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Supersymmetric Gauge Theories with an Affine Quantum Moduli Space
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All supersymmetric gauge theories based on simple groups which have an affine quantum moduli
space, i.e., one generated by gauge invariants with no relatiéns, 0, and anomaly matching at the
origin, are classified. It is shown that the only theories with no gauge invariants (i.e., moduli space
equal to a single point) are the two known examples, SU(5) ®ith 10 and SO(10) with a spinor.

The index of the matter representation must be at least as big as the index of the adjoint in theories
which have a nontrivial relation among the gauge invariants. [S0031-9007(98)05651-8]

PACS numbers: 11.30.Pb, 11.15.—q

The moduli space of supersymmetric gauge theories isubject to the quantum constraint dgt— BB = A?Nc,
described in terms of gauge invariant composite fieldand W = 0. For Np = N¢ + 1, the moduli space is
made out of the microscopic fields. In general, the lowgiven by the superpotential [1]
energy theory can have a superpotential constructed from BMBI — detm
the composite fields, as well as nontrivial polynomial =
relations among the composite fields. The structure of
some of these moduli spaces has been studied in detathe gauge invariant,y}, B/, andB; have relations among
[1,2]. In this paper, we classify all supersymmetric gaug&hem (such ag4:B/ = 0) which are obtained by varying
theories based on simple groups with an affine quanturthe superpotentiaW in Eq. (2). If Ny > N¢ + 1, the
moduli space. These are theories in which the mOdUIiow_energy theory has a dual description [1] Another
space is given by gauge invariant polynomials with nojnteresting family of theories is supersymmetric (30
relations between them, and hag = 0. The flavor gauge theory withv — 4 flavors of matter in the vector
anomalies of the fundamental fields agree with thosgepresentationD;, [4]. In this case, the moduli space
computed using the gauge invariant composites at alk described by the value of the meson fie;;) =
points, including the origin. The low-energy masslessQiaQia_ There are four branches, two wii = 0, and
modes are given by the gauge invariant composites, anfe other two withw = +2AN~!//detd. TheW = 0
are the same at every point on the moduli space. SOMganch is an example of an affine moduli space.
of these theories have several branches, of which at leastThe classification of all supersymmetric gauge theories
one hasW = 0. We find two side results: () the only yjth an affine quantum moduli space is straightforward,
theories with simple gauge groups for which there argyt tedious. All maximal representatiops,, of simple
no gauge invariant composite fields are the two casegie groupsG with a free algebra ofG-invariant poly-
known in the literature, SU(S) with + 10, and SO(10) nomials have already been classified in the mathematics
with a single spinor [3]. The moduli space of thesejiterature [5,6]. (A free algebra is one in which there are
theories is a single point, and the theories are expectégh relations among the generators.) It remains to look
to break supersymmetry dynamically. (ii) Theories with 5t )| subsets Opumax, and to check that the theory has
nontrivial relations among t_he basip gauge invariants mustg gauge anomalies and is asymptotically free, and that
have u = w.qj. (Here u is the index of the matter the flavor anomalies satisfy 't Hooft's consistency condi-
representation, and,; is the index of the adjoint.) tions [7]. In particular, one requires that the anomalies

The most familiar example of a supersymmetric gauggnatch at the origin. The quantum theory is then expected
theory is supersymmetric QCD witNc colors andNr g pe a confining theory, and the low-energy dynamics is
flavors of quarksQ™ and antiquarks);s. This theory  given by a supersymmetric effective Lagrangian written
does not satisfy the criteria for an affine moduli spacej, terms of the composite fields, with a Kahler potential
It has either a superpotential or a relation between thehst is smooth at the origin. One can also classify all
composites, or both. The classical moduli space fOheories which have no gauge invariant composites, since

AT (2)

Nr < Nc is given by the value of the meson field; =  {hese are a special case of theories with a free algebra
0'“Qja, and the quantum theory has a dynamicallyof invariants. For these theories, one does not have any
generated superpotential [1] anomaly matching constraints. The resulting theories (af-
A3Nc—Ng 1/(Ne=Np) ter checking~200 cases) are listed in Table I, and the
W = (N¢ — Nr) [W} (1)  invariants are listed in Table Il. The theories can be di-

vided into three groupsi'1-T6 haveu < puqqj; T7-T11
WhenNr = N¢, the moduli space is given by the valueshave u > u.qj. TheoriesS1 and S2 have no invariant
of the mesonV, and baryons8 = detQ andB = detQ, polynomials. These have been studied before [3], and are
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TABLE I. All theories with unconstrained moduli spaces a@id= 0. The anomalies computed using the microscopic figlds

and using the gauge invariant composites listed in Table Il agree at all points, including the origin-foi 1. TheoriesS1 and

