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Abstract 

Some N = 1 gauge theories, including SQED and Nr --- 1 SQCD, have the property that, 
for arbitrary superpotentials, all stationary points of the potential V = F + D are D-fiat. For 
others, stationary points of V are complex gauge transformations of D-fiat configurations. As an 
implication, the technique to parametrize the moduli space of supersymmetric vacua in terms of 
a set of basic holomorphic G invariants can be extended to non-supersymmetric vacua. A similar 
situation is found in non-gauge theories with a compact global symmetry group. © 1999 Elsevier 
Science B.V. All rights reserved. 

PACS: ll.30.Pb; ll.15-q; ll.15.Kc; 12.60.Jv 

1. Introduction 

One interesting feature of  supersymmetric gauge theories is the existence of  multiple, 

physically inequivalent, V = 0 vacua [ 1 ]. This brings the notion of  "moduli space" 

A4sv of  supersymmetric vacua (sv),  the set of  sv of  a theory mod G transformations, 

G the gauge group of  the theory. Classically, there is a well-known construction o f  

.A4sv [2,3].  Let C n = {~b} be the vector space of  constant matter field configurations, 
&i(~b), i = 1 . . . . .  s a basic set of  holomorphic G invariants, 79 C_ C s the algebraic 

subset of  C s defined by the polynomial constraints among the basic invariants. There is 
precisely one closed orbit of  the complexification G c of the gauge group in each level 

set ~i(~b) = ~ ,  and there is a unique G orbit of  D-flat points per closed G c orbit (no 
D-fiat point can be found in non-closed G c orbits). Thus 79 is the moduli space o f  
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D-tim points, and .Msv is the subset of D selected by the condition OW = 0. For some 

theories the above picture changes drastically in the quantum regime, where all sv are 
lifted [ 1 ]. For others, the quantum moduli space of sv is the same as .A4sv [4], or a 
deformation of Adsv in its ambient vector space C s [ 1,5]. In the latter case, knowledge 

of .Ad~v plays a crucial r61e in the determination of the quantum moduli space of sv. 

In this work we study non-supersymmetric  vacua (nsv) in the classical regime, as a 

first stage in the understanding of nsv in the quantum regime. A first look at the problem 
suggests that no much can be said about nsv, here defined to be V ~ 0 local minima 
of the scalar potential V. Firstly, there are strong limitations on a gauge or non-gauge 

supersymmetric theory to admit nsv. As an example, dimensionful constants are required 

in the superpotential W ( $ )  to allow terms with different powers of fields, otherwise 
W(~b) would be a homogeneous function on the chiral fields t/,, W(xgb)  = xdW(qb) ,  

and every stationary point aV = 0 would be a sv, as 0 = qbaV/agb = ( d  - 1)F ( + 2 D ) .  
Secondly, for theories with nsv, there does not seem to be any reasonable way to 
parametrize its moduli space A4n~v. Once the D-flatness condition is removed we may 

expect nsv in non-closed G c orbits. The basic holomorphic invariants do not separate G c 
orbits, they are only able to "distinguish" two different G c orbits if they are closed. We 

could tackle this problem by using the techniques developed in [6] to find the extrema 

of functions which are invariant under the action of a compact Lie group G. The G 

orbits are the level sets of a complete (holomorphic and non-holomorphic) basic set of 
G invariants ~bJ(~b, ~b*),j = 1 . . . . .  k. The ~bJ's are subject to polynomial (in)equalities 

that define a semi-algebraic subset O of •k [6]. The extrema of G invariant functions 

can be found by working directly in the orbit space (.9 [6]. However, computations 

are cumbersome because a detailed knowledge of the G strata in (9 is required. In this 
work we explore a simpler alternative which is based on the simple structure of the 
scalar potential V = F + D. Note that F is the square norm of the G c "covector" (i.e. 

transforming as ~ if ~b is in the p representation) aW, whereas D is the square norm 
of the field ~)a _~ dptTt~dpKBa E Lie (G),  K BA the inverse Killing metric in Lie (G).  2 

For a large set of groups and representations this structure of V restricts all stationary 

points of V (not only sv) to closed G c orbits. This fact not only simplifies the search 

of nsv, it also allows to construct the moduli space .Adz, of all vacua, supersymmetric 

and non-supersymmetric, as a subset of 79, i.e..Adsv C_ A4~, C_ 79. 
In non-gauge theories with a global symmetry group G the scalar potential equals the 

square norm Ic~W[2 of the G c covector c~W. For a large set of groups and representations 
this implies that nsv are restricted to closed G c orbits, i.e. they are G c related to (formal) 
D-flat points ~btT~b = 0 for all T E Lie (G). Thus, the D-flatness condition plays a r61e 
in the search of nsv of theories with a global  symmetry G! Such .IV" = 1 theories arise 
as the low energy effective actions of confining gauge theories, and they often break 
supersymmetry. A well-known example is the chiral theory with one flavor of matter in 
the four-dimensional representation of SU(2) [7]. 

2 ~A transforms as an adjoint field under G but this picture breaks afar complexifying G. 
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The fact that nsv occur only in closed G c orbits guarantees the exact "doubling" of 

Goldstone bosons [ 8 ]. We have doubling when GC¢~, the little group of G c at the vacuum 

~b, is the same as G~ c, the complexification of the little group of G at ~b (in general, 
G~ c C GC~, see Ref. [9] ). An equivalent condition is that T t be unbroken whenever 
T E Lie (G c) is unbroken. 3 This condition is satisfied if the orbit GCqb is closed, i.e. if 
~b is G c related to a D-fiat point. To show this we can assume that ~b is D-flat, as the 
G c isotropy groups of two points in a G c orbit are G c conjugated. If  ~b is D-flat 

ITt~12 = 4,tTtTev + 4¢ [T, Tt] 4,, (1) 

then T t e Lie (GC,/,) if T e Lie (GC,). We should remark that the condition that GC~b 

be closed for nsv ~b is stronger than G~ ¢ = GC4,. 

