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Supersymmetric Gauge Theories with an Affine Quantum Moduli Space
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(Received 3 December 1997)

All supersymmetric gauge theories based on simple groups which have an affine quantum moduli
space, i.e., one generated by gauge invariants with no relations,W ­ 0, and anomaly matching at the
origin, are classified. It is shown that the only theories with no gauge invariants (i.e., moduli space
equal to a single point) are the two known examples, SU(5) with5 1 10 and SO(10) with a spinor.
The index of the matter representation must be at least as big as the index of the adjoint in theories
which have a nontrivial relation among the gauge invariants. [S0031-9007(98)05651-8]

PACS numbers: 11.30.Pb, 11.15.–q
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The moduli space of supersymmetric gauge theories
described in terms of gauge invariant composite field
made out of the microscopic fields. In general, the lo
energy theory can have a superpotential constructed fr
the composite fields, as well as nontrivial polynomia
relations among the composite fields. The structure
some of these moduli spaces has been studied in de
[1,2]. In this paper, we classify all supersymmetric gaug
theories based on simple groups with an affine quantu
moduli space. These are theories in which the mod
space is given by gauge invariant polynomials with n
relations between them, and hasW ­ 0. The flavor
anomalies of the fundamental fields agree with tho
computed using the gauge invariant composites at
points, including the origin. The low-energy massles
modes are given by the gauge invariant composites, a
are the same at every point on the moduli space. So
of these theories have several branches, of which at le
one hasW ­ 0. We find two side results: (i) the only
theories with simple gauge groups for which there a
no gauge invariant composite fields are the two cas
known in the literature, SU(5) with5 1 10, and SO(10)
with a single spinor [3]. The moduli space of thes
theories is a single point, and the theories are expec
to break supersymmetry dynamically. (ii) Theories wit
nontrivial relations among the basic gauge invariants mu
have m $ madj. (Here m is the index of the matter
representation, andmadj is the index of the adjoint.)

The most familiar example of a supersymmetric gaug
theory is supersymmetric QCD withNC colors andNF

flavors of quarksQia and antiquarksQ̃jb . This theory
does not satisfy the criteria for an affine moduli spac
It has either a superpotential or a relation between t
composites, or both. The classical moduli space f
NF , NC is given by the value of the meson fieldMi

j ­
QiaQ̃ja, and the quantum theory has a dynamical
generated superpotential [1]

W ­ sNC 2 NFd
∑

L3NC2NF

detM

∏1ysNC2NFd
. (1)

WhenNF ­ NC , the moduli space is given by the value
of the mesonM, and baryonsB ­ detQ andB̃ ­ detQ̃,
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subject to the quantum constraint detM 2 BB̃ ­ L2NC ,
and W ­ 0. For NF ­ NC 1 1, the moduli space is
given by the superpotential [1]

W ­
B̃iM

i
jBj 2 detM

L2NC21
. (2)

The gauge invariantsMi
j , Bj , andB̃i have relations among

them (such asMi
jBj ­ 0) which are obtained by varying

the superpotentialW in Eq. (2). If NF . NC 1 1, the
low-energy theory has a dual description [1]. Anothe
interesting family of theories is supersymmetric SOsNd
gauge theory withN 2 4 flavors of matter in the vector
representationQia [4]. In this case, the moduli space
is described by the value of the meson fieldMsijd ­
QiaQja. There are four branches, two withW ­ 0, and
the other two withW ­ 62LN21y

p
detM. The W ­ 0

branch is an example of an affine moduli space.
The classification of all supersymmetric gauge theorie

with an affine quantum moduli space is straightforward
but tedious. All maximal representationsrmax of simple
Lie groups G with a free algebra ofG-invariant poly-
nomials have already been classified in the mathemati
literature [5,6]. (A free algebra is one in which there are
no relations among the generators.) It remains to loo
at all subsets ofrmax, and to check that the theory has
no gauge anomalies and is asymptotically free, and th
the flavor anomalies satisfy ’t Hooft’s consistency condi
tions [7]. In particular, one requires that the anomalie
match at the origin. The quantum theory is then expecte
to be a confining theory, and the low-energy dynamics
given by a supersymmetric effective Lagrangian written
in terms of the composite fields, with a Kahler potentia
that is smooth at the origin. One can also classify a
theories which have no gauge invariant composites, sin
these are a special case of theories with a free algeb
of invariants. For these theories, one does not have a
anomaly matching constraints. The resulting theories (a
ter checking,200 cases) are listed in Table I, and the
invariants are listed in Table II. The theories can be d
vided into three groups:T1 T6 havem , madj; T7 T11
havem . madj. TheoriesS1 and S2 have no invariant
polynomials. These have been studied before [3], and a
© 1998 The American Physical Society
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s. We
TABLE I. All theories with unconstrained moduli spaces andW ­ 0. The anomalies computed using the microscopic fieldsr,
and using the gauge invariant composites listed in Table II agree at all points, including the origin forT1 T11. TheoriesS1 and
S2 have no gauge invariants, and are the only two theories of this type. Anomaly matching does not hold for these theorie
omit theories which are conjugate to those listed, or withS ! S0. Notation:G is the gauge group,r the matter representation (S
denotes the spinor representation),dr the dimension ofr, dM the number of gauge invariant composites, andGp, the unbroken
gauge group atD-flat points whereG is maximally broken. InT10, k ­ N 2 2 if N is even, andk ­ N 2 1 if N is odd. Theory
T4 with N ­ 6 is equivalent toT1 with N ­ 2. T1 T6 havem , madj; T7 T11 havem . madj. T10 with N ­ 3 satisfies all
the anomaly matching conditions, but is not an asymptotically free theory.

