the 
fiber 7r - j  (0) except (0, 0). Thus it is possible in this case to choose a point in ~r - l  (0) 

where 17" is surjective; however this point is not in the unique closed orbit (0, 0) in the 

fiber. 
Now consider adding a superpotential W = QQ to SQED. The critical points of  W are 

Q = ~) = 0, so that U w is a single point, and is G-invariant. Note that in this example 

the critical points of  W do not form a complete fiber. The ideal I ( V ( V W ) )  is the set of  

all polynomials of  the form Q f ( Q ,  0.) + Qg(Q, 0_), and I ( V ( V W ) ) ~  is the set of  all 
polynomials of  the form QO_h(Q(2), where f ,  g and h are arbitrary polynomials in their 
arguments. The classical moduli space Mcl without a superpotential is the complex 
plane C given by M = QQ. Including W restricts one to .A,4 w C Adcl given by the 
algebraic set M = 0 in A4ct. Since W is gauge invariant, one can rewrite W in terms 

of the gauge-invariant polynomials used to describe the moduli space. In the present 
example, W = QQ = M. However, when regarded as a function of the gauge invariants 
rather than the fundamental fields, the critical points of the resultant W do not correctly 
describe the moduli space in the presence of a superpotential. In our example, W = M 
has no critical points, whereas A,4 w contains the single point M = 0 C ,Adcl. One can 
obtain Ado w by minimizing W = M 2, instead of W = M. However, in general, one cannot 
obtain the equations defining the moduli space A//w by minimizing a superpotential in 
the space of gauge invariants. 



G. Dotti, A. V Manohar/Nuclear Physics B 518 [PM] (1998) 575-602 585 

Fig. 2. The structure of gauge orbits in supersymmetric QED with equal charges. Only the projection onto 
real values of QL and Q2 is shown. The orbits of a generic point ( Q I , Q 2 )  are radial lines, and are not closed. 
The orbit of (0, 0) is a single point, and is closed. There is a single fiber which is C 2. 

2.6.2. SUSY QED with equal charges 

An interesting example is SUSY QED with fields Q1 and Q2 both with charge + 1. This 

is an anomalous theory, but still provides a useful example that illustrates the structure 

of  fibers. Similar results can be found in more complicated anomaly-free theories (such 

as SUSY QCD with Nf -- Nc). The space U is C 2, and C [ U ]  = C [ Q I , Q 2 ] .  There are 

no gauge-invariant polynomials other than constants, so C [ U ]  6 = C, and the moduli 

space A-4cl = U//U( 1 )c is the zero dimensional space consisting of  a single point P. The 

orbits of  all points other than (0 ,0 )  are radial lines (see Fig. 2), and are not closed. 

The orbit of  (0, 0) is a single point, and is the unique closed orbit. The fiber ~.-i ( p )  

is the entire plane C 2, and is irreducible. In this case du = 2, dv = O, dA4 = O, d~; = 1, 

d = 1 and df = 2. Note that df > d, so that the minimum dimension of  a fiber can be 

strictly greater than the maximum dimension of  an orbit. 

2.6.3. An example where 7r' is not surjective for an orbit of  maximal dimension 

This example shows that Theorems 1 and 2 are the most we can say about surjectivity 

of  ~-' above smooth points of  .h4cl. Consider a U( 1 ) theory with three fields Q2, Q+ 

and Q_ with charges 2, 1 and - 1  (an anomalous theory). The space U is C 3. The 

gauge-invariant polynomials are generated by A = Q+Q_ and B = Q2Q2_. The moduli 

space .h4cl and V are both C 2, since there are no relations among A and B. A//cl is 

smooth everywhere. Consider the orbit of  ~b = (0, Q+, 0). It is the set of  all points 

(0, zQ+, 0) with z : /0 ,  and has dimension one, i.e. equal to the dimension of  the gauge 

group. However, 

r a n k z r , = r a n k ( Q  O Q- Q+ ) 0 2Q2Q- <~ I (if Q_ = 0),  (5) 

so ~-' is not surjective even though the orbit has maximal dimension and lies above a 
smooth point. Note that Theorem 1 does not apply here because the gauge group is not 

semisimple, and Theorem 2 does not apply here, because the orbit is not closed. 
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2.6.4. S U S Y  QCD 

This is the example studied in detail in Refs. [1,2]. The gauge group is Gr = 

S U ( N ) ,  with NF matter fields Qia, i = 1 . . . . .  NF, ~ = 1 . . . . .  N in the fundamental 

N-representation of  S U ( N ) ,  and NF matter fields ~)#i, J = 1 . . . . .  NF, fl  = 1 . . . . .  N in 

the N-representation of  S U ( N ) .  The ultraviolet space U is a vector space of  dimension 

du = 2NNF.  The complexification of S U ( N )  is G = S L ( N ,  C),  under which Qi~ and 

Q i/3 are in the fundamental and its dual representation. 4 A set of  generators of  C[U]  6, 

the coordinate ring of  gauge-invariant polynomials are the mesons and baryons, 

M i. = Qi"O, i ,  
.1 

I 
B~, ...k,~,. .~) = -N-~. Q i~'a Qi,_,~2 . . .  QiN,~N Ea,a. ..... Nei, i2""iNk, ""k,N,..--N> ' 

BI)...I~ Nt _ N )  I - - a  = -~. Q,~,.h Q 2j2"'" O--.,N.iN e"' "~- ...... .eJ, J2""JNI,'"t, ~,. ~,. (6)  

These polynomials span the vector space V. The structure of  the classical moduli space 

.A//cl C V depends crucially on the value of  NF. 

(i) NF < N: If NF < N, B and/~ are identically zero. C [ U ]  6 is freely generated 

by M i. .A-4cl = V and d ~  = N~.. This example illustrates a non-trivial case of 
.1 ' 

dimension counting. Consider the point ~b given by 

- / 8i"' i ~ N, 
Q i a  = Q~,i = 0 ,  o t h e r w i s e .  