The organization of this paper is as follows: in Section 2 we introduce the notion of 

fibers, review the construction of .Ad,v, and state the Hilbert-Mumford criterion for non- 
closed G c orbits; in Section 3 we study nsv of theories with a global symmetry. Section 4 
is devoted to gauge theories, and includes a subsection on abelian gauge groups, for 

which a more systematic treatment is possible. The main results are Theorem 1 in 
Section 3 and Theorems 2 and 3 in Section 4. 

2. Preliminaries 

Let G be a compact, connected group, p a unitary representation of G on C n. We 
will consider simultaneously the cases where C n = {(~b I . . . . .  ~b n) } is the constant chiral 

field configuration space of a supersymmetric theory with global symmetry G, or the 
constant matter chiral field configuration space of an ./V" = 1 gauge theory, G being the 
gauge group. Any G invariant holomorphic polynomial p ( $ )  can be written in terms of 

a basic set of invariants q~i($), i = 1 . . . . .  s as 

p ( ~ )  = f i ( ~ l  (~/7) . . . . .  ¢~s ( l f i ) ) ,  ( 2 )  

where fi is a polynomial C a ---, C function [ 10]. In general, the basic invariants are 
constrained by polynomial equations C " ( ~ )  = 0, meaning that C"(q~(~b)) -- 0. The 

zero set D = {~ E C '  : C ~ ( ~ )  = 0} c C a plays an important r61e in the construction of 
the moduli space of supersymmetric vacua of the gauge theory with matter content ~b 
and gauge group G. This construction is better understood if we introduce the notion of 

^. ^, 
"fibers". Fibers are the level sets q~'(~b) = ~b~), i = 1 . . . . .  s of the basic invariants, they 
are closed, disjoint sets. The configuration space C" = {~b} is partitioned into fibers, 

and the set of fibers is parametrized by D. Every fiber contains complete orbits of the 
complexification G c of G, possibly infinitely many of them, only one of which is closed 
(in the topological sense) [2]. The only closed G ¢ orbit in a fiber f lies in the boundary 
of any other G c orbit in f ,  and can therefore be found by taking the intersection of the 
closures of the G c orbits in f .  Let TA be a basis of hermitian generators of G in the 

3 To see the equivalence write T = (T + T? ) /2  + i ( T -  Tt)/(2i). 
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p representation. A G element admits the expansion g = e x p ( i C a T a )  with real CA's, 
whereas a G ¢ element admits a similar expansion with complex Ca's.  It follows that 
the G c action on C n is non-unitary. Consider a "pure imaginary" G ~ one-dimensional 

subgroup g ( s )  = exp(sT),  T a hermitian Lie (G) generator (note the absence of the 
i factor in the exponent) acting on an arbitrary ~b E C n, and define ~b(s) - g(s)~b,  

then [3,11] 

_d (~bt (s)~b(s))  = 2fb~(s )T fb ( s  ) , 
ds  

d 2 
as  2 (,~t(s),/,(s))=4(T4,(s))*(T4,(s)) >t 0, 

(3) 

(4) 

equality holding only when T is a generator of the little group G 0 of ~b (and so ~b(s) = 
constant ). If  T q~ Lie (G 0), ~bt (s)  ~b (s) is a convex (positive second derivative) function 

of s. Convex ~ ~ ]R functions f ( s )  are easily seen to satisfy the following three 
properties: (i) there is at most one stationary point of f ;  (ii) if so is a stationary point 

of f ,  then it is a global minimum; (iii) if f '  ~> 0 at some point, then lims~oo f ( s )  = 

+oo. From these properties, Eqs. (3),  (4) and Cartan's decomposition G c = G T G ,  

T a pure imaginary maximal torus, follows that D-fiat points ~btT~bD = 0 are vectors 

of minimum length in a G c orbit, and that there is at most one G orbit of such 

vectors in a given G c orbit. It was found in [ 11 ] that closed G c orbits contain a 
unique G orbit of D-fiat points [ 11 ], that we will refer to as the "core" of the G c 

orbit, whereas no D-fiat point can be found in a non-closed G c orbit. These facts 

allow a gauge independent characterization of the D-flatness condition found in Wess- 
Zumino gauge: the supersymmetric vacua of a gauge theory with gauge group G lie on 

closed G c orbits. They also allow to regard the set of fibers D as the set of closed G c 

orbits, or the moduli space of D-flat points, i.e. the set of D-flat configurations rood 

G transformations. The relevance to supersymmetric gauge theories of the connection 

between D-flat configurations, minimal length vectors and closed G ° orbits found in [ 11 ] 

was first pointed out in [2]. The supersymmetric vacua (sv) of an A/" = 1 gauge theory 
satisfy two conditions: (F) the F-fiatness condition aW = 0 and (D) the D-flatness 
condition q~tTq~ = 0VT E Lie (G).  Condition (F) is G c invariant, every point in the 

orbit G°d~F of an F-fiat point ~bv is F-flat, and, by continuity, every point in the closure 

Gcdp is F-fiat. Condition (D) imposes an additional restriction: the sv lie on the core of 
closed G ° orbits. However, once an F-fiat point ~bF is found, we know there is a G orbit 
of sv in G°~bF, namely, the core of D-flat points in the only closed G c orbit in GCq~F. 

In other words, (F) selects the fibers f where the sv live, (D) their location in f .  As 
there is one closed G c orbit per fiber, which contains precisely one G orbit of D-flat 
points, the moduli space of sv .Ms,, (sv mod G transformations), is the same as the 
set of fibers containing ctW = 0 G c orbits. A4s~, C D can be parametrized by adding to 
the constraint equations C"(q~) = 0 defining D the G invariant holomorphic equations 
resulting from aW = 0 [3]. In the special case W = 0, A4s~, = D,  the moduli space of 
D-flat points. 
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In non-gauge theories with a global symmetry G, the sv satisfy only the G c invariant 

F-flatness condition. Generically, there are infinitely many G orbits per G c orbit, and so 

there is no clear way to parametrize the moduli space of sv in non-gauge theories. 