G r dr dM m madj Gp

T1 SUs2Nd M 1 M 2Ns2N 2 1d N 1 1 2N 2 2 2N fSUs2dgN

T2 SU(6) N 20 1 3 6 SUs3d 3 SUs3d

T3 Sps2Nd, N $ 2 M sN 2 1d s2N 1 1d N 2 1 N 2 1 N 1 1 fSUs2dgN

T4 SOsNd, N $ 5 sN 2 4dh NsN 2 4d 1
2 sN 2 4d sN 2 3d N 2 4 N 2 2 SUs2d 3 SUs2d

T5 SO(12) 2S 64 7 8 10 fSUs2dg3

T6 SO(14) S 64 1 8 12 G2 3 G2

T7 SU(2) ‰ 4 1 5 2 Z3

T8 SU(8)
fl

70 7 10 8 sZ2d6

T9 Sp(8)
fl

42 6 7 5 sZ2d6

T10 SOsNd, N $ 5 ¿ 1
2 sN 2 1d sN 1 2d N 2 1 N 1 2 N 2 2 sZ2dk

T11 SO(16) S 128 8 16 14 sZ2d8

S1 SU(5) h 1 M 15 0 2 5 SU(5)

S2 SO(10) S 16 0 2 8 SO(10)
a
ric
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es
believed to break supersymmetry dynamically. These a
the only two theories based on simple groups which ha
no gauge invariants. One can also check that all phy
cally interesting theories, i.e., those with no gauge anom
alies, with m , madj (m # madj if the representation is
irreducible) have a free algebra of invariants. Thus a
theories with constraints must havem $ madj. This is
true even if the relation involves the nonperturbative sca
L, because for large values of the fields,L can be ne-
glected, and the quantum relation reduces to a classi
relation.

Theories with m , madj can have a dynamically
generated superpotential. The general form of a superp
tential consistent with theR symmetry is a sum of terms
of the form

W ­ Lsm23madjdysm2madjdPif
2miysm2madjd
i , (3)

wherefi are the elementary fields with indexmi. The
product of fieldsfi must be gauge and flavor invariant
For asymptotically free theories,m , 3madj, so that the
power ofL is positive if m , madj. This means that far
away from the origin of moduli space, where the classic
description is valid, the superpotentialW ! 0, as one
would expect in the classical theory. Form . madj, L

occurs with a negative power. This is not an acceptab
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form for W , sinceW ! ` for large values of the fields,
which disagrees with the classical result. There is
loophole to the above argument, since supersymmet
QCD with NF ­ NC 1 1 hasW of the form Eq. (2), with
L in the denominator. In this case, the numerator ofW
vanishes on the moduli space, because of the constra

TABLE II. Invariants for the theories in Table I. Details
about the index contractions have been omitted. Flavor indic
are denoted byi, and gauge indices by Greek letters.

Fields Invariants

T1 Afabg, Ãfabg uk ­ sAÃdk , k ­ 1, . . . , N 2 1;
b ­ PfA; b̃ ­ Pf Ã

T2 Afabgg u ­ A4

T3 Afabg uk ­ Ak , k ­ 2, . . . , N
T4 Qia Mij ­ QiaQja

T5 fia uk ­ sf1f2dk, k ­ 1, 3; wr ­ f
r
1 f

42r
2 ,

0 # r # 4
T6 fa u ­ f8

T7 fsabgd u ­ f4

T8 Afabglg uk ­ Ak , k ­ 2, 6, 8, 10, 12, 14, 18
T9 Afabglg uk ­ Ak , k ­ 2, 5, 6, 8, 9, 12

T10 fsabd uk ­ fk, k ­ 2, 3, . . . , N
T11 fa uk ­ fk, k ­ 2, 8, 12, 14, 18, 20, 24, 30
2759
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equations between the mesons and baryons, so thatW !
0 at infinity. However, the theories we are considering a
precisely those which have no relations among the gau
invariants, so one cannot have a negative power ofL in
W , and there is no dynamically generated superpoten
if m . madj.