The S L ( N , C ) - o r b i t  of & is closed and of  maximum dimension, d i m G ~  = 

d i m S L ( N , C )  - d i m S L ( N  - NF, C) = 2 N N F  - N~. From Theorem 2 we ob- 

tain dim A//cl = du - dim G& = N~:. 
(ii) NF = N: In this case B = det(Q) , /~  = det(~)), and C [ U ]  G is not a free algebra, 

as its generators are constrained by the single relation 

de tM - B/~ = 0. (7) 

This gives a hypersurface in V ~ C N'~2, and the dimension of the moduli space 

is d ~  = N 2 + 1. This number can also be obtained by applying Theorem 2 to the 

closed G-orbit of  the point (Qi~ = ¢3 i~', 0 = 0). 

(iii) NF = N + 1 with a superpotential: When NF = N + 1, the fields (6) are subject 

to the following algebraic constraints: 

co f (M)  S /~.iBi = 0, M iiBi = O, M~B i = 0, (8) 

where cof(M)} is the matrix of  cofactors. Assume we add a superpotential W = 

rttO N+ l~0c~N+l, which is a mass term for the (N + l)- th flavor. The set U w of 

4 Given a representation of a group H in a vector space V by u i ~ h}t,J we define the dual and conjugate 

representations on V* by wi --~ w j ( h - l ) ~  and wi --+ w j ( h t ) ~ .  They agree only when the representation of 
H on V is unitary. Note that the dual representation is defined so as to make wiv i invariant, which is not the 

case for the conjugate of a non-unitary representation. 
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Fig. 3. The structure of gauge orbits for the non-reductive group C +. The orbits are horizontal lines if y v~ 0, 
and points if y = 0. The fibers are the horizontal lines y = constant. The fiber y = 0 contains an infinite 
number of closed orbits. 

critical points of  W is just  the space U for NF = N, naturally embedded in U for 

NF = N + 1 by setting the components of Q and Q for the (N  + l ) - th  flavor to 

zero. ~r(U w) is the intersection of  the moduli  space Eq. (8)  with the subspace 
Bi ~i MN+I i = = = MN+ I = 0, i = 1 . . . . .  N. This reproduces Eq. (7) ,  as anticipated 

by (P2)  above. 

2.6.5. An example involving a non-reductive group 

This example is from Ref. [ 10]. The abelian group G = C + of  complex numbers under 

addition (which is the complexification of the group Gr of  real numbers under addit ion) 

is a simple example of  a non-reductive group. We will consider the representation on 

U = C 2 given by (x ,  y)  ~ ( x +  zy, y ) ,  z c C +. Note that (x,  0) is an invariant subspace 

with no invariant complement .  C + is the linear algebraic non-reductive subgroup of  

G L ( 2 ,  C) of  upper triangular, determinant one matrices of  the form 

0 1 ' (9)  

acting on C 2 as the restriction of  the fundamental representation of GL(2 ,  C) .  The 

orbits G(xo ,Yo)  are closed one dimensional lines (x ,  yo) when Y0 ~ 0. For y = 0 the 

orbits are points ( xo ,0 )  for each value of x0 (see Fig. 3). Every G-orbit  is closed. 

The fibers are the horizontal lines y = Y0. The x-axis y = 0 is a fiber which contains 

an infinite number of  closed orbits. If  this example were an acceptable supersymmetric 

gauge theory, the algebraic quotient U/ /G would not equal the classical moduli  space 

-Mel, since the fiber y = 0 contains infinitely many closed orbits, i.e. infinitely many 

inequivalent supersymmetric  vacua. 

3. Anomaly matching between the ultraviolet and infrared theories 

Theorem 3. Let Adcl be the classical moduli  space of a supersymmetric gauge theory 

with gauge group Gr and flavor symmetry F and superpotential W. It is assumed that the 

gauge theory has no gauge or gravitational anomalies, and the flavor symmetries have 
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no gauge anomalies. Let ~0 c .A-4d be a point in the classical moduli space. Assume 

there is a point 4,o E U w in the fiber 7r-l(Tr(4,0)) of 0~0 such that 

(a) G (the complexification of Gr) is completely broken at 4,o, so that Lie(G)4,0 
Lie(G).  

(b) kerTr~,, = Lie(G)4,0 and 7"/~,, is surjective. 

If a subgroup H C F is unbroken at q~0, then the 't Hooft consistency conditions for 
the H 3 flavor anomalies and the H gravitational anomalies are satisfied. 

For the purposes of the proof, it is convenient to write the original flavor symmetry 
as F / x R, where R is the R symmetry, and F ~ now contains only non-R symmetries. 

We first prove anomaly matching when H C F ~ and W = 0, and then prove consistency 
for anomalies that include the R symmetry. (Note that the unbroken R symmetry might 

be a linear combination of the original R symmetry and some generator in U. )  The 
extension to W 5~ 0 follows simply from the results of Section 4. 

Since H is unbroken at q~0, O~o is H-invariant 

Lie (H)  ~o = 0. (10) 

The map cr • U --~ A-4d commutes with the flavor symmetries, so 

0 = Lie (H)  0~0 Lie (H)  (Tr (4,0)) = ~" (Lie (H)  4,0) (11) 

Thus, by (a) and (b) 

Lie (H)  4,0 C_ kerTr~0 ~ Lie (G) .  (12) 

This implies that given any I) C Lie(H) ,  there is a unique g(h)  E Lie(G) such that 

04,o = - ~ ( h )  4,0, (13) 

where the minus sign is chosen for convenience. It is straightforward to check that the 
map Lie(H)  ~ Lie(G) given by [J --~ [1(h) is a Lie-algebra homomorphism, 

O ( [ h i , h 2 ] )  = [ g ( h l ) , g ( h 2 ) ]  • ( 14 )  

This allows us to define a new "star" representation of Lie(H)  in U, 

rj* - 0 + o ( h ) .  ( 1 5 )  

Since Lie(G)4,o c k e r ~ o ,  the new Lie(H)-representation on T,~o.Md defined by 7"r;o0* 

agrees with the original one. Thus the 0*-anomalies computed at q~o c .Ado1 are the same 
as the 0-anomalies at the same point. 