In the following sections we show that, for a large set of gauge theories, the V ~ 0 

stationary points of the scalar potential V = F + D, F = laWI 2, D = ~ ~a(qbtTa(b) 2, 
lie all on closed G ¢ orbits (not necessarily in their cores), there being at most one G 
orbit of stationary points of V in a closed G c orbit. This leads to a parametrization of 

the moduli space A4nsv of nsv as a subset of D, the set of closed G c orbits..A4n~v is 

obtained by projecting onto 79 the stationary point condition OV = 0 and the condition 
that the boson mass matrix OiOjV at the stationary point be positive semidefinite. This 
may result in non-holomorphic (in)equalities. The moduli space of vacua is then .A4~ = 

./W~sv U .A~ns v C 79 C C s. A similar situation is found in some non-gauge theories with 

a global symmetry G, their nsv are restricted to closed orbits of the complexifieation 
G c of the global symmetry group G, i.e. they are G c related to formal D-flat points. 

We make use of a theorem due to Mumford that says that, given a non-closed orbit 
G ~ 0 ,  the closed G c orbit lying in the boundary of GCq~o can be reached by means of 

a one-dimensional pure imaginary subgroup of G~: 

Theorem [Mumford [9,1011. Assume GCq~o is not closed, then there is a hermitian 

generator T of G such that l ims- .~  exp(-sT)cb0 = dpc, and GCdpc is closed. 

Remark 1. If  ~bo = ~ u  ~bo~ is the weight decomposition of ~bo (~bo u ~ 0), then 

# ( T )  /> 0 V/.t (and strictly positive for some /x). This implies I~bc[ < 14,1, and also 
lim~__.~ I exp(sT)~b[ = c~. 

Example 2.1. Consider G = U(1) acting on C 2, ~b = (u ,v) ,  u a charge 1 field and 

v a charge - 1  field. L ie (G)  = span(T) ,T  = d i a g ( 1 , - 1 ) .  G c = GL(1 ,C)  acting by 

x .  ( u , v )  = (xu ,  x - l v ) .  The set of basic invariants contains a single field z = uv, 

then 7) = C 1. The fibers uv = z0 ~ 0 contain a single (therefore closed) G c orbit, 

with a core of vectors of minimum length (D-flat points) satisfying uv = zo, lul = Ivl. 
The fiber z = 0 contains the closed orbit Ol = {(0 ,0)}  and the non-closed orbits 

02 = {(u, 0),  u =~ 0}, 03 = {(0, v), v ~ 0}, which do not contain vectors of minimum 
length. Also (-91 C Oi fq 02 N 0 3. For points in 02 (03) ,  e - s t  (e - s~ - r ) )  is as in 
Mumford's theorem. If  the U(1) symmetry is local, and we add a superpotential W ( z )  

to this gauge theory, the sv condition 0 = OW = W~(z ) (v, u) yields a single holomorphic 

G invariant equation, namely z W t ( z )  = 0. This equations selects the fibers containing 
aW = 0 G c orbits. As there is a unique G orbit of D-flat points per fiber, the moduli 

space of sv of this gauge theory is .A4sv = {z E C[zW~(z)  = 0}. If the U(1) symmetry 
were global, every point in fibers zo satisfying W'(zo)  = 0 would be a sv. As every fiber 
contains infinitely many G orbits, there is no clear way to parametrize A4sv. 

Example 2.2. Consider a theory with a matrix M of chiral fields and a superpotential 
invariant under M ~ gMg - l  , g E SU( N ) .  The configuration space is C to:, G = SU( N ) ,  
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1 a p = adj + 1, and G c = S L ( N , C ) .  The adjoint field is A~ = M~ - ~8#Tr  M, and the 

singlet is u = TrM.  The holomorphic invariants are q~l = u and q~i = T r A  i, i = 2 . . . . .  N,  

they are unconstrained and so 79 = C N. Jordan's decomposition implies that in every 

G c orbit there is an element of  the form (u, A),  A = S + N, where S is diagonal, N 

strictly upper triangular, and [S, N] = 0, these are the semisimple and nilpotent parts of  

A. Note that ~ i =  T r S  i, i > 1 then (u, S +  N) and (u, S +  N ' )  belong to the same fiber. 
In [ 10], Section 8.5, it is established that the G c orbit of  S + N is closed iff N = 0. As 

there is one closed G c orbit per fiber we conclude that if S and S' are semisimple and 

TrS  i = TrS ' i , i  = 2 . . . . .  N then S' = g S g - l , g  E S L ( N , C ) .  As there is a finite number 

of  G C orbits of  nilpotent A's  ( [10],  Section 8.5) every fiber (u, T r A  i) = (uo, qb~) 

contains the same (finite) number of  G c orbits, a picture that differs substantially from 

that of  Example  II. 1. Mumford ' s  curve "switches off" the nilpotent piece of  the adjoint 

field. Take, e.g., N = 3, ~b0 = (A0, u),  Ao = S + N, 

( 00) (ioz) 
A o =  0 1 1  , S =  0 1  , N =  0 . (5)  

0 0 1  0 0  0 

A choice of  T satisfying Mumford ' s  theorem is (oo ) 
T = 0 1 . (6)  

0 0 -  

Note that lims~oo e x p ( - s T ) A 0  = S and the square length Tr (AtoAo) = 7 > Tr (SfS)  = 
6. Consider the gauge theory with superpotential W = uA~A~ + mu2/2 + yu ~ uqb + 

mu2/2 + yu (~b =_ ~b2), aW = (2ua ,  ~b + mu + y)  = 0 iff (i) u = 0 and q~ = - y  or (ii) 

A = 0 and u = - y / m .  The fibers containing sv (in the cores of  their closed G c orbits) are 

(i) ~a = 0 ,~2  = _ y  and arbitrary ~bJ,j >/3,  and (ii) ~1 = - y / m , ~ b J  = 0 , j  >/2,  thus 
J~sr = {((~1 . . . . .  ~s)  E CSl(~ 1=  0, t~ 2 =  -')/} U {(t~ 1 . . . . .  t~ s) E CSlt~ 1=  - y / m ,  qb j = 

0 , j  ~> 2}. Again, if the S U ( N )  symmetry were global, .A4sv constructed above would 

not be a parametrization of  the moduli space of sv, as there are infinitely many G orbits 

in each aW = 0 G c orbit of  type ( i ) .  