The first six theories all havem , madj and can have
a dynamically generated superpotential. They all ha
several branches, with a branch havingW ­ 0 and an
affine moduli space. This has been well studied in t
case of SOsNd gauge theory withNF ­ N 2 4 flavors
of matterQia in the fundamental representation [4]. Th
moduli space is described by the meson fieldsMij ­
QiaQja , which is anNF 3 NF symmetric matrix. The
’t Hooft conditions are satisfied at all points of the modu
space, including the origin. There are points on th
moduli space where the gauge group is spontaneou
broken to SOs4d , SUs2d 3 SUs2d by giving vacuum
expectation values to the matter fields. Each SU(
gauge theory has superpotentialW ­ 6L

3
L, where the

two possible signs correspond to the two different vac
of the SU(2) gauge theory, andLL is the low-energy
scale parameter of the SU(2) theory. The totalW has the
form W ­ 6L

3
L 6 L

3
L from the two SU(2)’s, which have

identical couplings, and hence identicalLL’s. Matching
the gauge couplings of the original SOsNd theory to the
SO(4) coupling gives the relationL3

L ­ LN21y
p

detM,
whereL is the scale parameter of the SOsNd theory. Thus
the superpotential of the SOsNd theory has the values
W ­ 0, 62LN21y

p
detM. One can add a mass term

Wm ­ mijQiaQja ­ mijMij to the original theory. The
branch withW ­ 0 now hasW ­ mijMij , and so has
no supersymmetric ground state if one assumes that
Kahler potential is smooth at the origin when written i
terms of M. This does not mean that supersymmet
is broken: there is a nontrivial solution to≠Wy≠M ­ 0
in the branchesW ­ 62LN21y

p
detM 1 mijMij . In

summary, SOsNd with sN 2 4dh has multiple branches,
two of which haveW ­ 0. Perturbing the microscopic
theory by a mass term lifts theW ­ 0 branches, but
there are still supersymmetric solutions from theW fi 0
branches of the theory.

One expects the other five theories withm , madj
to also be multibranched theories, with a branch havi
W ­ 0. There are several ways to check that this
true. One way is to note that the remaining five theori
can all be obtained froms-confining theories [8] by
integrating out matter. It is straightforward to verify
that one gets several branches, one of which hasW ­
0. The same result can also be obtained by looki
at gaugino condensation. InT6, SOs14d ! G2 3 G2,
one can getW ­ 0 from a cancellation between the
superpotentialsW ­ v

r
4L3 (v4 is a fourth root of unity)

due to gaugino condensation in eachG2. The origin of
W ­ 0 for the other theories is more subtle. InT2, one
gets two unbroken SU(3) gauge theories. Each SU
2760
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gauge theory hasW ­ L
3
Lvr , where v is a cube root

of unity. Naively, one expects that the superpotential is
the sumW ­ L

3
Lsvr 1 vsd of the two SU(3)’s, which

does not have aW ­ 0 branch. However, a more careful
analysis shows thatW is the differenceW ­ L

3
Lsvr 2

vsd, which does have aW ­ 0 branch. One can see this
by studying the breaking of SUs6d ! SUs3d 3 SUs3d.
The expectation valuekAf123gl ­ y1, kAf456gl ­ y2 breaks
SUs6d ! SUs3d 3 SUs3d, and one needsjy1j ­ jy2j to
satisfy theD-flatness condition. The matching condition
on L is L

3
Li ­ L5yy

2
i . One can interchange the two

SU(3) groups by acting with the SU(6) matrix

U ­

0BBBBBBBB@

0 0 0 i 0 0
0 0 0 0 i 0
0 0 0 0 0 i
i 0 0 0 0 0
0 i 0 0 0 0
0 0 i 0 0 0

1CCCCCCCCA , (4)

which mapsy1 ! 2iy2, y2 ! 2iy1. The factors ofi
are necessary for the matrix to have detU ­ 1. UnderU,
one finds thatL3

L1,2 ! 2L
3
L2,1, so that it is the difference

of W ’s which is SU(6) invariant.
The origin of W ­ 0 for T1 is also interesting, espe-

cially when N is odd, since then one has the sum of an
odd number of SU(2) superpotentials. This can be ana
lyzed for the case of SUs6d ! fSUs2dg3 by the vacuum
expectation value ofA andAp, the two matter fields in the
antisymmetric representation. The breaking is due to

kAl ­

0BBBBBBBB@

0 y1 0 0 0 0
2y1 0 0 0 0 0

0 0 0 y2 0 0
0 0 2y2 0 0 0
0 0 0 0 0 y3

0 0 0 0 2y3 0

1CCCCCCCCA , (5)

kÃl ­

0BBBBBBBB@

0 ỹ1 0 0 0 0
2ỹ1 0 0 0 0 0

0 0 0 ỹ2 0 0
0 0 2ỹ2 0 0 0
0 0 0 0 0 ỹ3

0 0 0 0 2ỹ3 0

1CCCCCCCCA , (6)

with y
2
i 2 ỹ

2
i ­ const, which breaks SUs6d ! fSUs2dg3

as long as they2
i are all different. The masses of the

gauge bosons corresponding to the broken generato
are proportional to the differencesy