Lie(G)4,o is an invariant subspace under 1~*, and the restriction of D* to Lie(G)4,o is 
the adjoint action by [1(h). This can be seen by direct computation. Take any element 

[14,o E Lie(G)4,o. Then 

0"[14,o = Og4,o + [1( h ) g4,o = [1h4,o + [1( h ) g4,o = [[1(h),g]4,o = Add(h) [t4,o, 
(16) 
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since the flavor and gauge symmetries commute, and using Eq. (13). The space U can 

be broken up into the tangent space to the G-orbit T6oGfbo = Lie(G)4~0 ~ Lie(G) and 
its invariant complement, C6o, since G is reductive. By (b),  the map or' is a bijective ~o 
linear map from C~0 to the tangent space T&.Mcl of the moduli space Add at ~0, and 
commutes with t1". Thus the action of 11" on C~0 is equivalent to the action of 11 on 
T&JV4cl, by the similarity transformation S given by rr~0 restricted to C4, o. One can write 

( S11mS-' O ) (17) 
I)* = 11uv + 0 (h) = 0 Add(h) ' 

where the second form shows the structure of 13" on U = C6o • TC~oGfbo. The action of 
11 on U has been labeled by the subscript UV, and the action on the moduli space has 
been labeled by IR. 

One can now compare anomalies in the UV- and IR-theories using the two different 
forms for 11". Since the adjoint representation is real, the (11,)3 flavor anomaly and b* 
gravitational anomaly are equal to the anomalies in the infrared theory. All that remains 
is the proof that the (11.)3 and 11" anomalies of U equal the I13 and 11 anomalies of U. 
Let h A'B'c be any three elements of Lie(H).  Then 

Tr11 *A {11"", 11"c} = Tr 11~v {11t~v, 11Cv} 

+ Tr g (h A) { 11~v, IlCv } + cyclic 

+ Wr 11~v {0 (he) ,0 (hc) } + cyclic 

+ T r 0 ( h  A) { 0 ( h B ) , 9 ( h C ) } .  (18) 

The last three lines vanish because the original theory had no gauge and gravitational 
anomalies, and the flavor symmetries have no gauge anomalies. Thus the [}3 and (11")3 
anomalies are the same. Similarly the 11" and 11 anomalies agree since 9 is traceless 
because there is no gravitational anomaly. Thus 't Hooft's consistency condition for the 
flavor anomalies is satisfied. 

We now prove the matching theorem for anomalies involving the R-charge using an 
argument similar to the one presented above. The R-charge acting on U is given by the 
matrix r. The R-charge is defined acting on chiral superfieids, and so is the charge of 
the scalar component. Anomalies are computed using the fermionic components, so it is 
convenient to define a new charge ~" which we will call fermionic R-charge, defined by 

= ~ - 1. (19) 

The anomaly can be computed by taking traces over the chiral superfields of ~. The 
reason for making the distinction between t and ~ is that the map zr from U to .Md 
commutes with R = exp r, but does not commute with /~ = exp ~. 

Assume that R is unbroken at q~0 = 7r(4~o). Then by an argument similar to that 
above, it is possible to define a "star" R-charge, t*, 

r* = r + g(r) ,  (20) 
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which has the form 

r* (Sr ,RS- '  0 ) (21) 
= ruv + g (r) = 0 Ad~,.~ 

under the decomposition of U into C,/,,, @ Tc6,,Gdpo. As in Eq. (17), we have used the 
subscripts UV and IR to denote the R-charges in the ultraviolet and infrared theories. 
Note that S is the same matrix in Eqs. (17), (21), given by 7r~,~ restricted to C~b,,. The 
fermionic R-charge is then given by 

(S~ ,RS- '  0 ) (22) 
~ * = r * -  l - - ? u v + g ( r )  = 0 Add(r ) -  1 ' 

where in the last equality we have used the fact that fermion R-charge FIR ---- f i r  - -  1 in 
the infrared theory. 

Compute the trace of (~..)3 in U, 

Tr (~.,)3 = Tr {ruv + fl(r)} 3 = Tr {~'3 v + 3~'2v~(r) + 3~'uvg(r) 2 + g(r)3}.  
(23) 

The R-charge has no gauge anomaly, so Tru ~'UV{gA,gB} + TrL~e(c){Ad~^, Ad~,} = O, 
tbr any gA.B E Lie(G). Here the first term is the matter contribution to the anomaly, and 
the second term is the gaugino contribution. The absence of gauge anomalies implies 
that odd powers of ~l(r) vanish when traced over the matter fields, since there is no 
gaugino contribution to these anomalies. Thus we find 

2 Tru (~,)3 = Tru (~'uv) 3 - 3 TrLie(G) Ad~(r). (24) 

The block diagonal form of ~'*, Eq. (22), gives 

Trtj (~.,)3 = Tr ([.1R)3 TrLie(G) (1 + 3Ad~(,.)). (25) 

The R 3 anomaly Auv (R 3) in the UV-theory is given by adding the matter and gaugino 
contributions 

Auv (R 3) = Tru (~'uv) 3 + TrLie(G) 13 = Tru (r:*) 3 + WrLie(G) (1 -1- 3Ad~(r) ) . (26) 

The R 3 anomaly Am(R 3) in the 1R-theory is given by 

AIR (R 3) = T r  ( f i R )  3 , (27) 

since there are no gauginos in the low-energy theory. Combining Eq. (24)-(27),  one 
sees immediately that the UV and IR anomalies are equal, Auv(R 3) = Am(R3). 