3. Non-supersymmetric  vacua in theories with a global symmetry 

I f  W is a G invariant superpotential its gradient aW transforms as a G c "covector" 

W ( g ~ )  = W ( ~ ) ,  ~ W ( g ~ )  = O W ( ~ ) g  -1. (7) 

It is useful to think of  aW(-)  as a map C n ~ C n* commuting with the G actions p and 
~. The vector ~b is assigned the covector aW(~b), F = laWI 2 measures its square length. 
It follows from (7) that under this map the orbit GC~b = {gfblg E G c} C_ C n gets mapped 
onto the orbit GcaW(dp) C_ Cn*; also G 4, C_ G~w(~), Gaw(~) being the little group of the 
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C n* point aW($) ,  Ge the little group of  ~b [9] .  We exploit the fact that Eqs. (3, 4) 

and all the results of  the previous section apply to any G representation, in particular 

~, where aW lives. Thus, if F ( $ 0 )  is a local minimum of  F, aW(dpo) is a covector of  
minimum length in its G c orbit, then GcaW(~b) must be closed, and OW(~bo) satisfies 
the *D-flatness condition 

(OW(dpo)) ( - T )  (aW(~bo))t = 0, VT E Lie ( G ) .  (8) 

We prove now that, under certain assumptions, this implies that GCfbo itself is closed. 
To see this, define for any ~bo and hermitian T the curve ~b(s) ~ e-Sr~bo and also 

F(s)  =- [OW(~b(s) ) ][OW(dp(s) ) ] t = I(OW(~bo) )exp(sT)l  2. Applying (3,4) to the 

representation (or just computing the second derivative of  F(s ) )  we see that, when- 

ever T ~ Lie (Gaw(~o)), F(s)  is a convex R ~ R function. If  OF(~bo) = 0, then 

0 = F~(O) = OW(~bo)(-T)(OW(~bo)) t, F(O) is a global minimum of  F(s) ,  and 

lim~__.+~ F = co. As a consequence GCfbo must be closed. If  it were not, we could 

choose T as in Mumford 's  theorem and get to a contradiction: F(cbc) = lims__.~ F(s)  = 
c~, where ~bc = l i m s ~  ~b(s)4 We conclude that GCdpo being non-closed forbids ~b0 

from being a stationary point of  F. The only exception is when, for any T as in Mum- 

ford's theorem, T E Lie (Gaw(~o)). If  this is the case then F is non-confining, that is 

iims--.c~ I exp(sT)~b01 = c~ while lims__.+~ F(exp(sT)dpo) = F(~b0) < c~. For ~bo and 
T as in Mumford 's  theorem the weight decomposition OW(~bo) = ~-~a (aW(d?o)) ~ is such 

that ,~(T) ~< 0 VA, then F(~b~) < F(~bo) except in the non-confining case A(T) = 0 V,~, 

where F(fbc) = F(~bo). 5 These observations are gathered in the following theorem: 

Theorem 1. Assume GC~bo is non-closed and ~bc is as in Mumford's  theorem. 

(a)  F(dpc) ~< F(~b0), a lower energy point can be found in the closed G c orbit in the 
boundary of  GC~bo. 

(b) If  G~o = Gaw(,o) then: (i) ~bo cannot be a stationary point of  F, (ii) F(dpc) < 
F(¢~o). 

(c) Define 

C n = {dp @ CnlGcb = Gow(~)}. 

The moduli space A4,s,, of  non-supersymmetric vacua in C" is the subset of  79 

obtained by projecting onto 79 the (in)equalities resulting from aF  = 0 and aiajF 
positive semidefinite. 

To prove (c) ,  note from (b) and the above discussion that, in the sector ~ = {~b E 

C"IG~ = Gaw(~)} of  the configuration space C n, the stationary points ~bs of  F lie all on 
closed G c orbits, satisfy the *D-flatness condition Eq. (8) and are global minima of  the 

4 Even if W has singularities, it is not possible that F be well defined at ~b 0 and singular at ~bc. This is so 
because one can always write W(~b) = W(~(~b)), then aW = (OW/aCbJ)O~b j. Now OW/a~bJ is constant on 
GCfbo and the ag~ j are polynomials, so no singularity can develop along the bounded ~b(s), s/> 0 curve. 

5 I f  this is the case, and we are only interested in the spectrum of vacuum energies, we can use the fact that 
F(fbo) = F(rp¢) and still restrict the search of vacua to closed G c orbits. 
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restriction of F to GCqbs (in particular, no local maximum of F exists in Cn). Moreover 

there is at most one G orbit of nsv per closed G ¢ orbit. As the set of closed G c orbits 

is parametrized by 79, the moduli space of nsv in C" is the subset of 79 obtained by 

projecting onto 79 the (in general non-holomorphic) (in)equalities resulting from the 

conditions OF = 0 and OiOjF positive semidefinite. Besides simplifying the search of nsv 

in C n, theorem I shows a construction of .Ad,sv closely related to the parametrization of 
A4~,, in gauge theories. 

