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Abstract

The classical moduli spac#t of a supersymmetric gauge theory with trivial superpotential can
be stratified according to the unbroken gauge subgroup at different vacua. We apply known results
about this stratification to obtain th& == 0 theory classical moduli spacet' c M, working
entirely with the composite gauge invariant operatbtkat spanM, assuming we do not know their
elementary matter chiral field content. In this construction, the patterns of gauge symmetry breaking
of the W #£ 0 zero theory are determined, Higgs flows in these theories show important differences
from the W = 0 case. The methods here introduced provide an alternative way to construct tree
level superpotentials that lift all classical flat directions leaving a candidate theory for dynamical
supersymmetry breaking, and are also useful to identify heavy composite fields to integrate out from
effective superpotentials when the elementary field content of the composites is unknown. We also
show how to recognize the massless singlets after Higgs mechanism at a vaeutt!” among the
modulis¢ using the stratification of1, and establish conditions under which the space of non singlet
massless fields after Higgs mechanism (unseen as mapuls null. A small set of theories with
so called “unstable” representations of the complexified gauge group is shown to exhibit unexpected
properties regarding the dimension of their moduli space, and the presence of non singlet massless
fields after Higgs mechanism at all of their vactua2000 Elsevier Science B.V. All rights reserved.

PACS:11.30.Pb; 11.15-g; 11.15.Kc; 12.60.Jv

1. Introduction

The construction of the classical moduli spake of a supersymmetric gauge theory
with trivial superpotential is well known [1-4]: starting from the elementary chiral matter
fields¢ € C”, a basic sep’(¢), i =1,...,s, of holomorphic gauge invariant composites
is obtained. Generically, the basic invariants are constrained, there are polynpgtils
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such thatp, (¢(¢)) vanishes identically. The classical moduli spaek defined to be the

set of D-flat points mod the gauge group action, can be shown to be parameterized by the
subset ofC* defined by the constraints among the invarianis= {¢ € C* | py($) = 0}

[1,4]. It is worth recalling at this point that agrees with theguantummoduli space

of the theory if the Dynkin index of the gauge group representation on the elementary
field space is greater than the index of the adjoint representationMblalso has a
geometrical interpretation [1,2]: &¢ is the complexification of the gauge groap then

G¢ is non-compact and some of tlig orbits in¢ spaceC” are not closedM is shown

to parameterize the set afosedG¢ orbits, denotedC"//G to distinguish it from orbit
spaceC"/G. The relationM = C" // G is due to the fact that there is precisely anerbit

of D-flat points per close@* orbit, and noD-flat points in non-close@¢ orbits [1,2].

Now suppose we add a tree level superpoteritig). To ensure gauge invariance,
we must haveV (¢) = W($(¢)), whereW :C* — C is an arbitrary function on the basic
invariants (the distinction of the superpotenﬁélas a function of the basic invariants from
the superpotentidV as a function of the elementary fields is crucial in what follows). The
classical moduli spac#1V c M of the theory with the added superpotential is the image
underw :¢ — $(¢) of the setdW = 0 of F-flat points inC”. In [4] it is shown that
MW c M C C* can be obtained by adding to the algebraic constraigtg$) = 0 among
the invariants the gauge invariant constraints resulting fddvh= 0. A natural question
to ask is the following: suppose we are giver (i.e., the numbes of basic invariants
and the constraintp, : C* — C) and W (), but wedo not knowthe elementary field
compositiortf)(qﬁ) of the basic invariants (in particular, we do not knéi¢) = W(cf)(d)))).

Is it possible to constructt” from this information? This would give us what we may
call a “low energy description” of\1V, since only the composite fields are involved in
the construction. At first sight, we may think that knowledge of the constraints linking
the basic invariantg, the ones that defing/, is enough. For example, W= melis a
mass term and we know the constraints linkigto the other composite superfields

we may think we should be able to deduce which composite superfields are made heavy
by Ww. Unfortunately, this is not the case, a “low energy” description is not possible unless
further input is given. The following is probably the simplest example illustrating this fact:
consider arSQ(N) theory with two flavors of vector fielddg} = {Q¥, a =1,..., N,

i = 1,2} ~ C?N. The basic invariants argh} = {S;; = Q¢ 0%}, and M = {S;;} = C3,

as there are no constraints among the invariants. Although the direcfionsi»

and S»> in C3 are completely equivalent\’ = {(0,0,0)} if W = mS12, whereas
MY ={(511,0,0)} ~CL if W = mSo,. The example shows that knowledge of the
invariants@, their constraints, andv (¢) is not enough to obtait\t", an extra piece

of information is required. The zero superpotential moduli spAd¢ecan be stratified
according to the conjugate clagf) of the unbroken gauge subgroup C G at each
vacuum. The stratun¥ gy, C M contains all vacua with unbroken gauge subgroup
conjugate toH. It turns out that the stratificatiotM = (J ) X () is precisely the
extra piece of information required to accomplish the desired low energy description.
The relation between the stratification 8ff and the low energy construction g#1"
comes from the equalitm" N Z(u) = (¢ € Zcm) | dWmy($) = O}, W(u) being the
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restriction le(m of W to Zz). MY c M can be constructed in steps by finding the
stationary points of the restriction oF to Xz, one stratum at a time. This useful fact,
pointed out in [1], follows from results of Luna [6], Abud and Sartori [7], Procesi and
Schwarz [1,8]. In this paper we elaborate further on these results and obtain an algorithm
to constructM "W which, in some cases, saves us the job of looking for critical points
in every stratum, but only on some carefully chosen ones. These techniques are applied
to recognize heavy composites (of unknown elementary field content) to integrate out
from an effective superpotentidifes ($) [9,10]. They are also used to construct tree level
superpotentialsﬁ7 that lift all non-trivial flat directions, reducing the classical moduli
space to a point. In all cases the input is the stratificatiodhfwhere the calculations
are performed, the compositigh(¢) of the basic invariants in terms of the elementary
fields is not required. Theories lifting all non-trivial flat directions are interesting as
candidates for dynamical supersymmetry breaking [11]. We finally use the results in [1]
to investigate the relationship (in the classical theory) between the massless dgodes
at a vacuumyp in unitary gauge, and the modulé obtained by linearizing ap(¢) the
constraints among thé's. The expected isomorphism between these two sets holds (in
most theories) only at the so-called principal stratdiyg ), where the gauge group is
maximally broken. Yet, some exceptional theories are found for which the isomorphism
does not hold even a the principal stratum. This is the same set of theories for which the
equation dim\ = dim{¢} — (dimg G —dimg G p) does not hold! they are characterized
by the fact that the bulk of the configuration spdge ~ C" is filled with non-closed
orbits of the complexificatiorG¢, case in which the5¢ action on¢ space is termed
“unstable”. Since theG representation oiC" must be anomaly free, most anomaly
free representations are real, and real representations are stable, unstable theories are
rare.