It is straightforward to check that the gravitational R anomaly, and the H2R and HR 2 
anomalies match. One finds from Eqs. (17), (21) that 

TrY* = Tr ~:uv = Tr~qR - TrLie(G) I, (28) 

which is the matching condition for the gravitational R anomaly, when rewritten as 
T r r u v  + TrLic(a) I = rtR. Fo r  the R H  2 a n o m a l y :  
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TRY:* {b'A, D'B} =Tr~:uv {D~v,DBuv} + Trg( r )  {g(hA) ,h~v}  

+ T r g ( r )  {hAv,g(hB)}  + Tr~:uv {g(hA) ,g(hB)}  

= Tr ~:tJv {hAy, h~v} - TrLie(G) {Adg(hA),ado(hB)}, (29) 

where the last line follows using the fact that there are no HG z anomalies and that the 
RG 2 anomaly cancels when the matter and gaugino contributions are added. Using the 

block diagonal forms of r* and h*, one has 

TRY'* {0*n, h'B} = Yr~',R {DIAR, hPR } -- YrLie(a) {Adg(h^),ado(h%}, (30) 

which gives the anomaly matching condition for the RH 2 anomaly when combined with 
the previous result. Similarly, for the R2H anomaly: 

Tr (~..) 2 I)* = Tr r:~v0uv + Tr{g(r ) ,g(h)} ( 'uv  + Tr g(r)2huv (31) 

-2  =Tr tuv0uv - T r L i e ( G )  {Ad~r), adg(h)} • (32) 

The block diagonal forms of t* and b* give 

Tr ((,.)2 []. = Tr ~:2R[hR _ TrLie<C) {ad,~r), ad~<h)}. (33) 

Comparing with the previous equation shows that the RZH anomalies are the same in 
the UV- and IR-theories. 

4. The infrared sector 

The results of the previous section allow one to study the matching of anomalies 
between the ultraviolet and infrared theories at certain points in the classical moduli 
space. In this section, we derive some results that allow us to relate the anomaly 
matching conditions at different points on the moduli space. The moduli space is no 
longer restricted to be the classical moduli space .A4cl. 

We consider the case where the moduli space M is an algebraic curve in an ambient 
vector space V given as the critical points of a superpotential W with R-charge two, 

where q~ denotes a point in V, and we will use the notation Wi =- OW/O~b i, Wq =- 
02W/0q~i?q~ j, etc. The tangent space to .Ad at q~o, T~oA4, is defined by 

T ,M= v I (35  

In all the cases we are interested in, W is a polynomial in O~ and Eq. (34) correctly 
describes the algebraic set, so that Eq. (35) agrees with the algebraic geometry notion 
of the tangent space. 
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Assume that a subgroup H of the flavor symmetry group F is unbroken at a point 
q~0 ~ 3,4. The invariance of the superpotential W under F implies that 

W(h~(b/o) = W(q~0), (36) 

where h~ is the matrix for the H transformation in the representation R of the fields q~. 

Differentiating this equation twice with respect to O~ and evaluating at the H-invariant 

point O~0 gives 

' ^ '  (37) h~hliWkl (h.ifbo) = hkih.;Wkl = . , 

which shows that Wii(~o) is an H-invariant tensor that transforms as (R ® R)s under 

H, where R is the H-representation of the low-energy fields q~ E V. The tangent space 

to M at O~0 is the null-space of Wii. One can write V = T~0.Ad + N],oAd as the direct 
sum of the tangent space and its orthogonal complement in V. Then Wij provides a 

non-singular invertible map from N3oAd into its dual, so that N~oAd transforms as a 
real representation of H. This immediately implies that the H anomalies computed using 

the fiat directions Tdb, M agree with those computed using the entire vector space V. 
A similar result holds for the anomalies involving the R-charge. Let Ri be the R-charge 

of O~i, so that 

since W has R-charge two. Differentiating twice with respect to q~ shows that 

e i"(R~+R~) Wii(~bo) = e:i"wi.i(~bo), (39) 

which can be written in the suggestive form 

eia( IRi-l l+[ Rj-I ] ) Wij( ~O) = Wi.i( ~bo). (40) 

R~ - 1 is the R-charge of the fermionic component of the chiral superfield. Thus Eq. (40) 
shows that N~b, A// transforms like a real representation under R = R - 1, the fermionic 

R-charge. Thus the R anomalies, and H × R anomalies can be computed at q~0 using V 

instead of TdboM. The result can be summarized by 

Theorem 4. Let .A4 C V be a moduli space described by the critical points of a flavor- 
invariant superpotential W of R-charge two. Then the anomalies of an unbroken subgroup 
H C F × R at a point q~0 ~ A,4 can be computed using the entire space V, instead of 
the tangent space of .A4. If the anomaly matching conditions between the UV- and 
IR-theories lbr H are satisfied at q~0, they are also satisfied at all points of any moduli 
space .A4' 6 V given by the critical points of any W ~ (including W' = 0 and W' = W), 
and at which H is unbroken. 

This result tells us that for moduli spaces described by a superpotential, the precise 
form of the moduli space is irrelevant. The only role of possible quantum deformations 
is to remove points of higher symmetry from the moduli space. 
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One interesting application of this result is to prove that anomaly matching conditions 

are compatible with integrating out heavy fields. Assume that one has a theory with a 

moduli space .A4A described by a superpotential W(O~, A). Now perturb the UV-theory 
by adding a tree level mass term U(q~) = mi.i~biqb j t o  the superpotential. U(~b) is gauge 

invariant, and can be written as a polynomial W m ( ~ )  of the gauge-invariant composites 

of the IR-theory. If the UV-theory contains no singlets, then Wm(q~) is linear in 
the basic gauge-invariant composite fields ~. From this, it immediately follows that the 
effective superpotential of the massive theory is given by 

W(~.  A) = Wo((~, A) + W.,((~), (41) 

where W0 is the superpotential in the absence of a mass term, since a linear term in the 
fields is equivalent to a redefinition of the source. 