Example 3.1. Consider the theory of example 2.1 with the U(1) symmetry gloAbal. 
aW = W ' ( z ) ( v , u ) ,  then U(1)ow(u.,,) = U(1){u.,,) except at non-zero sv, i.e. C 2 = 

C 2 \ { (u ,v)  v~ (O,O)lW'(uv) = 0}. If such a vacuum exists, F is non-confining, 

meaning that F is constant along the GL( 1, C) orbit of the non-trivial sv, which extends 
to infinity. Theorem 1 guarantees that the nsv lie all on closed GL( 1, C) orbits, as they 

are all in (22. In fact, F = IW'(z)12(u~ + vv) and aF = 0 yield 0 = uOF/Ou A -  vOF/Ov = 

[W'(uv) 12(u~ - v~). This means that every stationary point (u, v) of F in C 2 is D-flat ,  

and so its GL( 1, C) orbit is closed, as predicted. To construct the moduli space of nsv we 
project OF = 0 and 02F >>. 0 onto 79. This is readily done if we replace (u, v) in aF = 0 
and OZF >1 0 by the D-flat representative u = v = x/~ in the uv = z fiber. For details refer 

to example 4.1, the result is A4ns,, = {z C CI IW' (z )  + 2zW"(Z) = W" + zW'" = 0}. 

Example 3.2. Consider the theory of example 2.2, with a global SU(N) symmetry. 

O W = ( Z u a , ~ b + m u + y )  = 0 i f f ( i )  u = 0 a n d q ~ = - y o r  (ii) A = 0 a n d u = - y / m .  

Condition (i) defines a fiber of sv containing non-closed G c orbits extending to infinity, 
i.e, F is not confining and this explains the existence of stationary F points in non-closed 

orbits. In the u ~ 0 s e c t o r  SU(N) (u ,A)  = SU(N)aw(u,A) ,  therefore C m = {(u ,A)  E 
cN2Iu 4: 0} U {(0 ,0)} .  All aW 4~ 0 stationary points of F lie in the u v~ 0, A 4 : 0  

sector of the configuration space, where Theorem 1 applies. In particular, these stationary 
configurations must lie on closed G c orbits. In fact, from 0 = OF/aA and u 4~ 0 we 

obtain 

A t = - A  (t~t + -~ut + 7) _ _Ae-i~,  (9) 
2uut 

from where [A, A t ] = 0, which implies A is SU(N) D-flat. Also (qb+mu+y)/(2uu t) = 
e ia, as  this is an eigenvalue of the dagger operator. Adding aF/au = 0 we get the 
equations selecting the fibers containing G orbits of stationary points of F. There 
is only one such fiber: u = xei~/m, dp = xei~/2; e i~ = ~'/b'l and x = 3 m ' ~ / 8 -  
~ / ( 3 m ~ / 8 )  2 + I~/Imm/2 < 0. 

When proving (a)~and (b) of Theorem 1 we showed that GC~b is closed if GcOW(~b) 
is closed and ~b E C" (the reciprocal requires F to be confining in the sense described 
above). Yet, we should not expect the core of *D-flat points in GcOW(~b) to be the 
image under aW(.) of the core of D-flat points in G~b, a non-generic feature exhibited 

by the two previous examples. 
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Example 3.3. Consider an SO(N) theory with two vectors, ~1 and #~z, and a superpo- 

tential W = #~1- (q~l + i ~ ) .  It can readily be checked that the isotropy groups SO(N)~ 

and SO(N)awc~) agree for every ~b = (#~1, q~z) in the configuration space C 2N = C 2N. 
I f  GcOW(d~) is closed, then so is GCqb. Moreover, GCqb is closed iff GccgW(fb) is closed, 

this superpotential also satisfies the confining condition. However, for D-flat ~b, OW(qb) 
is not *D-flat in general. 

Example 3.4. Theorem 3.9 in [2] states that a point q~0 is D-flat iff there is a holomor- 

phic G invariant h(~b) such that 4,o t = Oh(qbo). In the special case where the set of  basic 
invariants contains a single field q~(~b) this theorem implies that any D-flat point satis- 
fies the *D-flatness condition (8) ,  as aW = W'(qb)O~b. Write ~(~b) = C ( i , . . . i a ) ~ i ' . . .  ~)i,t 

and consider the C n ---+ C n* map (bJ --+ ~l i :~ C(i i2. . . ia)~ i2 . . .  (~ia. I f  p is real then d = 2, 

ctikckj  = S~, OiW(c~) = W'(~b)Ci)~b i, then C-~ = C n \ {~b 4: 01W'(q~(~b)) = 0}. Also 

F = IW'12~t4,, and (OF)Td~ = ]W'[2~btT~b. In the C'~ sector stationary point are seen to 
lie in the core of  closed G c orbits. This generalizes the situation of example 3.1. 

4. Non-supersymmetric  vacua in gauge theories 

In many interesting examples, the D term )--~.a(~btTa~b) 2 along the orbit of  a pure 

imaginary one-dimensional subgroup e x p ( - s T )  of  G c is a convex function of  s, i.e. 
d2D(exp(-sT)dpo)/ds 2 > 0Vs E R. For ~bo and T as in Mumford 's  theorem, this 

implies that ~b0 cannot be a stationary point of  the scalar potential V = F + D, as 
V" ~> D "  > 0. I f  it were, V would diverge at ~bc = lims--.c~ ~b(s). Assume there is a 

A 

sector C n of  the configuration space where, for every point in non-closed G c orbits there 
is a choice of  T as in Mumford ' s  theorem for which d2D/ds 2 > 0 for all s. Stationary 

points of  V in C ' '~  are restricted to closed G c orbits. I f  also d2D(exp(-sT)qbc)/ds 2 > 0 
for any ~bc E C ' ~  in closed G c orbits and any T E (Lie (G)  \ Lie (G~) ) ,  we can show, 

as in Sections 2 and 3, that there is at most one G orbit of  stationary points of  V per 

closed G c orbit. The stationary point condition V ' (0)  = 0 reads 

~W ( - T )  ( (~W) t "~- ~-~/~:fTA~)~)t (TI'A -~- TAT)~ = O. (1o) 

We gather the above observations in the following theorem: (in the aim of  seeking 
simplicity we made some assumptions stronger than necessary).  