The paper is organized as follows. In Section 2 we introduce the stratificatibh afd
an order relation between strata. The important results of Luna, Procesi and Schwarz are
integrated in Theorem 1 in Section 2.1, examples are given in Section 2.2. In Section 3
we apply Theorem 1 to a number of problems. The low energy constructig '8f is
treated in Section 3.1, in Section 3.2 we show the usefulness of breakifigup into
its irreducible components, and study the patterns of gauge symmetry brealkihg:it
theories, the problem of identifying heavy composites, and that of constructing superpo-
tentials that lift all non-trivial vacua. In Section 3.3 we study the relation between massless
fields after Higgs mechanism (MFHM) at a vacugme M" and the space of moduli
tangent taM " atgo. A number of examples is given, many of them were constructed to
illustrate the subtleties involved in the given results. Section 4 contains the conclusions.
We defer to Appendix A some technical aspects in the derivation of the results in Sec-
tion 3.

1dim denotes complex dimension, whereasgimeans real dimension, then d@i = dimg G.
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2. Luna'’s stratification of the moduli space

Let {¢} >~ C" be the set of matter chiral fields of a supersymmetric gauge theory with
gauge groupG and zero superpotentiapi (¢), i =1,...,s, a basic set of holomorphic
G invariant operatorspe (¢) =0, « =1, ..., , the algebraic constraints among the basic
invariants. The moduli space of the theory\ig = {(/’3 e C’ | pa (¢3) = 0}. This means that
for every ¢g satisfying p, (o) = O there is precisely on& orbit Ggo of D-flat points
satisfyingé(gbo) = $o. Note thatG¢ denotes thes orbit through¢, whereasG, denotes
the unbroken gauge subgroupgatSince points in the sam@ orbit have conjugate little
groups,Ggy = gG¢g_1Vg € G, a conjugate cIasS?qSO can be associated iy € M,
namely,(G ; ) = (Gg,), Wherego is any D-flat point satisfying(¢o) = $o. The definition
makes sense since any twi-flat points ¢o, ¢1 satisfying ¢(¢o) = o = d(¢1) are G
related. A stratuniy) is the set ofp’s in M satisfying(G ;) = (H), M =Uy) Z(n) is
the disjoint union of its strata. The strata are complex manifolds of different dimensions,
M instead is aralgebraic sef{12], the zero set of a family of polynomials. The tangent
space at a point € X, X an algebraic set or a complex manifold, is dendfed . For an
algebraic sefl ={x € C* | po(x) =0, « =1,...,1}, T X is defined to be the kernel of
the matrixdp, /9x'(x), i.e., thesx’s allowed by the linearized constrairi<Generically,
the dimension of the tangent space of an algebraic set may change from point to point.
If X is an algebraic set satisfying difi X = n Vx € X, thenX is a complex manifold
of dimensiom: [13]. The projection magr : ¢ — ¢(¢) sendsC” onto M. Its differential
at$, 7 TyC" ~ C" — Ty(s M relates thebg at ¢ with the modulisg at ¢, 7, : 5 —
3¢ (¢)/0¢’ 547 . An order relation can be introduced in the set of isotropy classes, we say
that(H1) < (Ho) if Hy is conjugate to a subgroup éf. This order relation ipartial, it is
not true that given any two class@d1) # (H2) either(Hy) < (H») or (H1) > (H>), there
are unrelated classes. The partial order relation among conjugate classes induces a patrtial
order relation among the strat&y,) > X, wheneverHy) < (Hp).

2.1. Atheorem on the stratification of the moduli space
The important results in [1,14] are the following (see also [6-8]):

Theorem 1.
(a) There are only finitely many strata ¢f{. The strata are complex manifolds, their
closures are algebraic subsets.bf.
(b) The closure o) is

Tm= U Zw. (1)
(L)>(H)

2 Note however that different sets of polynomials define the same algebraigpgétmust be chosen such
that any polynomial vanishing onX admits an expansiop(x) =", ¢ (x) p (x) with polynomialsg® [12].
Otherwise, the span of the linearized constraints may be larger than the tangent space. As an example, the line
x2=01inC2 = {(x1, x2)} can also be defined as the zero set of the polynomigf = 0, but this second choice
leads to a wrong definition of tangent space.
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i.e., the boundary of¥(g) is the union of the strata that are strictly smaller
than E(H).

(c) There is a unique minimal isotropy clas& p), called principal isotropy class,
2 Gp) is called principal stratum(G) is a unique maximal isotropy class.

(d) Assumey is D-flat and letTy = Lie(G)¢ ~ T,G ¢, the tangent aip of the
G¢ orbit through ¢. Ty C C" is a G4 invariant subspace, and it has &,
invariant complemerﬂl‘d}. The theory with gauge grou@, and matter content
’JI“¢l is called slice representation. The stratification of the moduli space of the slice
representation contains precisely thd) < (G¢) classes of the original theory.

(e) LetS, C Ty be the subspace 6f singlets N, a G 4 invariant complement o
in T+, thenC" =T, &Sy ® Ny. The differentialr;, of the projection mapr at ¢
has kernell'y @ Ny, its rank isT; ) X(G,), the tangent to the stratum througttg).

(f) Assume theéd-flat point¢ satisfiest(¢) € X g,). ThenN, = {0} if and only if the
G° representation or®” is stable. If the representation is unstable, the theory with
gauge groupG p and matter conteniVy (i.e., the slice theory without the singlets
has no holomorphi& p invariants.

Some explanations are in order. Regarding point (c) note that in a partially ordered set
U there may be more than one maximal element. Generically, there is a 3lasét of
maximal elements. Any two elementsMh are unrelated undet, whereasn > p for all
m e M, p e U\ M. Analogously, there is a subset of minimal element§/oRegarding
point (d) note that the “slice representation” is just the supersymmetric gauge theory
obtained by Higgs mechanism at energies below the masses of the broken generators. An
interesting observation in [14] is thats determines entirely the slice representation, i.e.,
there cannot be two differem-flat points leading to theories with the same (class(®f)
subgroup as gauge group but having different matter content. This is a consequence of the
following identity of direct sums o0& representationso(stands for thes representation
on{¢} = C", whereas,, means its restriction to th& subgroupH):

S¢ & Ny @ (Ad G)‘G(p zp\o¢@AdG¢’ (2)

Theorem 1(c, d) guarantees tlaaty pattern of symmetry breaking fro to subsequently
smaller G subgroups lead to the theory with maximally broken gauge subgépp
According to Theorem 1(f) this theory contains orflyp singlets, except in those cases
wherep is unstable. As explained above, the complexificatihof the gauge group is
non-compact, and some of its orbits are not clogeid.said to be unstable if there i
invariant subset of”, open in the Zariski topology, containing only non-clog&dorbits.

The Zariski topology or©” [12] is the one whose closed sets are algebraic sets, i.e., zeroes
of a family of polynomials, it is coarser than the us@l~ R?" topology. This topology

is useful in studying representations of algebraic groups, of which the complexificition

of the compact Lie grougr is an example. Zariski open subsets of a vector sfi#care
(zariski) dense, we may therefore view unstable theories as those for which the bulk of
the elementary field spaé# is filled with non-closed;€ orbits, i.e., orbits withouD-flat
points. It was shown in [8] that if th& representatiom on C” is real then it is stable. As
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physical theories must be free of gauge anomalies, and most anomaly free representations
are real, unstable supersymmetric gauge theories are rare. In fact, the only unstable theories
based on a simple gauge group Std(2N + 1) with H + (2N —3)O, N > 2, andSQ(10)

with a spinor. These theories exhibit some curious properties, as we will see.

Note from (b, c) thatiM = X, this leads to the definition dith = dim X, (in
agreement with the standard definition of dimension of an irreducible algebraic set [12]).
The dimension of an algebraic set may change from point to point, generically there
aresingular pointsg € M at which didegM > dimM, they belong to smaller strata.