The anomalies in the IR-theory for any unbroken subgroup are unaffected by the 

change in the moduli space due to the addition of the mass term. They are still obtained 
by tracing over the whole space V. In the UV-theory, one should trace not over the 

whole space U, but only over the modes that remain massless when Wm is turned on. 
But it is easy to see that the massive modes in the UV-theory form a real representation 
of the unbroken symmetry. The argument is the same as that used in the IR-theory, 

except that Wij(4)O) is replaced by the (constant) matrix mij. Thus the mass term does 
not introduce any modifications to the anomaly in the UV- or IR-theory. Thus one finds 
that if the 't Hooft conditions are verified for a theory, they are also valid for any theory 

obtained by integrating out fields by adding a mass term. The same argument is used 

to extend Theorem 3 to the case where there is a tree level-invariant superpotential 
W. Assume H C_ F is unbroken at O~o E AAcj, and ~b0 E 7r - l (~o)  C_ U w satisfies the 
conditions of Theorem 3. Then Theorem 4 applied to the G × F invariant subset U w C_ U 

gives 

.An.  ( T6o Uw ) = .AH* (U) ,  (42) 

because ~bo is a fixed point of the H* action and U w is the set of critical points of an 

H*-invariant superpotential. (Here .AH.(Z) denotes the H* anomaly computed using 
the vector space Z.) Thus 

.Au (T~o.A4cl) = .AH* ( T4~o Uw ) = .AH. ( U)  = A H (  U ) ,  (43) 

where the first and third equalities are shown in the proof of Theorem 3. 

We finally show how to use Theorem 4 to globalize the point-by-point result of the 
matching theorem for theories with a moduli space given by a superpotential. For a 
generic supersymmetric gauge theory, the representation p of the gauge group on U 
is made up of NF, tensor copies (flavors) of representations Pi, i = 1 . . . . .  r and the 
non-anomalous flavor symmetry group is 

F = S U ( N F , )  × SU(NF2)  z . . .  x SU(NF~) × U(1)I  × U( I )2  x . . .  x U ( l ) ~ - i  

×U(1)R. (44) 
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The most non-trivial anomaly check is to show that the anomalies for the entire flavor 
group F match at the origin. From this, anomaly matching at all points of the mod- 
uli space follows by another application of Theorem 4. The non-trivial anomalies are 
SU(NF,) 3, SU(NF,)2U(I).i, and U(1)iU(I)jU(1)k,  where the U(1).i include the R 
symmetry. An SU(NF,) 3 anomaly is proportional to the d-symbol for the SU(NF,) group. 

Since the d-symbol is non-zero for SU(3), the SU(NF,) anomaly can be computed by 
looking at an SU(3) subgroup. This is a standard trick tbr computing the anomalies of 

representations of a general Lie group. To show that the SU(NF,) 3 anomaly matches, 
it is sufficient to find a point on the moduli space that leaves an SU(3) subgroup of 
SU(NF,) unbroken. The SU(NI~;) 3 anomaly must then also match at the origin. Sim- 
ilarly, the SU(NF,)2U(I)j anomaly matching can be proven by considering a point 
on the moduli space which leaves a U( I )  subgroup of SU(NF,) and U(1)} unbroken. 
There is a subtlety here: the unbroken U( 1)} generator can be a linear combination of 
the original U(1) i  generator and some of the (broken) SU(NF~) generators. However, 
having already proven that the SU(NF, ) 3 anomaly matches, SU(N~ i) 2 U( 1 ) j. anomaly 
matching implies SU(N~,) 2 U( 1 )j anomaly matching. The U( 1 )i U( 1 )i U( 1 )/, anomaly 
matching is proven by finding a point where three U ( l ) " s  are unbroken, where again 
U(1) '  is a linear combination of the original U(1) 's  and SU(NF,) generators. This 
procedure might seem complicated, but it is not that involved in practice. In the case 
of supersymmetric QCD, we will show explicitly how one can prove anomaly matching 
for NF = N,: + 1 by considering just one point on the moduli space (and its charge 

conjugate partner). 

5. Applications 

The construction of the moduli space of supersymmetric gauge theories can be highly 
non-trivial when there are many gauge-invariant combinations of the fundamental fields. 
The results of the preceding sections help simplify the analysis of the structure of 
the moduli space, and of anomaly matching between the fundamental and massless 

composite fields. We treat the following problems: 
(A) Determining the flavor isotropy group F#(,b~,) of the vacuum 7"r(~0) C .McZ, i.e, the 

maximal unbroken subgroup of F at 7r(~b0).-s 
(B) Setting sufficient conditions for the F~,/,,,) anomalies in U to match the corre- 

sponding anomalies in T~o).AAcl. 
(C) Setting sufficient conditions for anomalies to match at every vacuum of the (pos- 

sibly quantum deformed) moduli space. 
Three different situations can be considered: 

(i) The basic gauge invariants of the given theory are not known. 
(ii) The basic gauge invariants are known, but not the constraints among them. 

(iii) Both the invariant and the constraints are known. 

5 This problem is not trivial when the basic gauge  invariants of  the theory are not known. 
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In situation (i) Theorems 2 and 3 tell us that if 05o E U w is smooth, totally breaks 

the complexification G of the gauge group Gr, and has a closed orbit G050 (equivalently, 

there is a D-flat point in G050), then the anomalies do match between U and T~(6o)M~l, 

AFt.,, (T~, M ~ )  = AFt,,, (U). 