A 

Theorem 2. Restrict to the sector C n = {~b E Cn[dZD(exp( -sT)~) /ds  2 > 0 whenever 
T ¢ Lie (G~) } of  the configuration space C n, then: 

(a)  For any superpotential, every stationary point ~bs of  V = F + D lies in a closed 
G C orbit, (equivalently, it is G c related to a D-flat configuration), satisfies the 
modified D-flatness (MD-flatness)  condition Eq. (10) ,  and is a global minimum 
of  the restriction of V to GCqb~.. In particular, there is no local maximum of V. 
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(b)  The moduli space of  vacua .A4,, is the subset of  79 C_ C s obtained by adding to 

the constraint equations among basic invariants the non-holomorphic (in)equalities 
resulting from the stationary point condition OV/&b = 0 and the condition that the 

boson mass matrix OiOjV at the stationary point be positive semidefinite. 

The proof  of  (b)  follows again from the fact that there is at most one G orbit of  

stationary points in a closed G c orbit and that D is the set of  closed G ~ orbits. For 

supersymmetric vacua the projection of aV = 0 onto 7) reduces to the G holomorphic 

invariant equations obtained from aW = 0, and a2V/> 0 does not add any restrictions. 
.A//,, is the union of  the moduli spaces of  sv and nsv, .A4,, = .Msv U .A4,~, C_ 7). 

Example 4.1. Following the notation of  examples 2.1 and 3.1, the D term of SQED 
is D = ( u ~ -  v~) 2 = I~bl 4 -41z12,~b = (u ,v ) .  As z is G c invariant, Izl 2 is a constant 

along any ~b(s) = e x p ( - s T ) ~ b  curve, whereas 14~(s)l 4 is clearly a convex function 
(whenever (u,v) ~ ( 0 , 0 ) ) ,  and so is D(s). Alternatively, we can apply Eqs. (3, 4) 
to the one-dimensional charge 2 , - 2  and 0 U(1)  representations u 2, v 2 and uv to show 

that D = lu212 + Iv2l 2 - 21uvl a is the sum of two convex functions and a constant. In 

this example the configuration space C 2 equals C 2, and Theorem 2 holds everywhere. 

Given an arbitrary W(z), V = IW'12(lul 2 + Ivl 2) + ~( lu l  2 - Iv[2)  2. The stationary point 

condition OV = 0 is always satisfied at the origin ~b = 0 and at no other point in the 

uv = 0 fiber. For non-zero uv it is equivalent to 0 = uOV/au ± vaV/Ov: 

O= (Iw']2 + ~ (lu[Z + lvl2) ) (lul2 - lv[2), (11) 

g2 
O--W(W'  + 2zW")(lul 2 + [vl 2) + ~-(lul = - Iv12) 2. (12) 

Eq. (1 1) forces D = 0, showing that stationary points lie on closed G c orbits, as 
predicted. Projecting (12) onto 79 we obtain the equations characterizing the fibers 

containing critical points, namely 0 = zW' ( z )(W'(z ) + 2zW" ( z )). To project Oia] V >~ 
0 at stationary points onto 79 we use the section 79 9 z ~ (u = v/~, v = x/~) E C 2. 
When replacing u = v = ~ and W'(z ) + 2zW"(z ) = 0 in the equations requiring that 

the eigenvalues of  OiOjV be ~> 0, the inequalities reduce to W" + zW"' = 0. Thus .A4~, = 

{z c C~lzW'(z) = 0 } u  {z ~ Cl lW' (z )  +2zW"(z)  = w " +  zW"' =0}  = M~,, u M.sv. 
The equations defining A4ns,, are independent of  g, this is also the moduli space of  nsv 

of the non-gauge theory of example 3.1. 
As a first step towards generalizing the ideas behind the previous example we re-write 

the D term using the G representation p ®s P. Let ~b = E r  t~r  be the decomposition of 

p into irreps, then 

t r t s D=E(6rTft~r)(d:sT~,6s ) =E(qbr®qbs)t(T~®T~)(dp~®tTbs). (13) 
r ,s  r~s 

Using 7"r®s " A : T~ ® ]Is + ]It @ T~ we obtain 
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1 T~ ®T,~ = ~[ (T~®S) 2 - (T~)2 ® ] -  ~® (T~)2]. (14) 

Combining Eqs. (13), (14) we arrive at 

1 
D = 2 Z  Z (Cj - C r - C s ) [ ~ l j ( 4 r ® 4 s ) [  2, (15) 

r,s jerks 

Oj(~br ® ~b~) being the projector of ~br ® ~bs onto the irrep j and Ck the Casimir of the 
irrep k. The above equation reduces the D term to a sum of square norms of irreps of the 
gauge group, Eqs. (3,4) hold for each one of the square norms I~bj(~b~ ® ~bs)i2. If p is 

free of gravitational anomalies then 0 = Tr ( T~ ® T~ ) = EjEr®s dim(j)  ( Cj - Cr - C~ ). 
This implies that some of the coefficients ( C j -  C r -  Cs) in (15) are negative. In 
example 4.1 the only such term corresponds to a G c singlet and D is readily seen to be 
convex along any exp(-sT)d~ curve. 

Example 4.2. Consider G = SO(N)  with a single vector field, p ®s p contains a sym- 
metric tensor (for which C - 2Cp is positive), and a G c singlet. In this example again, 
the only negative coefficient in Eq. (15) accompanies a G c singlet, for any ~b and T 
D(exxp(-sT)qb) ) is convex, nsv occur only in closed G c orbits, and Theorem 2 applies 
in C N = C N. 