S2 have no gauge invariants, and are the only two theories of this type. Anomaly matching does not hold for these theories. We
omit theories which are conjugate to those listed, or Witk> S’. Notation: G is the gauge groupy the matter representatiof (

denotes the spinor representatiod), the dimension ofp, d,, the number of gauge invariant composites, @hd the unbroken

gauge group ab-flat points wheres is maximally broken. IiT'10, k = N — 2if Nis even,an&k = N — 1 if N is odd. Theory

T4 with N = 6 is equivalent tal'l with N = 2. T1-T6 haveu < puj; T7-T11 haveu > p.qj. T10 with N = 3 satisfies alll

the anomaly matching conditions, but is not an asymptotically free theory.

G p d, du M Madj G.
T1 SU(2N) H+ E 2N(2N - 1) N+ 1 N -2 2N [SUQ2)Y
e Su(s) @ 20 1 3 6  SUB) x SUB)
T3 Sp2N),N =2 H (N —-1)(@2N + 1) N -1 N -1 N +1 [SUQ)Y
T4 SON),N =5 (N — 40O N(N — 4) IN—-4(N-3) N-4 N-2 SUQ2 xSU2)
T5 S0(12) 28 64 7 8 10 [SUQ)P
T6 SO(14) S 64 1 8 12 G> X G,
T7 SU(2) N 4 1 5 2 Zs
T8 SuU(8) E 70 7 10 8 (Z,)
T9 Sp(8) E 42 6 7 5 (Z,)
T10  SON),N =5 | TN =N +2) N -1 N+2 N-2 (Z,)*
T11 SO(16) S 128 8 16 14 (2,)®
S1 SU(5) 0+ H 15 0 2 5 SU(5)
S2 SO(10) S 16 0 2 8 SO(10)

believed to break supersymmetry dynamically. These arform for W, sinceW — o for large values of the fields,
the only two theories based on simple groups which havevhich disagrees with the classical result. There is a
no gauge invariants. One can also check that all physioophole to the above argument, since supersymmetric
cally interesting theories, i.e., those with no gauge anomQCD with Np = N¢ + 1 hasW of the form Eq. (2), with
alies, with u < waqj (0 = maqj if the representation is A in the denominator. In this case, the numeratoiof
irreducible) have a free algebra of invariants. Thus alvanishes on the moduli space, because of the constraint
theories with constraints must haye = u.qj. This is
true even if the relation involves the nonperturbative scale

A, because for large values of the fields,can be ne- TABLE Il. Invariants for the theories in Tablel. Details
’ . X . out the index contractions have been omitted. Flavor indices
glected, and the quantum relation reduces to a cIaSS|c§ e denoted by, and gauge indices by Greek letters.

relation.

Theories with u < w,q; can have a dynamically Fields Invariants
generated superpotential. The general form of a superpor1 Az, Al*f]  w, = (AA)%,k =1,...,N — 1;
tential consistent with th& symmetry is a sum of terms b = PfA;b = PfA
of the form T% Alagy] u= A4k
_ ) o 2 /(o= tagj) T Arg u, = A k=2,...,N
W = A@—3ma)/ (1 MadJ)Hi¢i v 3) 1 Q[,-f] Mk,»j 6
where ¢; are the elementary fields with index;. The 75 bia uk0= (¢1¢zik,k = L3w, = ¢ip; ",
=r =

product of fields¢; must be gauge and flavor invariant.