This solves Problem (B) .  To determine the flavor isotropy group F~r(60) we note from 

Theorem 2 in Section 2 that for 05o as above T4,o(~-1(~-(050))) = Lie(G)050, and 
F~-(6,, ) is isomorphic to the G x F isotropy group at 05o. 6 

In situation (ii) we can solve (A)  and (B) in the same way as in situation (i) ,  

but we have the alternative of  directly determining F~(6o), for which only the gauge 
invariants and not the constraints among them are needed. 

In situation (iii) we have an additional way of dealing with Problem (B) ,  using 
the fact that the gauge group Gr is semisimple. As .A4d is known we can calculate 

its dimension. Suppose dim .AAcl = dim U -  do and a point 05o is found such that: 

7r(05o) is smooth, 050 breaks completely G. Then the F~.~4,o~ anomalies match between 
U and T~(4,o)AAcj. This follows from Theorems 1, 2 and 3. Note that it is crucial that 

05o break completely the complexification of the gauge group. Consider the example of  
supersymmetric QCD with NF = Nc - 1. The classical moduli space is the span of the 
unconstrained fields M~, so .A-4cl ~ C u,2 and dim .A/I d = dim U - de. The point 05o of 

coordinates ((~0)m = 0, Q6" = m8 i'~, ce <~ NF, 0 for ol = Nc, totally breaks Gr = SU(Nc),  
but not G = SL(Nc, C). .A4d is smooth everywhere, in particular ~(050) = 0 is a smooth 
point. However, anomalies do not match between the UV and ToA-4cl = span(Mii). Now 

consider the point 051 with coordinates (Qi),~i = QI" = m8 i~, a ~ NF, 0 for cr = No. This 
point breaks completely the complexification of the gauge group, and it is mapped onto a 
smooth point. Theorems 1, 2 and 3 predict anomaly matching, which is straightforward 

from the fact that F~b , )  is the diagonal SU(NF) .  

Theorem 4 in Section 4 gives an answer to Problem (C) .  Whenever .AAcl is the set 

of  critical points of  an invariant superpotential, the matching of the FS~ anomalies at the 

vacua ~i, i = 1 . . . . .  s implies the matching of Fd, ' anomalies at any vacuum ,~ where 

F8 D F,~. In particular, we can take ,~ = 0 E .A4cl, where the flavor group is not broken 

at all. The points ,~i can be chosen such that the matching of the FS, anomalies at the 
origin (where the tangent space is the full ambient vector space) implies the matching 
of the full flavor group anomalies there. Applying again Theorem 4 we prove that every 

point of  .A-4cl will pass ' t  Hooft 's  test. This extends to .A/[ a if MA also comes from a 
flavor-invariant superpotential. This idea can be used to prove anomaly matching for the 
large family of  s-confining theories of Ref. [6],  and for those obtained from them by 
integrating out any number of  flavors. The latter may have a quantum modified moduli 
space, which can be embedded in the same ambient vector space of the s-confining 
theory, and is described with an invariant superpotential (Section 4).  

6 Note that in general F,~o C Frr~,~o~- 
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Table 1 
Flavor representation of the fundamental and composite fields for SU(2) gauge theory with 2NF fundamentals 

SU(2NF) U(I)R 

Q,. [ ]  NI"- 2 
All,. 

Vij ~ 2 Ut- 2 u NF 

Below, we extend the explicit anomaly matching calculations in supersymmetric QCD 

done in Ref. [1 ] to a generic point in moduli space, and show that anomalies match 
precisely at those points predicted by our theorems. The amount of calculations using 
both approaches is contrasted. 

5.1. Supersymmetric QCD 

5.1.1. Nc = 2 
The quarks and antiquarks transform as the 2 of  SU(2) ,  and so can be treated 

together as 2NF flavors of  doublets. The flavor symmetry is SU(2NF) x U(1)R. The 
basic gauge-invariant field is the meson 

Vij = e,#Qi~Q j#. (45) 

The transformation properties of  the fundamental fields and composites under the flavor 

symmetry is listed in Table 1. 

The classical moduli space for N r  = 1 (i.e. NF < Nc) is given by all possible values 
for Vij. Since Vij is a 2 x 2 antisymmetric matrix, it has the form 

v i J = (  O-v Or)" (46) 

For v 5~ 0, the unbroken flavor symmetry is flavor SU(2) ,  whereas for v = 0, the full 
SU(2)  x U(1)R symmetry is unbroken. It is straightforward to verify that the SU(2)  3 

and SU(2)  anomalies match between the UV- and IR-theories so that the IR- and UV- 
theories have the same anomalies at a point on the moduli space where v :~ 0. At the 

origin of  moduli space v = 0, the UV and IR anomalies do not match. The anomaly 
matching theorem can be used at all points v 5~ 0. One can pick a point 

1 0 ) (47) 
Q~"=w 0 I 

with v = w 2, which gives Eq. (46) for V i.i. The orbit containing Qb'~ is closed, and G is 
completely broken, so the UV and IR anomalies must match. There is no point above 
the origin V ij = 0 that satisfies the requirements for applying the anomaly matching 
theorem. Thus for NF = 1, all points where the anomalies match can be described using 
the theorem. Note that the point 
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Table 2 
Flavor representation of the fundamental and composite fields for SU(2) gauge theory with 2NF fundamentals 
under the SU(2) x SU(2NF - 2 )  x U(I)R subgroup 

SU(2) S U ( 2 N F  ) U (  1 ) R  

Qil~ [ ]  - o 

Q m  - -  [ ]  N¢.--2 
N F -- 1 

- - o 

N F -  I 

1 0 ) (48) 
o o 

completely breaks the gauge group Gr, but not the complexified gauge group G. Com- 

pletely breaking Gr is not sufficient to use Theorem 3. 
For NF >~ 2, the classical moduli space is the set of  all Vq's  subject to the constraint 

that rank V ~< 2 [ 1 ]. At a generic point 

0 U 

--v 0 

0 0 vi .J  = 

. , . 