2
i 2 y

2
j , i fi j. The

relations between the low-energyLi ’s and L, obtained
by matching coupling constants at the gauge boso
mass scales, areL3

1 ­ L7ysy2
1 2 y

2
2d sy2

1 2 y
2
3d, L

3
2 ­

L7ysy2
2 2 y

2
1 d sy2

2 2 y
2
3 d, L

2
3 ­ L7ysy2

3 2 y
2
1 d sy2

3 2

y
2
2 d. The SU(6) superpotential is the sum of the three

SU(2) superpotentials,

W ­ 6
L7

sy2
1 2 y

2
2d sy2

1 2 y
2
3d

6
L7

sy2
2 2 y

2
1 d sy2

2 2 y
2
3 d

6
L7

sy2
3 2 y

2
1d sy2

3 2 y
2
2d

, (7)
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and has aW ­ 0 branch [9]. The other SUs2Nd T1
theories can be analyzed similarly. An almost identic
analysis also explains theW ­ 0 branch for the Sps2Nd
theory T3. This theory has been analyzed previous
in Ref. [10], where theW ­ 0 branch was obtained by
integrating out matter.

TheoriesT7 T11 havem . madj, and so cannot have
a dynamically generated superpotential. TheoryT7 has
been studied before [11]. It has no quadratic invarian
and so is a chiral theory. It is expected to brea
supersymmetry dynamically when the microscopic theo
is perturbed by addingmf4 ­ mu to W .

Theories T8 T11 all have quadratic invariants and
are not chiral theories, since one can give mass to
the microscopic matter fields. One can study the low
energy behavior of these theories by studying the flow
at certain points on the moduli space. TheoryT11 flows
to T8 and T9 flows to SO(6) with¿ when the matter
fields get vacuum expectation values. Thus it is sufficie
to understand the low-energy behavior of theoriesT8
andT10.

The SU(8) theory with the four-index antisymmetri
tensor flows, via the Higgs mechanism, to SUs4d 3 SUs4d
with sM, Md, which is the same as SOs6d 3 SOs6d with
sh, hd. One can study this model in the limit that the tw
SO(6) couplingsg1 and g2 are very different,g1 ¿ g2.
In this case, the strongly coupled SO(6) has six flavo
of matter q in the vector representation. This is dua
to an SO(4) theory with six flavors of vector matte
q̃, gauge singlet fieldsM that are a symmetric tensor
under flavor, and a superpotentialW ­ Mq̃q̃ [4]. At
a generic point on the moduli space, theq̃ fields are
heavy, and one is left with the gauge singlet fieldsM.
Including the dynamics of the weakly coupled SO(6), on
finds that one has an SO(6) theory with matterM in
the symmetric tensor representation. Thus understand
theoriesT8 T11 reduces to understanding the dynamic
of SOsNd gauge theories with matter in the symmetri
tensor representation.

The SOsNd theory with one¿ is a theory whose low-
energy behavior is not understood. One can perturb
original theory by adding a mass term for the symmetr
tensor,W ­ mfabfab. This gives a superpotential in
the low-energy theory,W ­ mu2, where u2 ­ fabfab

is one of the basic gauge invariants. If one assum
that the Kahler potential is smooth at the origin, the
supersymmetry must be dynamically broken, since the
is no solution to≠Wy≠M ­ m ­ 0 for nonzero mass
al
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m. This looks very similar to the SU(2) theory with on
‰. There are, however, some important difference
one can add a gauge invariant mass term, so the SOsNd
theory is not chiral. Also, by the Higgs mechanism, o
flows from SOsNd with ¿ to SOsN 2 1d with ¿, and
so on down to SO(4) with¿ [or SO(3) with¿] which
is not asymptotically free, so the low-energy theory h
free quarks and gluons and cannot break supersymm
dynamically [12].

In summary, we have found all supersymmetric gau
theories based on simple groups which have an affi
quantum moduli space. The low-energy dynamics
described, except for those theories which reduce
SOsNd with a symmetric tensor. The dynamics of th
SOsNd with ¿ theory, as well as the gauge theorie
whose chiral ring is a free algebra but do not satisfy t
’t Hooft consistency conditions, is being studied.
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numerous discussions. This work was supported
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97ER40546.
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