As stressed in [4], however, it is not true that all vaqﬁaatisfying (G ¢3) > (Gp) are
singular, a trivial counterexample being offered by those theories with unconstrained basic
invariants, for which all points M ~ C* are non-singular, including those with enhanced
gauge symmetry.

From Theorem 1 we can show that

Sy N Xy #0= Xy < 2y (equivalentlyX iy € Xm)). ®)

This is proved by takingg € Z(uy N Zu), then (Gy) = (H') and also, using
Theorem 1(b),(Gy) > (H), from where Eq. (3) follows. Another straightforward
consequence of the theorem is that, for stable actions (only)Adiga n — dimG¢ +
dimG p€. This is proved by picking &-flat point¢ satisfyingz (¢) € X ,. We have the
following (in)equalities from (b, e) of Theorem3dimM =dim 2,y = rankmy =n —
dimkerry =n—dimTy —dimNg =n — (dimG® —dimG p¢) —dimNy <n — (diMG* —
dimG p©). According to Theorem 1(f), equality holds only 4f is stable. For unstable
theories the dimension 0¥1 is smaller than the expected value- dimG + dimg G p,
this is consistent with the statement above that “the bullp ¢fpace” (a Zariski dense
subset) contains n®@-flat point. Unstable theoriedo haveG¢ orbits of dimension equal
ton —dimM > dimG¢ — dimG p€ [15], however, there is n®-flat point in these highest
dimensional orbits. In other words, unstable theories are characterized by the impossibility
of breakingG*¢ to the smallest isotropg© subgroup by a-flat point.

2.2. Examples

In the following, we will arrange partially ordered sdtsin columns in this way: the
first column (from left to right) contains the subget c U of maximal elements i@/, the
second column contains the sub&etof maximal elements iV \ C1, the third columrCs
contains the maximal elementsiin\ (C1U C>2), and so on. We will also draw a line linking
the elements in adjacent columns which are related uadétote that, by construction,
any elementirC; 11 is smaller than at least one elementin Note also from Theorem 1c
that if U is the set of strat&' ) or conjugate classegd?), then the first and last column
contain a single element. For totally ordered sets there is a single entry per column.

Our first example is a theory with a smooth moduli spAde~ C* and totally ordered
strata.

3For a D-flat point ¢, G 4 = G4° [2], then the complex dimension di6fy, equals the real dimension
dimg G . In particular, ifr (¢) is in the principal stratum, diG¢y, =dimg G4 =dimg Gp =dimG p€.
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Example 2.2.1 '
ConsiderF flavor, N color SQCD with quark®)¢ and antiquark:Qé, a,B=1...,N;
i,j=1,...,F, F < N. The basic invariants aer.j = éé Q?, they are unconstrained

and soCF* ~ M = MF , the set ofF x F complex matrices. The classical global non-R
symmetries ar&k = U (F)g x UF)g. A genericD-flat point can beG x K rotated onto

v 0 O .- O

0O v O -« 0
Q?=<§T>g=<g z) = . v #£0, r<F

0 v—1 O

0O O 0 vy

(4)

As isotropy G subgroups ar& invariant andG conjugate we only need consider the
D-flat points Eq. (4) to obtain Luna’s stratification afl. The unbrokenG subgroup at
(0, 0) of Eq. (4) isSU(N —r) (SU(1) meaning the trivial group). There arée+ 1 strata,
Ysun-r, ¥ =0,1,..., F, and there is @ompleteorder relation¥syy) < Xsywn-1) <

-+ < Ysywn-r), the we arrange the strata as

YSUN—F) — XSUN—F-1) — - — ZSUN—-1) — ZSUN)-

From (4) follows thatXsy_,) is the set ofK orbits of pointsM = diag(v1/?, ...,
[v:12,0,...,0), |vi| # 0, which is the seM! of rank r complexF x F matrices. The
determinantal variety [16M£, of F x F matrices of rank less than or equalritads the
algebraic set

Mir {M c MFIM[JIMJZ Mjr+l] — O} (5)

Ir41
As MF = \M<r 1» EQ. (5) defines the smallest Zariski closed (i.e., algebraic) set
containinng, ie, ML, = MY . This verifies Theorem 1Esyy_,) = U< Zsun—-
It is instructive to see what the tangent spd@@l\/ﬁgr is (for an alternative derivation
see [16]). As the equations definiﬂ@g in (5) satisfy the requirement in Footnote 2, the
tangent space &l of Mgr is obtained by linearizing (5),
TuME, = {sM eM" : MM M oMY = o). (6)

Ir+1
To understand the condition Eq. (6) contradfi’lM,:’; : "Mi{raMi{rfll] =0 withr +1
linearly independent vectorz%f(), k=1 ...,r+ 1. Ifrank M < r at least two of the
t vectors belong to ke¥l, (6) is trivially satisfied for any matri¥M, TMMQ ~ MF,
dim TMMF = F2. If rank M = r we get a nontrivial condition if we choose thg,
such that onIy one of them, say 1), belongs to the kernel o#. The condition is
M[“M’2 M’QSM’*+1 i1 — 0, meaning thabM must send the kernel aff

ir41 Ly ley
onto the rank 01M the dimension of the tangent space\atthe space of allowedlM'’s,

being F2 — (F — r). We conclude thalsyv—r) = Mf is the subset of non-singular
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points ofMgr = Ysun-r), the dimension of the complex manifolHsyy—_,) = MF
beingF2 — (F —r)2.

The complexification ofG is SUN)¢ = SN, C), andT € Lie(SLN, C)) can be
written as

Lie(SLUN,C) > T = (g Z) , t4eLie(GL(N —r,C)), Trrn+Tru=0. (7)

The (Lie algebra of the) isotropy grou® , 5, = G 5 of (4) is obtained by setting
=t =1t3=0,14 € Sl(n, C). We also splitQ andQ as

o_ (9192 ~i_ (41 g2
Qi _<613 614)’ Q‘{‘_(és 6?4)’ ®)

whereq1 andg; arer x r blocks. The tangent space to t&€ orbit of (4) is obtained by
acting with Lig(SL(n, C)) on(Q, Q)

ena_ (V|0 =i —VTl‘l —VTl‘z
T(Q*Q)'(SQ"_(ISV o)’ 5Qﬂ—<4’70 o) ©)

An SU(N — r) invariant complement is given tN(Q@ @ S(Q@, where
_.sna _ (0] O ~i (0] 0
Noo:90 = (Gag): 0= (S (10

- _ (9] 3q2 5i _ (641]0
S0.5):80F = <6T>’ 5Qé—(&73 O)' (11)
The slice representation at (4) N, 5, ® S g, the SUN — r) theory with

(F = rn@+0) + 2Fr — r?1, as is well known. The configuration poigQ, @) of
Eq. (4) is sent byr to the following point of M = M

vty 0)

(12)

M=n(Q,é)=( 0 o

. . - , - B B
It is easily verified thaiz(Q,a) annihilatesT , 5, ® N, 5),, whereas

=~ t
ro _ i F . i 86]1‘/‘/56]2
rankn(Q’Q) = ﬂ(Q’Q)(SSU(N—r)) = :SMj e M .SMAI. = <5C}3V 0 . (13)

As V is invertible, (13) agrees with the set of matrices sendingikamto rankM, which

is the tangent spack, M/ at M of the stratum through. This verifies Theorem 1e.