For asymptotically free theorieg < 3u,qj, SO that the T6 Pa u=g¢°
power of A is positive if u < paqj. This means that far 77 bapy) u=¢*
away from the origin of moduli space, where the classical 7’8 Alapya] ue = Az,k =2,6,8,10,12,14,18
description is valid, the superpotential — 0, as one [ Agfﬁﬂ] e = ‘;k’i= 22’53’6’ 8’19\}12
H H . > 3 (apB) U = s = 40,00,
would expect in the classical theory. Far> p.q, A T11 b Uy — 5k — 2.8.12.14.18.20,24.30

occurs with a negative power. This is not an acceptable
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equations between the mesons and baryons, sdithat  gauge theory hasV = A} w”, wherew is a cube root

0 at infinity. However, the theories we are considering areof unity. Naively, one expects that the superpotential is

precisely those which have no relations among the gaugie sumW = Aj(w” + w*) of the two SU(3)'s, which

invariants, so one cannot have a negative poweA o does not have & = 0 branch. However, a more careful

W, and there is no dynamically generated superpotentiainalysis shows thall/ is the differenceW = A3 (0" —

if w > padj. »*), which does have &% = 0 branch. One can see this
The first six theories all hava < u.qj and can have by studying the breaking of S6) — SU(3) X SUQ3).

a dynamically generated superpotential. They all havahe expectation valuéi[123)) = v1, (Ause)) = v, breaks

several branches, with a branch havilg= 0 and an  SU(6) — SU(3) X SU3), and one needi| = |v,| to

affine moduli space. This has been well studied in theatisfy theD-flatness condition. The matching condition

case of S@QV) gauge theory withWy = N — 4 flavors  on A is Aj; = A%/v?. One can interchange the two

of matterQ;, in the fundamental representation [4]. The SU(3) groups by acting with the SU(6) matrix

moduli space is described by the meson fieds = ]

QiaQja, Which is anNy X Np symmetric matrix. The

't Hooft conditions are satisfied at all points of the moduli

space, including the origin. There are points on the

moduli space where the gauge group is spontaneously

broken to S@) ~ SU(2) X SU(2) by giving vacuum

expectation values to the matter fields. Each SU(2hich mapsv, — —iv,, v, — —iv;. The factors ofi

gauge theory has superpotentil = +A}, where the are necessary for the matrix to have det= 1. UnderU,

two possible signs correspond to the two different vacuane finds that/\zL2 — —Aiz’l, so that it is the difference

of the SU(2) gauge theory, and; is the low-energy of W’s which is SU(6) invariant.

scale parameter of the SU(2) theory. The té¥ahas the The origin of W = 0 for T'1 is also interesting, espe-

formW = £A] = Aj from the two SU(2)’s, which have cially when N is odd, since then one has the sum of an

identical couplings, and hence identic}'s. Matching  odd number of SU(2) superpotentials. This can be ana-

the gauge couplings of the original 8O theory to the |yzed for the case of S6) — [SU(2)]® by the vacuum

SO(4) coupling gives the relation; = AN~'/\/detM,  expectation value of andA*, the two matter fields in the

whereA is the scale parameter of the 80 theory. Thus  antisymmetric representation. The breaking is due to

(4)

SO~ OO 0o
(= N ool o]
~ O OO o0
[eNeoNoNeNeRS
[N eNeNol e
SO O~ OO

the superpotential of the §®) theory has the values 0 v 0 0 0 0

W =0, x2AN"1/\/detM. One can add a mass term —y 01 O o 0 0

Wi = mijQia Qja = m;jM;; to the original theory. The 01 0 0 v 0 0

branch withw = 0 now hasW = m,;;M;;, and so has W=19 0 =, 0 0o o ©®
no supersymmetric ground state if one assumes that the 0 0 0 0 0 s

Kahler potential is smooth at the origin when written in 0 0 0 0 —wvs 0

terms of M. This does not mean that supersymmetry .

is broken: there is a nontrivial solution @W /oM = 0 0~ o 0 0 0 0

in the branchesw = *=2AN"!//detM + m;;M;;. In o 000 0 0
summary, SQV) with (V¥ — 4)0 has multiple branches, (A) = 0 0 0~ v 0 0 . (6)
two of which haveWw = 0. Perturbing the microscopic 0 0 -5 0 0 9

theory by a mass term lifts th&# = 0 branches, but 8 8 g 8 (:7 ’63

—U3

there are still supersymmetric solutions from fife# 0
branches of the theory. with v? — &7 = const, which breaks S6) — [SU(2)?