O . . . 

. . .  

0 0 0 . . .  

0 
0 

0 

0 

(49) 

with v 5~0, the flavor group is broken to SU(2)  x S U ( 2 N F -  2) x U( I )R .  To compute 

the anomalies in the UV- and IR-theories, it is convenient to break up the flavor index 

into i = 1,2 and i = 3 . . . . .  2Np. The quarks can be broken into QI and Qz, respectively. 
The meson V i.j can be written as 

• " ( V I I  V,2) 
v ' =  v22 ' (50) 

where Vii and V22 are 2 x 2 and ( 2 N F  -- 2) x ( 2 N F  -- 2) antisymmetric matrices, and 
V12 is a 2 x 2NF -- 2 matrix. Denoting the tangent vectors to the moduli space by 6V,  

one sees that the constraint rank V ~< 2 requires that 8V22 = 0 if v 5~ 0. The flavor 
transformation of  the fields is given in Table 2. 

It is easy to verify that the flavor anomalies of  QI and Q2 are the same as those of  

6Vll and ~VI2, so that the flavor anomalies match at all points where v ~ 0 [ 1]. At 
the origin V q = 0, the full flavor group is unbroken, and the tangent vectors ~V ij are 
unconstrained. The anomalies in the UV- and IR-theories are computed using the fields 
in Table 1, and match only for the case of  N r  = 3 [ 1 ]. 

The point 

( 1  0 0 . . .  0 )  (51) 
Q0 = w 0 1 0 . . ,  0 ' 
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with w 2 = v projects to a point Eq. (49) on the classical moduli space. As before, Q0 is 

a point on a closed orbit that completely breaks the gauge group, so anomaly matching 

is guaranteed. This explains all the points where the anomalies match for NF 5 / 3. In 

the case where N F  = 3, the classical moduli space is described by a superpotential 

W ,x PfV (52) 

In this case, Theorem 4 implies that SU(2) × SU(2NF - 2) × U( 1 ),~, anomaly matching 

at V ',i 5 /0  also implies that the anomalies for this subgroup match at the origin. But 

that is sufficient to guarantee anomaly matching for the lull SU(2NF) × U ( I ) R  flavor 

symmetry at the origin. 

5.1.2. N,: > 2 
The analysis can be repeated for the case Nc > 2. The computations are more involved 

than for N,: = 2, because it is tedious to find the tangent vectors at a given point on the 

moduli space. One can show that all points where anomalies match between the UV- 

and IR-theories are covered by the anomaly matching theorem, except for trivial cases in 

which the unbroken favor  symmetry group is anomaly-free. Instead of going through a 

detailed description of  anomaly matching at the different points of the moduli space, we 

will illustrate the anomaly matching at one interesting point (the "baryon point") ~0 on 

the moduli space for N F  >/ No, where M~ = 0, B I>''u' = 1 (with all other components 

zero), /~ = 0. 
The unbroken flavor group at O~0 is SU ( N~. ) L x S U  ( N F - No)L x S U  ( N F ) R × U ( 1 )  B × 

U( I)R. The point 050 

1 0 0 0 0 . . .  0 I 
0 1 0 0 0 . . .  0 

Q0 = . . , 00 = 0, (53) 

0 0 0 I 0 . . .  0 

projects to &0, rr(050) = ~0. Theorems 2 and 3 tell us that the anomalies should match 

at this point. The tangent vectors on the classical moduli space at q~0 can be found easily 
in this case, since rr~ is onto. They are given by 8M~, i ~ N, 6B  I'''N" and ~B l'''~'''N'r, 

where 1 ~ k ~ No, r > N~., and ~: means that the value k is omitted. The transformation 

properties of  the fundamental and composite fields is given in Table 3. The anomalies 
in the UV- and IR-theories are tabulated in Table 4. Clearly, it is simpler to use the 

anomaly matching theorem, instead of  computing the entries in Table 4. 

5.1.3. S-confinement and quantum deformations 
For any value of  Nc and N F  -- Nc + I the classical moduli space of  supersymmetric 

QCD is the set of  critical points of the flavor-invariant superpotential m l i B i B J  - det M. 

The effective superpotential is therefore [2] 

1 (M~Bi ~j - det M) (54) WO - A 2 N , -  I 
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Table 3 
Flavor transformations of the fundamental and composite fields at a "baryon point" 

599 

SU(Nc)L SU(NF -- Nc)L SU(NF)R B R 

¢ i  ~ [ ]  - - o o 

Q'ff - [] - - N F  (2NF -- 2Nc)/(2NF - N ~ )  

Q j a  - - -  E ]  Ur -- Uc (2NF -- 2Uc)/(2UF -- Uc) 

~M( [] - E] NF -- Nc (2NF -- 2N~.),/(2NF - No) 
~ B  ~ ' ' N  - -  - -  - -  0 0 

3B I'''L'N'r ~ [] - --NF (2NF -- 2Nc)/(2NF - No) 

The quark fields are divided up into Q]'~ and Q~'~, which are Qia, i <~ Nc and Qm, i > Nc, respectively. The 

tangent vectors on the moduli space a r e  3M~, i ~ No, 6B LN and SB LLN,'~, r > No, k <<. No. 