The moduli spaceM of the following example contains singular points. Its strata are
totally ordered, and¥,) equals the set of non-singular points.®, a property that

is not generic.

Example 2.2.2
Consider F = N SQCD. D-flat points can beG x K rotated onto Q¥ =

diagig1, ..., gn), Qé =diag(gs, ..., gn) subject to

lgi|? = |Gil>=¢, independent of. (14)
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The invariants ar(Ml.j =07 Q{l B =detQ, andB = deté, they satisfy
detM — BB =0. (15)

If B=[];qi#0or B = [14: # 0, G is completely broken. If some of thgs are zero,
then the same set gfs must be zero, otherwise we get betk 0 andc < 0 in Eq. (14).
Letr be the number of zerg's. If r =1, SU(N) is completely broken, rankl = N — 1,
andB=B=0.Ifr>1, SU(N) is broken toSU(r), rank M = N — r, andB = B =0.
We conclude that the principal stratumis = {(M, B, §)|B #0, orB # 0, or cofactor
M # 0}. The other strata arBsyy = {(M, B, §)|B = B=0andrankV = N-—r},r>1.
By linearizing Eq. (15) we see thal, agrees with the set of non-singular points/of.
The N — 1 strata are completely ordered:

Ye— Xsu@) — - — Xsuw)-

We now present examples where the set of strata is only partially ordered.

Example 2.2.3

ConsiderG = SU(N) with an (SN, C)) adjoint fieIdA%. The basic invariants arg =
TrA/*+1l j=1,...,N — 1, they are unconstrained and 84 = CV~1. The D-flatness
condition is TIT[A, AT] = 0,VT € SU(N), then[A, AT] « I, and so[A, AT] = 0. This
implies thatA can beG rotated onto a diagonal complex matrix. The residual gauge
symmetry, the group of permutations of the diagonal entries, can be used toﬁing
to the following form:

my may mj
A =diag(vy, v1, ..., V1, V2, V2,...,02,...,Vj,V},..., V), (16)
where
J J
my=zmp>---2>2mj =1, kaZN, and kavkzo. a7
k=1 k=1

The configuration point above brea8J(N) to S(U(m1) x U(mz) x --- x U(mj_1) x
U(m)) (block diagonal matrices of the form digg, ..., g;), g« € U (my) and]‘[{zldet

gi = 1). In some particular cases this is a direct product group, for example 4 1 then
S(U@my) xU(mp) x---xU(mj—1) x U(m;)) =U(mg) x U(mp) x ---x U(m-1). The
isotropy groups are in one to one correspondence with the partiBaofsN, a partition
being a decompositioV =my +ma + --- + m; wheremy > mp > --- > mj; > 1. The
partial order in the set of isotropy groups induces the following partial order relation in the
set of partitions ofV: P71 is smaller tharP, if P, is obtained fron{; by summing some of
its terms and ordering the resulting terms. We give some 5 examples: 221+ 1+ 1=
2+(1+1+1)=3+2,then2+1+1+1<3+2,als034+2=(3+2)=5then 3+2 < 5;
finally, 3+ 1 and 24 2 are unrelated. It is easy to see that the partitior$ ¢dind therefore
the isotropy groups and strata of tB&(N) theory with an adjoint) are totally ordered if
N =2, 3, but only partially ordered iV > 4. There is exactly one point of the form (16)—
(17) in aG orbit of D-flat points, this implies thafvs, ..., vj_1} can be taken as a set of
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local coordinates sy (my)x---xvm))- IN particular, Zsw my) x--xuvm ) has (complex)
dimension; — 1. StartingV = 4 we have distinct strata of the same dimension. According
to Theorem 1b, two such strata must be unrelated uades none of them can lie in the
boundary of the other one. Write

11 fiz -+ 015
f21 22 - 12§

ag=| T | (18)
tiv tjz - 1

tik 1S @anm; x my matrix, ", Tr#ix = 0. The tangent space at (16) breaks up into

Ta = 8A|IStxx =0, k=1,..., ]}, (19)
J

Sa = {5A|3tij = 8ijailim; xm; Zmiai = 0}, (20)
i=1

Na = {8Al8t;j =6ijtii, Trtre =0 fork=1,...,j}. (21)

It is readily verified thatr/, annihilatesT'4 & N4. The easiest way to see thalf sendsS4
isomorphically ontd’ (4) Zs(v imy) x--xv (m ) 1S by noting that the linear coordinatesof
Sa in (19) correspond to variatiords; of the local coordinates; of s my)x--xv(m;))
in Eq. (16). Theorem le is therefore verified in this case.

We give more details for the special cagés= 3 andN = 4.

SU(3) with an adjoint field:The partitions ofN = 3 are completely ordered:
3>2+1>1+1+1.

Equivalently, we have the following ordered set of isotropy groups:
SUR)>U2) > U() x UL

leading to the arrangement
Zuwyxv@ — Lu@ — Xsua)

of the strata, which have complex dimension& 2nd 0. The equations defining the strata
of M ~ C? can be obtained by finding the relations among the invarigrdas pointsA
of the form (16)—(17) with isotropy groufd :

(A%)SU(& =0; (A%)U(Z) =diagx, x, —2x), x#0; (22)
(A%)U(l)xU(l) = diagx, y,—x —y), y#x,—2x,—x/2.
For example, a(A%)U(z) we haver; = 6x2, 1, = —6x3, x # 0, this defines the algebraic
settf — 6t22 = 0 with the point(0, 0) removed. Proceeding in this way we arrive at
Suwxuw = {1 12) € C|i3 — 615 # o},
Su@ = {(r.12) € C?|r] — 615 = 0 and(t1, 12) # (0, 0)},
Ysue = {(0,0)}. (23)
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SU(4) with an adjoint we have the following partitions of 4:

3+1
/ AN
4 2+1+1 — 14+1+1+41, (24)
AN /
242
corresponding to the following patterns of symmetry breaking
U@
/ AN
SU4) UR)xU®@) — UQ)xU@) xUQ). (25)
AN /

SWU(2) x U(2))
Following branches from left to right be have two decreasing sequences of isotropy groups,
or two increasing sequence of strata of dimensigris®and 3. There is no order relation
between the one-dimensiorial3) andS (U (2) x U(2)) strata. Generic diagonal elements
at different strata have the forms

( %)sum) =0;

(A%)U(3) =diag(x, x, x, —3x), x #0;

(A%) sw @) = diage, x, —x, —x), x #0;
(A8)y @ xu@ = diagx, x, y, —2v —y), y # £x, —3x;
(A%)U(l)xU(l)xU(l) =diagx, y,z, —x —y — 2),

x,y,zand — x — y — z all different (26)

From the above equations we get 2x? + y2 4 (2x +y)?, t = 2x34 y3 — (2x + )3, and
r3=2x%+y*+ (2x + y)* at Zyexu@-. If x andy are unrestricted, these are parametric
equations forXyoyxu 1) C C3. An equivalent implicit equation, obtained by using
Groebner basis [12], is 2887 + 14431112 — 903t} — 2883 + 9r° — 68213 — 2415 = 0.
The equations defining the strata are

6

Suaxvxva = {1, 12, 13)|2883t7 + 14431115 — 90raty — 2883 + 912
— 68513 — 245 # 0},
Su@xu@ = |(t1, 12, 13)|2883t7 + 14431115 — 90ty — 2883 + 92
— 68310 — 245 =0 and (r2#0ore? —413#£0)
and (13— 32 #£00r 517 —13#0)},
Sswexv@) = {1, 12, 13)[12=0, 2 —43=0, and 13+ 0},
Su@ = {(tt2, 13)15 =35 =0, 5t —13=0, and 1340},
Ysua = {(0,0,0)}.
Yy« is atwo-dimensional complex surface on which the complex cukygs, and
Ysw@xu @ lie. These two curves meet Ay ).
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Our final example is a theory with an unstable representation of the complexified gauge
group.