One expects the other five theories with < u.; s long as thes] are all different. The masses of the
to also be multibranched theories, with a branch having@auge bosons corresponding to the broken generators
W = 0. There are several ways to check that this isare proportional to the differences — v, i # j. The
true. One way is to note that the remaining five theoriegelations between the low-energy;’s and A, obtained
can all be obtained froms-confining theories [8] by by matching coug)ling constants at the gauge boson
integrating out matter. It is straightforward to verify mass scales, ard; = A7/(vi — v3) (v — v3), A} =
that one gets several branches, one of which Wass  A7/(v3 — v?) (v3 — v3), A= AT/(v3 — v}) (V3 —

0. The same result can also be obtained by looking3). The SU(6) superpotential is the sum of the three
at gaugino condensation. 16, SQ(14) — G, X G,  SU(2) superpotentials,

one can getW = 0 from a cancellation between the A7 A7
superpotentialsy’ = wi A3 (w4 is a fourth root of unity) W = i( TN 0~ o)) + R
due to gaugino condensation in eaGh. The origin of vr T v)vp U3 v2 T Uy T U3

W = 0 for the other theories is more subtle. 12, one N A7 @
gets two unbroken SU(3) gauge theories. Each SU(3) T3 - )i - v’
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and has aW = 0 branch [9]. The other SUN) T1  m. This looks very similar to the SU(2) theory with one
theories can be analyzed similarly. An almost identical I 1. There are, however, some important differences:
analysis also explains th& = 0 branch for the S@2N) one can add a gauge invariant mass term, so thgv3O
theory T3. This theory has been analyzed previouslytheory is not chiral. Also, by the Higgs mechanism, one
in Ref. [10], where theW = 0 branch was obtained by flows from SGN) with [T1to SON — 1) with [T, and
integrating out matter. so on down to SO(4) with 1 [or SO(3) with[_T_1] which
TheoriesT7-T11 haveu > u,qj, and so cannot have is not asymptotically free, so the low-energy theory has
a dynamically generated superpotential. The®fiyhas free quarks and gluons and cannot break supersymmetry
been studied before [11]. It has no quadratic invariantdynamically [12].
and so is a chiral theory. It is expected to break In summary, we have found all supersymmetric gauge
supersymmetry dynamically when the microscopic theorgtheories based on simple groups which have an affine
is perturbed by addingip* = mu to W. guantum moduli space. The low-energy dynamics is
Theories78-T11 all have quadratic invariants and described, except for those theories which reduce to
are not chiral theories, since one can give mass to albON) with a symmetric tensor. The dynamics of the
the microscopic matter fields. One can study the low-SQN) with [T1 theory, as well as the gauge theories
energy behavior of these theories by studying the flowsvhose chiral ring is a free algebra but do not satisfy the
at certain points on the moduli space. The®@yl flows 't Hooft consistency conditions, is being studied.
to T8 and 79 flows to SO(6) withCT ] when the matter We are indebted to K. Intriligator and W. Skiba for
fields get vacuum expectation values. Thus it is sufficienhumerous discussions. This work was supported in
to understand the low-energy behavior of theorigs part by Department of Energy Grant No. DOE-FGO3-
andT10. 97ER40546.
The SU(8) theory with the four-index antisymmetric
tensor flows, via the Higgs mechanism, to(@JUx SU(4)

with (H, H), which is the same as $6) X SQ(6) with

(d,0). One can study this model in the limit that the two

SO(6) couplingsg; and g, are very differentg; > g,. [1] N. Seiberg, Phys. Rev. B9, 6857 (1994); Nucl. Phys. B
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a generic point on the moduli space, thefields are ™ iigator and N. Seiberg, Nucl. PhysB444, 125
heavy, and one is left with the gauge singlet fields (1995). ’ ’
Including the dynamics of the weakly coupled SO(6), one (5] G.w. Schwarz, Inv. Math49, 167 (1978).
finds that one has an SO(6) theory with matiérin  [g] 0.M. Adamovich and E.O. Golovina, Sel. Math. S&.
the symmetric tensor representation. Thus understanding 183 (1983).
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of SO(N) gauge theories with matter in the symmetric Symmetry Breaking,” Cargese Summer Institute, Cargése,
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energy behavior is not understood. One can perturb the[g] This example was worked out with the help of W. Skiba
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