Table 4 
Flavor anomalies in the UV- and IR-theories due to the various fields 

UV IR 

Q]'* Qi a Oja A 6M~ 6B I 'N &B I'''LN'~" 

SU( N,.)~ N,, 0 0 0 NF 0 --s 
SU (s) ~ 0 Nc 0 0 0 0 Nc 
SU( NF )~ 0 0 -No  0 - N c  0 0 
B 3 0 - N c s N  3 NcNFS 3 0 NcNFS 3 0 - N c s N  3 
R 3 -N~:~ Nest 3 NcNFt 3 N¢ 2 - 1 NcNFt 3 -- 1 Nest 3 

SU(Nc)eL B 0 0 0 0 NFS 0 --SNF 
SU(S)2L B 0 -NcNF 0 0 0 0 --N,.NF 

SU( NF)R B 0 0 Ncs 0 Ncs 0 0 
SU(Nc)L R -No  0 0 0 NFt 0 st 
SU(s) 2 R 0 N,,t 0 0 0 0 N~.t 

SU(NF) 3 R 0 0 Net 0 Net 0 0 
B 2 R 0 NcSNFt NcNFS2t 0 NcNFS2t 0 N, sN2t 
R 2 B 0 --NcNFst 2 NcNFSt 2 0 NcNFSt 2 0 -N~sNFt 2 

B 0 -NcsNF NcNFS 0 NcNFS 0 -NcsNF 
R - N ~  Nest N,.NFt N2c -- 1 NcNFt - 1 Nest 

A is the gaugino. Here s = NF -- No, t = --N,./(2NF -- No). See the Table 3 caption for the definition of the 
various fields. 

and the quantum moduli space .Mn agrees with A,4d. The matching of the anomalies of 
the SU( Nc)L x SU( Ne - N~.)L x SU( NF)R x U( I)B X U( l )n  flavor subgroup unbroken 
at the "baryon" point of the previous subsection, together with that of the "antibaryon" 
point (with Q ++ (~) with unbroken flavor subgroup SU(Nc)R x SU(NF - Nc)n x 

SU(NF)L x U( 1)~ x U( I)R imply the matching for the full flavor group at the origin 
(Theorem 4).  Another application of Theorem 4 proves 't Hoofl's conditions are satisfied 
at any vacuum in the moduli space. According to the discussion of Section 4, adding a 
tree level mass term mQN'+I'~O.~N,.+I tO W gives the effective superpotential 

• . N , . +  1 l ( M ! i B i [ ~ )  - detM) + rnmNc+,. Wm= --n --2N"--------T (55) 
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The critical points of Eq. (55) give the quantum moduli space 

M i -: M N'~-I -~ O, 
N~ + I j 

B i = B i = O, 

det M - B/~ = A~ jv ~I, 

i<.N~, 

(56) 

of the NF = Nc theory, where B = BN,+I,/~ = ~U,.+l and the determinant extends to 

the light flavors i , j  ~< N,. Applying Theorem 4 to W0 and Wm proves that anomaly 

matching for the NF --- N~ + 1 theory implies anomaly matching at every point of the 
quantum deformed moduli space of the NF = Nc theory.  We can therefore avoid the 
explicit checks done at isolated points of .A.'/A in Ref. [ 1 ] and be sure the result holds 

at every point. Note that, although A//,~ of the NF = Nc theory can be described as the 
set of critical points of a superpotential when embedded in the vector space of gauge 

invariants of the NF = N , .  + I theory, Mcj cannot. In particular, anomalies do not match 
at the point M~ = 0, B =/~ = 0, which belongs to A4cl but not to .A.4A. 

5.2. Other S-confining theories 

Our analysis for QCD extends to other s-confining theories, an exhaustive list of which 
can be found in Ref. [6]. For all s-confining theories AJcl = .A//A can be described by 
a flavor-invariant superpotential, so a finite number of points q~i E U satisfying the 
hypothesis of the matching theorem is enough to prove anomaly matching at every point 
of their moduli space and at the quantum deformed moduli space of the theories obtained 
from them by integrating out heavy fields. Explicit verification of this matching both 

for the s-confining theory and the quantum deformed one is a formidable task. Even the 
determination of a complete set of basic gauge invariants is sometimes non-trivial. We 

give one simple example of an s-confining theory. 

5.2.1. SP(2N, C) with 2N + 4fundamentals Q,i 
SP(2N, C) is the group that leaves invariant the 2-form 

0 ~T'NxN ) (57) 
g(rl3 -~ - - ~ N × N  0 " 

This is the complexification of the group Gr = SP(2N) = SP(2N, C.) N U(2N).  Just 
one point ~b0 is required to prove anomaly matching in the s-confining SP theory with 
2N + 4 fundamentals Q,i, Q~i = mS, i, i <~ 2N, 0 for i > 2N. This point totally breaks 
G, and its orbit is the closed set SP(2N, C), naturally embedded in the vector space 
C 2N(2N+4) of 2N × (2n + 4) matrices. 
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6. Conclusions 

For supersymmetric gauge theories with a reductive gauge group G, the classical 
moduli space A4cl is the algebraic quotient of the algebraic set of critical points of 

the superpotential under the action of G. There are known bounds for its dimension, 

which can be determined without knowing the basic invariant polynomials when closed 

orbits of maximum dimension are found. The anomaly matching theorem can be used to 

show that the 't Hooft consistency conditions are satisfied at points that totally break the 
complexification of the gauge group and either have a closed orbit or are mapped onto a 

smooth point of .Mcl. Anomalies will match at every point of -/~A if a few suitable points 
satisfying the above hypothesis are found and both .h4d and .Ma can be described as the 

set of critical points of a flavor-invariant superpotential. Anomaly matching for a theory 

implies anomaly matching for those theories obtained from it by integrating out matter, 

even when these have a quantum modified moduli space. Anomalies match for the large 
tamily of s-confining theories and those obtained from them by integrating out a flavor, 

which have a quantum modified moduli space. The explicit anomaly computations found 

in the literature can often be avoided, if one uses the results discussed here. These results 
also allow one to anticipate if .A,4cl or a quantum deformed .AAA describes correctly the 

IR massless modes, or if an alternative description (such us a dual theory) is required. 
Extensions of our results to cases where the complexification of the gauge group is not 
totally broken and applications to dual theories are currently under study. 
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