Example 2.2.4

Let G = SU2N + 1), p = H + (2N — 3)0, the classical flavor symmetry group is
K=U@) x U2N — 3). If N =2, the onlyD-flat point is the trivial one, and\ is
a zero-dimensional vector space. Actually, ®€(5) with an antifundamental and an
antisymmetric tensor, together wiBQ(10) with a spinor, are the only theories based
on a simple gauge group with only trivid-flat points, and therefore a single stratum.
If N >3, M is the vector space o/ (2N — 3) unconstrained antisymmetric tensors
Vil = A% Q1 Q‘/’3 = (0, A). The D-flatness condition reads[Tf(24AT — 0T Q)] = 0.
A genericD-flat point can be5 x K rotated to

Qi = ( > q= [ qq q )
— , _d|a s Sy s
o 0 0 1,492 q2k

0

o - (_01 ;) (27)

with |g2;—1] = Ig2;| = |v;| # 0. This point break& to SU(2(N — k) + 1), the set of strata
Ysuavn-k+1), k=0,..., N —1, being totally ordered. Under, (27) goes to

o (Y 0 . B
AYP = ) v=diag(vio, voo,...,00), k<N -2,

Vil = diaglg1g2v10, g3qavao, . .., q2—192kvi0, 0,0, ..., 0). (28)

The K orbits of the points (28) generate tB&I(2(N — k) + 1) stratum.Xsyenv—k)+1) IS
the &N — 2k2 — 7k dimensional complex manifold 2N — 3) x (2N — 3) antisymmetric
matricesV’/ of rank .

UnderSU2(N —k) +1), the configuration spad@@N+VEN=3 ~ 1, , CEN+DEN=3)
breaks intdl'4, 0y @ Sa,0) ® N4, 0)- Using (27) and writing a LieG) element as

ot
T:( ' 2), ta € Lie(SL2(N — k) + 1)), (29)
13 14
we obtain
—qn —qt2 11v + vt{ vtg)
T 50 = , S§A = .
(4.0):00 ( ) ) < t3v 0

A possible choice foN4 o) ® S(4, ) is

S50 (0 0) oA <8A1 0)
@O = 545 0) o o)

Ntg):60 (O 0) 54 (0 °> (30)

The special feature of this example is that @it¢action isunstable AlthoughG¢ applied
to (27) withk = N — 1 gives a highest dimension@f orbit containingD-flat points, there
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areG*¢ orbits of higher dimension. An example of a highest dimensional orbit is that of the
configuration point

0! = (0v-3x39 Oan-3)x1), ¢ =diagq1, qz. ..., qan-3),

i 0 1
A% — diagivio, voo, ..., vN0,0), o= < 1 O> . (32)
The G¢ isotropy group at (31)G¢o, is different fromGo°, a common situation for the
G and G¢ isotropy groups atG¢ orbits of nonD-flat points. We can readily check that
Lie(G¢p) is the set off" € sl(2N + 1, C) having the form

X y 0 a 0 --- 0 d
Z —-x 0 b O 0 e
%2, %2 0 .0 ... 0 f
T=| "1 v1 (32)
0 0O 0 0 O 0 0
0 0O 0 O0O0-.-- 00

x,y and z span ansl(2, C) non-invariant Lie subalgebra of the isotropy subalgebra,
whereasa, b, c,d, e, f span a six-dimensional unipotent (a Lie algebra of nilpotent
matrices) Lie algebrag which is an ideal of Li€éG¢p). In other words

Lie(G%) = sl(2, C) & ue (direct sum of vector spaces) [Lie(G0). ug] < ue.(33)

After exponentiating we get a semidirect produ@f; = SL(2, C) x Us.

The slice representation (30) at tiieflat point Eq. (27) isSU2(N — k) + 1) with
[2(N — k) — 3]0+ H + (4kN — 2k% — 7k)L. At the main stratumk = N — 2, the slice
is SU5) with O+ H + (2N — 3)(N — 2)I. Taking out the singlets we g&U(5) with
ﬁ—i—H, a theory with a zero-dimensional moduli space, Theorem 1fis verified. To show that
SUG) with T+ E has a zero-dimensional moduli space we specialize the above equations
to the N = 2 case. The orbit of (31) has dimension 15, as its isotropy group (32) has
dimension 9. Taking the closure of this orbit we a get a fifteen-dimensional algebraic subset
of C15~ T+ H, the only possibility being the whol@ + H= {¢} vector space. 16(¢)
is a holomorphic invariant, thefi(¢) is constant in the closure of this orbit, i.e., the only
holomorphic invariants of this theory are the constants,is a zero-dimensional vector
space.

3. Applications
3.1. Low energy construction ¢#" and Lagrange multipliers
A holomorphicG invariant superpotentidV : C" — C can always be written in terms of

a basic set of holomorphic invarianté(¢), i =1,...,s, asW(¢) = W($(¢)), W being
an arbitraryC® — C function. TheW = 0 classical moduli spac#1 is parameterized by
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the subset of* defined by the algebraic constraints(¢) =0, « =1, ..., 1, among the
basic invariantsh(¢). The moduli space\” of the supersymmetric gauge theory with
the added superpotential is usually obtained by first solving foFtikat point setC’, =
{¢ € C"|dW(¢) = 0}, then projectingCy, down toC* using the mapr : ¢ — </3(¢), ie.,
MW = m(Cy,). It can be shown [4] thamV ¢ M c C° is the the algebraic set defined
by the gauge invariant polynomial constraipis(¢) =0, « =1,...,1; wg($) =0, g =
1,...,r, Wherew,g(q@) =0, p=1,...,r, are the gauge invariant constraints resulting
from dW = 0 [4]. In this section we elaborate further on the results in [1] on methods
to obtain fromW and Pa(@) =0 the equationsuﬁ(g?b) = 0 definingM% c M c C*,
working entirely in the spac€® of composite superfields, assuming we do not know
the functions ¢(¢), i.e., how the composite superfields are made out of the elementary
fields. In Section 1 we used &0O(N) theory with twod to show that knowledge o
and the constraints among the basic invariants is not enough to obtdinand claimed
that the required additional information was the stratification of the moduli space. This last
assertion follows from Theorem 1: the differential at ihdlat point¢ of the mapr : ¢ —
$($), 7, = 047 ($)/9¢', annihilates the subspad®, & Ny of C" =Ty & Ny & Sy,
(Theorem 1e) and so

8W_a¢l’ = ﬂ <aij.5¢">, <a¢{ = n/), (34)