Example 4.3. In NF flavor, N color SQCD (15) contains symmetric and adjoint tensors, 
for which C > 2Cfund, some G ¢ singlets and antisymmetric tensors, for which C < 
2Cfund. In the special case NF = 1 there is no antisymmetric tensor, D(s )  is convex 
and Theorem 2 holds. For larger NF a more detailed analysis is required. Consider, 

e.g, the case NF = 2, N = 3 and the configuration point ~bo = (Q~,Q~) given by 

a'{ = (x ,y ,O) ,  Q~2 = (u ,0 ,0 ) ,  QJ = 0. As ~b0 4 : 0  and ~(~b0) = 0, GC~b is non- 

closed. Eq. (15) yields D c~ ( N -  1)(10114+ 10214+ IOll2[azl2 + Ia~a2[ 2) - ( N +  
1 ) (IQ1121Q2[ 2 - IQ~Q212). The SU(3) generator T = diag( 1, 1, - 2 )  is as in Mumford's 
theorem, and D(e-sr~bo) = D(~bo)e -2s is convex, the exponentially decaying terms 

with negative coefficients in (15) get cancelled by positive coefficient terms with the 
same decaying rate. For other choices, like T' = diag( 1 , 2 , - 3 ) ,  the negative coefficient 
exponential terms persist but still D(s )  is convex. Note that among the normalized 
Lie (G) generators diag( 1, 1 , - 2 ) / v ~  is the one that steers ~bo to zero fastest. 

As this example suggests, to determine the convexity of D ( e x p ( - s T ) ( b ) ,  Eq. (15) 
should be supplemented with information on the weight decomposition ~b = Y]a ~bA. As 
G is compact, the A(T)'s are rationally related, i.e. A(T) = nq, n a non-negative integer, 
q a "unit charge". The problem of determining if D(s )  is convex reduces to a problem 
of existence of roots of the polynomial p ( x )  = D ' ( s ) ,  x = ex p ( - sq ) ,  in the range 
0 ~< x <~ I. The convexity of D along Mumford type curves would exclude points in 
non-closed G ¢ orbits from the set of nsv. In this case (GCck non-closed and e x p ( - s T ) ~  
as in Mumford's theorem) we know that the weight vectors A are all in the half space 
A(T) >~ O, as lims--.oo exp(-sT)dp exists. For G semisimple, no generic result has been 
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obtained so far regarding the convexity of D(s). The analysis is simplified in the abelian 
case G = U(1) k, for which we have a fairly straightforward way to determine whether 
D(s) is convex or not. 

4.1. U(1) k gauge groups 

From equation (15), or more directly inserting ~b = )-]a ~ba in D(~b) = ~a(~btTAq~) 2, 
TA an orthonormal basis of Lie (G),  we obtain a simple expression for D in the abelian 

case: 

O = ~ Ifb~lZlqb~12~(ZA)l~(ZA) = ~ < a , #  > 1~121~12, (16) 
a/zA h/z 

from where 

D(exp( - sTfb ) )  = Z < A, iz > ]fbal214~12e -2"(a(r)+~'<r)~. (17) 
a/z 

In the abelian case, we also have a simple criterion to determine whether GC~b is closed 
or not: Construct the convex set 

SO={ Z Ca'~ 'O<'Ca <~ I)  (18) 

It can be shown that 
(a) 0 is outside S o iff GCfb is a non-closed orbit and O~(gb) = 0, 
(b) 0 is a boundary point of S o iff GCd~ is a non-closed orbit and ~(4~) ~ 0, 
(c) 0 is an inner point of S o iff GC~ is closed. 

The proof follows trivially from propositions 5.3 and 6.15 in [ 10]. 

Example 4.4. In a n-dimensional U(1) representation, the weights A of a point ~b0 in 
a non-closed orbit lie all to the right of 0, all coefficients in (17) are non-negative, 
D"(s) > 0 and, for any superpotential, the stationary points of V lie all on closed 

orbits. This generalizes example 4.1. 

Example 4.5. Consider the U( 1 ) × U( 1 ) four-dimensional representation with orthonor- 

mal generators 

/l°°°/o / 1 % 1 0 0  1 1 0  
T l = ~  0 0 1 , T 2 = ~  0 - 1  " (19) 

0 0 0 - - 1  0 0 1 

The weight diagram is a square centered on 0 (Fig. 1). The weights are orthogonal, 
the matrix < h,/~ > in Eqs. (16, 17) is diagonal, D(exp(-sT)fb) is convex for 
any ~b and T, and Theorem 2 holds in the entire configuration space. Vectors can be 
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a(T2) 

Or~l 

0~4 

o.~:t 

,~(T1) 
P 

585 

Fig. 1. Weight diagram for the theory of Example 4.5. 

o2/i ..... 
f ;,(T2) 
....... t~u. 

] '... ,~(T, ) 

""'"'"3 .WA3 r 
"" • 

i, 

Fig. 2. Weight diagram for the theory of Example 4.6. 

classified according to the number of  non-zero weights. There are two classes of  vectors 
in closed orbits: (i) 4 weight vectors and (ii) two opposite weight vectors. There are 
three different types of  vectors in non-closed orbits: (iii) three weight vectors, which 
satisfy 6(~b) ÷ 0, and (iv) two adjacent weight vectors and (v) one weight vectors, 
for which 6(~b) = 0, i.e. they are in the same fiber as ~b = 0. Take, e.g, case (iii),  
Mumford's  curve $ ( s )  "shuts down" one weight leaving a case (ii) vector. The basic 
invariants are ~l  = ~bl~b3 and 62 = ~b2~b 4, they are unconstrained, then 7) = C 2. For any 

W, A4~, = A4sv U A4nsL, will be a subset of 79 = C 2. 