99’ dgi \ 99’ 99!
is zero if§¢ € T, ®N,4. On the other hand, again by Theoremadg,(¢)/d¢/ 5¢/ does not
span the whole tangent spaf(m)/\/l of M at¢(¢), but only the subspaCEd;(@ XGy C

T¢3(¢)M tangent to the stratum througfi¢). Therefored W = 0 is equivalent to
oW . .
el 8¢' =0, Vé¢' e T$(¢)EG¢. (35)
99" 14¢)

In other wordsdW(¢) = 0 if and only if 7(¢) is a stationary point of the restriction
W(Gw = 1717|>;(G¢) of W to the stratum passing througtig). This fact, pointed out in [1]
gives an answer to the problem of findidgt" working entirely with gauge invariant
operators: first find, for each stratuliy), the critical points of the restriction o

to X x), then take the union of the resulting sets. We will see in the following section that
itis not always necessary to solve the stationary point equati@weagstratum. There are
two ways of finding the stationary points @f(H) = Wb;(m . We can use the fact that g,

is a complex manifold, cover it with local coordinate chasts i =1,...,dim X}, and

find the critical pointsh W, /dx’ = 0 in every chart. Alternatively, we can use Lagrange
multipliers and find the critical points oz + cﬂKéH). Here KEH)(qAb) = 0 are the

equations (partially) defining . In fact theKéH)(é) are polynomials, their zero set is

the smallest algebraic set containifig?), i.e., the Zariski closure&’( ), which, according
to Theorem 1b, is the union o'y and the smaller dimensional strata in its boundary.
Any stationary point OW(H) +cP K/gH) outsideX ) has to be discarded. The Lagrange

multiplier method is “safe” because it only requires that the constraﬁnéf@ (¢) satisfy
the condition ranl@KéH)/aq@-/ = maximal. As ¥y, is a complex manifold, points in
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Xy € X my are smooth, and the rank condition is met at the stationary points that are not
discarded. This guarantees the validity of applying Lagrange multipliers to this problem.

Example 3.1.1
Assume a given theory contains gosinglets, ther® ) = {¢ = 0} is zero-dimensional
anddW|Z(G) = 0 is trivially satisfied, thussg, € MY . In a microscopic description we

prove 0= ¢(0) € M" by noting that, since there are no gauge singlgts) is at least
quadratic inp and sad W Eq. (35) equals zero at th@-flat point¢ = 0.

Example 3.1.2
Consider thesQN) with 2 theory. The basic invariants asg = QY OI‘ M={S;}=
C3. There are three strata:

Yson-2) = {S|detS # 0},
Tsan-1) = {S #0|detS; =0},
Ysan) = {§=0}. (36)

The polynomiaIsK;}H) in the definition of the strata arKlsO(N_l) = 511520 — $12%;

KSO(N) =S, j)=@11),(1,2),(2 2), no constraints for¥sqy—2. The equation
detS = 0 actually defines thelosure of Ysqy—1) where d(detS)/dsS;; fails to have
constant rank because of the included boundary p®iat0. The additional condition
S # 0 in the definition of¥sqy—_1) excludes the boundary, problematic point that would
invalidate the Lagrange multipliers method.

AssumeW(SU) = mSp;. We will find M"Y using the two methods described above.

() Local charts on the strata
Vacua at¥sqy-2): sqn-2) is an open subset @3, {(S11, S12, S22)} is an appropriate
set of (global) coordinates. There are no critical point@g&N,z) (811, S12, $22) = m S22,
there is no vacuum at the principal stratum.

Vacua at¥sqy-1): Ysqn—1) can be covered with two coordinate patchEé‘f& N_1) the

set defined bys11 #0 andZ‘é@Nfb, the open subset whefa, # 0. The coordinates are

Xy (A)
Sij=< >, x;ﬁOOI’]ES 1
y y?/x aN-=b

2

y/z oy

Sij =< , ) 2#£00nZ{ vy (37)
Z

We find thathqN_l) (y,z) =mz attheB chart,dVT/SqN_l) = 0 has no solutions there.
At Eé?))(zv—l)* Wsan_1)(x, y) = my?/x, and we find the solution$; = diag(x, 0), x # 0.
Vacua at¥sq): the only point of this zero-dimensional manifold is a vacuum.

Taking the union of the solution sets we arrive at:

MY = {51512 = Sp2=0}. (38)

(i) Lagrange multipliers



G. Dotti / Nuclear Physics B 591 [PM] (2000) 636—666 651

Vacua atXsqn—2): we find the extrema of (S11, S12. S22) = mS22 and keep only the
solutions satisfying det # 0. There are no solutions.
Vacua atX'sqy—1): we find the extrema of (S11, S12, S22) = mS22 + a(S11522 — sz)
and discards = 0 as a solution. The solutions are# 0, S;; = diag(—m /«, 0).
Vacua at Xsqy): we look for stationary points off (S11, S12, S22) = m S22 + aS11 +
BS12+y S andfindS;; =a=g=m+y =0.

Taking the union of the solution sets we recover (38).

3.2. Irreducible components & # 0 moduli spaces

An algebraic set is said to be irreducible if it is not the union of two distinct algebraic
sets. Every algebraic set can be uniquely decomposed &s= |J;_; X;, with X;
irreducible andr minimal. As an example, the sé& c C2 = {(x, y)} defined by the
equationxy = 0 has two irreducible component’: = {(x, y)|x = 0} U {(x, y)|y = O}.
The moduli spaceM of a supersymmetric gauge theory with zero superpotential is
irreducible, because is the image under the regular (polynomialymahe irreducible
setC" [12], the vector space of elementary fields. However, when a superpotential is
added M"Y is generically reducible. We will see that complete irreducible components
of MY can be obtained by finding their vacua just at the maximal stratum intersecting
the component, instead of searching in every stratum. This is particularly usgéal'if
is known a priori to be irreducible, case in which we will only need to solve the
equationdW(H) =0 in a single stratum. A trivial example of an irreducible moduli space
MW is when MW consists a single point. Such theories are interesting because they
may lead to dynamical supersymmetry breaking in the quantum regime [11]. Another
example arises in the process of integrating out heavy composites from an effective
superpotentialWess. A tree level mass termiVmass= m¢t is added to a supersymmetric
gauge theory whose low energy effective superpoteitial(¢) is known. The effective
superpotential of the resulting theory is obtained by integrating out the heavy composites
éi, i=12,...,r <s, from Wegf, usually identified from the elementary field content
of #1 and the other invariants. The heavy composites can also be identified using the
stratification of the zero superpotential classical moduli sp&te= {(/’3 € C|pa (¢3) =
0}, without knowing the elementary quark content of the invariants. The light elementary
fields ¢ span the vector spa@wmassz {¢ € C"|dWmasgd¢' = 0}, which is irreducible,
then A Wmass — n((C’VleaSS) = {(13 € (Cslpa(é)) =0, and ¢3-/ =0, j=1,...,r} is also
irreducible, and excludes precisely the heavy fields to integrate out fi@m The
problem of identifying heavy composites reduces to finding the irreducible classical moduli
spaceM "mass which can be done using the stratification.of. For irreducible moduli
spacesM ", important simplification arise in the methods described in [1].

Let

MW=UMW(,') (39)
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be the decomposition 081" into irreducible components. As proved in Appendix A, the
set of strata intersectingt" ;) contains a unique maximal elemeBty,,. Furthermore

(Eq. (A.6))
MY iy =MV i N Dy, (40)

The above equation tells us that once the maximal set intersettig;, is found, we

only need to find the stationary points @f(Hi) and take the closure of the resulting set.

In taking the closure, we are actually incorporating all the other vacua in the smaller strata
intersectingM " ;, without solving the corresponding stationary point equationsi

is irreducible, we only need to solve the equat'toﬁ((y) = 0 on a single stratum (the
maximal stratum intersectingt"), then take the closure of the critical point set, otherwise
we follow the procedure described below.

3.2.1. Procedure to obtaint "

This procedure is based on the fact that the set of strata intersecting an irreducible
componentM " ;) of the moduli space contains a single maximal elemEpj,,) and
Eq. (40) holds. It stops after a few steps\it" is irreducible.

Procedure to obtainvi": MY c M C C* can be obtained, one (subset of) irreducible
component(s) at a time, by means of the following procedure:

[i] Arrange the partially ordered set of strata.® as explained at the beginning of
Section 2.2. By Theorem 1c the first and last columns contain a single eny(
and X ), respectively). The set of paths through linked strata give all the different
patterns of gradual symmetry breaking fraito G p.

[ii] Look for solutions ode(G,,) = 0. If there are solutions, take the closure of
the solution sef¢ E(G,,)|dW(G,,)(¢) = 0}, this yields one or more complete
irreducible components ot1".

[ii] Look for new solutions in the strata in the next column, if there are new solutions,
say in X y), go to [iv], otherwise repeat [iii].

[iv] Take the closure of the solution set to obtain further irreducible components
of MW.

[v] Look for new solutions in the other strata in the column(&f), if any, go to [iv],
otherwise go to [iii]

Solutions todW(H) = 0 can be found either by covering the stratum with local
coordinates or by using Lagrange multipliers, as explained above. Step [iv] saves us some
work, in taking the closure we obtain some solutiehi® 5 = 0, (H') > (H) without
actually performing explicit computations. However, Mt" is reducible MY N Xy,
does not necessarily exhaust the solution@@;,,)>(H)(MW N X(g7y). The following
example exhibits some of these subtleties.

Example 3.2.1

SQ(13) with a spinor(Fig. 1): A complete classification of th&“ orbits of this theory
can be found in Ref. [17]. Theorem 1 in [17] states that there are two invarjaatg]q (of
degrees 4 and 8 in the elementary spinor) which are unconstrainedvf.e.C?. There
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a) q b)

XGyxSU(3) YGyxSU(3)

Xsu(e) Esu(e)

Yso(13) 4 Ys0(13)

MW (1)

)

XayxsU(3)
MW ()

3su(e)

W ESO(IS\:/

Fig. 1. (a) The real sectiolip, q) € R? of the moduli spacd)2 of the SQ(13) theory with a

spinor analyzed in Example 3.2.1. The figure shows the stiafa, sy3). Zsue) and sq13)
removing them from the plane we obtain the principal strathgyys)xsya). (b) Moduli space

of Example 3.2.1(i), assuming’(p) has a single (real positive) root, in which cas¢" has two
irreducible components, the linetV (1) and the pointM"W 5 = ¥sq13). (c) The two irreducible
components of the moduli space of Example 3.2.1(ii) are parabolas, one of them agrees with the
stratumXs,» sy3)- (d) The three irreducible components of the moduli space of Example 3.2.1(iii)
are a parabola and two isolated points, one of them lyindgn, su(s), the other onX'syyg)-

Xsu(e)

are four strata (as there are four types of clog&dorbits, the ones that contaib-flat
points, see Table 1 in [17]), we order them as in step [i] of the procedure above:

2 G,xSUB)
2SUE)xSsu3) 2sa13)- (41)

2'sue)
The equations defining the strata are the following

Ssuaxsud = {(p.q)|p® —4q #0andg # 0},
S6,xsua = {(p.q)Ip? —4q =0andp # 0},
Zsue) = {(p.q)lg =0andp 0},
Ysaaz = {(0,0)}. (42)
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The real section(p, ¢) € R? of M ~ C? and its strata is depicted in Fig. la. The
dimensions of the strata in the first, second and third column of (41) are respectively two,
one and zero. We will not use Lagrange multipliers but local coordinates on the strata.
{(p,q)|lqg #0, p?/4} is a good set of (global) coordinates on the principal stratum, whereas
p # 0 can be taken as a (global) coordinateafys, and also ofX¢, «suz)- We apply the
procedure above to solve favt" in the following three cases (step [i] is already done in
Eq. (4122:

() W(p.q)= f(p) (Fig. 1b).

step [il]: Wsu@)xsuz (P q) = f(p).q # 0, p?/4. The set of critical points isvi” N
Zsudxsua = {(pi.q)lq #0, p?/4andf'(p)) =0, i =1,...,k}, k the number
of distinct roots of the polynomial’. The closure of this set i p;, ¢)lq € C,
i=1,...,k}, which is the union ok irreducible sets.

step [ii]l: Nonewsolution arises ir&¢, xsu3) Or Xsue) but those already found in taking
the closure in step [ii].

step [iv]: If O is among thep;’s, there is not any new solution iBsq13), otherwise we
add the solutiorip, ¢) = (0, 0).

k
MY = J{pi-)lg € C} U {0, 0)}, (43)

i=1

hask + 1 irreducible components jf’(0) # 0, k components iff’(0) = 0.
(i) W(p.q)=(p?—4q —m®)?2/M*3 m 0 (Fig. 1c).

step [ii]: Wsu(g)xsu(g) = W(p,q) with the restrictionsg # 0, p?/4, dWSU(g)XSU(?,) =
0 givesM" N Tsyaz)xsuz) = {(p.q)lg = (p? — mB)/4) and p # +m*}. The
closure of this set i$(p, ¢)|q = (p? — m8)/4}.

step [iill: Wsue) (p) = (p2 — m®)2/M™3, p £ 0. dWsye = 0 only atp = +m*. These
two solutions correspond toMW N sy xsua) N Zsue), they are nonew
solutions, we are still seeing the irreducible componenttf found in step [ii].
Contrast with what happens &g, xsu3). We,xsua = m*®/M*3 = constant,
thendWszSU(g) =0.X6,xsu) C MW is an entire new set of solutions! In fact

MY N Zsua)xsuz) N Ze,xsua) = 9.

step [iv]: In taking the closure ofM" N Y6,xsu@ we add the solution(0, 0) that
completes the = p2/4 parabola.

step [v]: We go back to step [iii] and find the trivial solution &kq13), which is not new.
MY has two irreducible components:

MYy ={p.9):qa=p?—m®/a}, MY o ={(p.9)lg = p?/4)}. (44)
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(iy W(p.q)=I[p(p—a)—ql2/M*3(Fig. 1d). This example is somewhat intermediate
between (i) and (ii) in the sense that the closure of the solution set in a given stratum
intersects smaller strata, where also new solutions arise. The superpotentials and solution
sets at different strata are:

@ [p(p —a) —q1?
SU3)xSU3) = T’
MY 0 Zsuaxsus = {(p. @)lg = p(p —a)), q #0, p?/4};
~ [p(p —))?
WSU(G) = T,
MY N Zsye) = {(. 0), (@/2,0)};
~ 1307 — pal®
Wa,xsu@) = 4?’
MY 0 Zg,usue = {(20/3,0%/9), (4e/3, 4a?/9)}:
Wsais =0,

MnN Xsaiz = {(0,0)}.