Example 4.6. Consider the U(1)  x U(1)  six-dimensional representation 

r~ = --g- 

- 1 0 0 0  0 0 
0 1 0 0  0 0 
0 0 2 0  0 0 
0 0 0 1  0 0 
0 0 0 0 - 1  0 
0 0 0 0  0 - 2  

1 
r 2 = ~  

1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 - 1 0 0 0  
0 0 0 0 0 0  
0 0 0 0 - 1 0  
0 0 0 0 0 0  

(20) 

The weight diagram is a hexagon centered on 0 (Fig. 2).  By excluding two adjacent 
weights we get a 4-weight vector in a non-closed orbit. Take, for example, ~bo = 
(~b I , ~b 2, ~b 3, #54, 0, 0) ,  ~b i 4= 0, i = 1 . . . . .  4, the boundary of  Sos appears in dotted lines 

in Fig. 2. It can readily be checked that: (1)  there is a unique choice of T satisfying 
Mumford's  theorem, (2) e-Srcko turns off #52 and ~b 3 and (3) d2D/ds 2 may (i) change 

sign, (ii) be positive, (iii) be negative, and that D(s)  may even grow along this curve 
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depending on the values of the ~bi's. Theorem 2 does not apply, we cannot draw any 
conclusions for this theory. 

4.2. Energy bounds in core-to-core theories 

There are many examples of theories for which aw(. )  sends the core of D-flat points 
in closed G ~ orbits in C n onto the core of *D-flat points of closed orbits in C n*. For 
these theories, given any point ~bo in a non-closed G c orbit, the D-fiat points in the 
closed orbit in the boundary of GCd?o have lower energy. 

Theorem 3. Assume aW(.) sends D-fiat points onto *D-fiat points, i.e. 

[aw(fb)]T[aW(~b)]~=OVTELie(G) if~btTd~=OVTELie(G). 

If GC~bo is non-closed and ~bn is a D-flat point in the boundary of GCfbo, then V(~bD) < 
v(4,o). 

Proof Let q~c be as in Mumford's theorem, ~bo a D-flat point in the closed orbit GCfbc. 
As aW(~bo) is *D-flat , ~bD is a global minimum of the restriction of F to GCd~c, 
then F(~bo) <<. F(dpc). As F decreases along Mumford's curve F(dpc) ~ F(dpo). Thus 

F(d~o) <<. F(dpc) <~ F(~bo), and also 0 = D(qbo) < D(~b0), from where V((bo) < 

v(4,o). 

Example 4.7. Theories having a single basic invariant satisfy the hypothesis of Theo- 
rem 3 (see example 3.4). Table 1 lists all asymptotically free, anomaly free represen- 
tations of simple groups having a single basic invariant, they were obtained from [ 12]. 
For all these theories V((bo), Gqbo the core of D-flat points in the boundary of 
the non-closed orbit GC~b0, gives a lower bound to the energies {V(~b)[~b E GC~bo} 
Among these representations, the real ones have the property that, for any invariant W, 
aW(~b) ( -T ) ( aW(~b) )  t cx ~bfT~b (example 3.4), this implies that D-fiat points satisfy 

the MD-fiat condition (10). For a subset of the real p's in Table 1 the tensor decompo- 
sition p ®s P contains only two irreps, one of which is a singlet, For them, Theorem 2 
holds in the entire configuration space, and, as happens for SQCD, the stationary points 
of V are D-fiat, a non-generic feature among the theories satisfying the hypothesis of 
Theorem 2. 

There are many other examples of theories for which OW(.) sends D-flat points onto 
*D-flat points. Theorem 3 applies for all these theories. 

Example 4.8. For NF < N ( NF  = N) the basic SQCD holomorphic invariants are 
M~ a - i = Qj Q,, (and B = detQ, / )  = detQ).  A straightforward calculation shows that the 
gradient of any flavor invariant superpotential W(detM) sends D-flat points onto *D-flat 
points. 
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Table 1 
All anomaly free representations of  simple groups G with a single basic holomorphie G invariant. Entries 

1-14 satisfy the hypothesis of  Theorem 3, entries 1,3,5,6 and 12 also satisfy the hypothesis of  Theorem 2. 
Pseudo-real representations are not checked in the fourth column, real representations are required in order 
that (~W)T(aW) t oc ~btTO. In the last column Dynkin labels are used to avoid complicated Young diagrams 

G p real p ® s p  

- -  m 

1 SU(N) r-l+l-] x/ [-[]+l-l]+Adj+ll  
I---1 

2 SU(6) ~ [0, 0,2,0,0] +adj 

3 SU(4) ~ x/ 10, 2, 0l + lI 
4 SU(2) [21 + [6] 
5 SO(N) [] x/ I-[-I+I 
6 S0(7), spinor x/ [0, O, 2l + I 
7 SO(9) spinor ~/ 1-1+ [0,0,0,2] + I  

F r'-n 

L J 
9 SO(IO) 2 spinors 3[0,0,0,0,2] + [0,0, 1,0,0] + ~ 
10 Sp(2N) [ ] + [ ]  ~/ 3[2,0,0 . . . . .  O] + [0,1,0 . . . . .  Ol+~ 

Vq 

I1 Sp(6) ~] [2,0,0] + [0,0,2] 
12 G2 7 x/ [2, 0] + 
13 E 6 27 [2,0,0,0,0,0] + [1,0,0,0,0,0] 
14 E7 56 [2,0,0,0,0,0,0] + l l ,0 ,0 ,0 ,0 ,0 ,0]  

5. Conclusions 

We proved in Theorems 1 and 2 that for a large set of  theories with a compact global 
symmetry G and gauge theories with gauge group G, every non-supersymmetric vacuum 
is D-flat or G C related to a D-flat point. This not only simplifies the search of nsv but 
also leads to a parametrization of its moduli space .Mnst, in terms of basic holomorphic 
invariants, extending the well-known technique of  constructing .A4s,,. We also showed in 
Theorem 1 that in generic theories with a compact global symmetry G, if GCcko is non- 
closed, a lower energy point exists in the closed G c orbit in the boundary of  GC~bo. This 
is also the case for a number of  gauge theories, for which a D-flat point in the boundary 
of a non-closed orbit GC~b0 always has lower energy than ~bo (Theorem 3).  To our 
knowledge, these are the first known results on moduli spaces of  non-supersymmelric 
vacua. They uncover an unexpected connection between non-supersymmetric vacua and 
the D-flatness condition. 
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