One of the two solutions iCsye) (Ze,xsu@)) comes fromMY N Tsyas) «sus), the
other one belongs to a different irreducible component containing a single point. The
decomposition of\1 into irreducible components is

M={(p,qg=p(p—a)}U{@/2,0}U{2a/3 «?/9). (45)

3.2.2. Integrating out heavy fields

The procedure described above simplifiesvf" is known a priori to be irreducible:
order the strata as in [i], then look for solutions in the first column, then the second one, etc.,
until solutions are found. If this first happens¥ty) and the solution setisC Xy, then
MW =75. As an application, consider the problem of identifying composites made heavy
by a mass superpotentiﬁ]massz ma, a first step in the process of integrating out fields
from an effective superpotential [9,10]. The @y of critical points of Wasd¢) =
Wmass(é(qb)) is a vector space, therefore an irreducifité algebraic subset, and so is
MWmass — 7(C" ). If Z(p) is the highest dimensional stratum intersecting Vmass

Wmas:

thenMWmass— (¢ € Xy IdW{}‘LﬁSS@) =0}.

Example 3.2.2

ConsiderW = mM}Dv in F < N SQCD (refer to Example 2.1). There are no solutions
at the main stratunTsyy—r) = Mf, the set of rankF, F x F matrices. We look for
solutions at the only stratum in the second column, whicB'dsy—r+1) = M?_l. We
use Lagrange multipliers and look for critical pointsmwff + o detM satisfying cofactor
M # 0. The solution set isM" N Tsyn_r11) = (M|M = diag My, 0) My, € ME—}) ~
M%~1, taking its closure we obtaimV = {M|M = diag M, 0)} = M"~1. This tells us
that the heavy fields af/ andM%., i=1,...,F.
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In the special case of an irreducible" intersecting the main stratu® ,, all we
need to know are the constraints defining = X ,), as these are the ones used in the
Lagrange multiplier method.

Example 3.2.3

W =0, N =2, F =3 SQCD contains si8U(2) fundamental®?, i =1,...,6. The
basic invariants ar&;; = Q¥ Qﬁsaﬂ The moduli space 8 = {V|gi1i2i3i4isie \/,1,2\/,3,4
0} and has two strata¥; = {V e M|V # O} and Xy = {V = 0}. The quantum
theory develops the effective superpotentidgl; = gi1i2i3i4isie V,l,2V,3,4V,5,6/A(F _3 M
is the set of stationary points d¥es . Adding a tree level superpotentlal’ = mVsg
and integrating out the heavy composite fields, Vs from VT/eff + Wtree we obtain the
quantum deformed” = N = 2 moduli spacePf V = A?F:Z)‘ Suppose we want a “low
energy description” of the integrating out procedure. We do not know the elementary
quark composition of thé/;;’s and need to find out which fields are made heavy by
W = mVsg. Following the above recipe, we first look for the set stationary points of
the restriction ofWyee to the main stratum of\1, then take the closure of the solution
set. The stationary points af Vsg + e'1i2/314/si6 V, . Vi 4. (Lij = —Aj; are Lagrange
multipliers) satisfy the following conditions: ## 0, A5; = Ag; = 0; V #£0, V5; = Vg; =
0, gi1i2i3iadby, , v, ;. =0, ande1?2/34%6y, ;. ). = —m/2. We conclude the light fields
areV;;, i, j # 5,6, classically constrained 12731456y, . V.. = 0. Thus, the fields to
integrate out aré&’s; and Vg;.

3.2.3. Potentials lifting flat directions

The fact thatM"W N Xy is the set of stationary points d?/(H) can be applied to
a systematic search of superpotentiﬁslifting the nontrivial classical flat directions
of a theory with given gauge groug and matter contenp. The interest in finding
superpotentials satisfying this condition lies in the fact that the resulting theory is a
candidate for dynamical supersymmetry breaking [11]. If the theory contains no singlets,
dW ), =0 is trivially satisfied, sinces ) is zero-dimensional, and the problem in hand
is finding all W for which the equatiodW(H) =0 has no solution itH) < (G).

Example 3.2.4

Let us look for all superpotentials lifting flat directions in t8&X13) with a spinor
theory above, which are at most quadratic in the invariapts;),* W = Ap + Bq +
Cp?/2+ Dq?/2 + Epq. We have

Wsue = Ap+Cp?/2. p#0, (46)
Weyxsue) = Ap + (B/4+C/2)p* + Ep*/4+ Dp*/32,  p#0. (47)

There are two possibilities:

4 Note that there is no renormalizable gauge invariant superpotential for this theorypsingé andg = S8,
S the spinor field.
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(i) The complex polynomialip + (B/4+ C/2)p? + Ep®/4+ Dp*/32 has no zeroes,
thenB +2C =D = E =0, A # 0. The condition thatl Wsy,/dp = (A + Cp) has no
p # 0 zeroes addé = 0, thenW = Ap andd Wsys)» sy is automatically non-zero.

(ii) The polynomialA + (B/2+ C)p +3Ep?/4+ Dp®/8 has zero as its only root, then
A =0 and only one of oB + 2C, E or D is non-zero. Addinng(H) # 0 for H = SU(6)
andSU(3) x SU(3) givesA = E =D =0, B, C andB + 2C non-zero.

In conclusion, the only superpotentials at most quadratic in the invariants that lift all
classical flat directions are/ = Ap and W= Bq + Cp?/2 with B, C, and B + 2C all
different from zero.

Example 3.2.5

Consider theSU(3) x SU(2) model of Affleck, Dine and Seiberg [11]. The matter
content is a fieldQ in the (3, 2), fieldsﬁ andd in the (3,1) and a fieldL in the (1, 2).
The basic invariants are! = QuL, x2 = QdL andx3 = QﬁQE They are unconstrained,
then M = C3. The strata are readily seen to Ba = {(x1, x2, x3)|x3 # 0}, Esu(z)
(2% x%)1x% = 0 and (x*, x?) # (0,0)}, andESU(g)XSU(Z) =1{(0,0,0)}. AssumeW is
less than cubic in the composﬂé&’ A;x" + B;jx'x/ /2. The supersymmetric vacua in
X1 and X'sy(2) are respectively the solutions to the equations

dWi = Bijx) + A; =0, x3#£0, (48)
dWsuz) = Brjx) + Ay =0, (x%x?) #(0,0), (49)

wherei, j = 1,2,3 andi’, j/ = 1, 2. Requiring thatW lifts all nontrivial flat points is
equivalent to demanding that the only possible solution to the linear system in (48) be the
trivial one® and also that the only possible solution of the linear system in (49) be trivial.
This leads to the following three possibilities: (i) neith&rx/ + A; = 0 nor By /x/ +

Ay =0 has a solution, (ii)B;;x/ + A; = 0 has no solution and; /x’ + Ay = O only

for (x1, x?) = (0, 0), which impliesA; = A, = 0 and det(B;: i # O, and (iii) each linear
system has the trivial solution as the only one,Ag= 0, det(B;;) # 0 and det B,/ ;) # 0.

As an exampleB;; =0 and(Az1, A) # (0, 0) is a possible solution, and choosidg =0

we obtain the only renormalizable gauge invariant superpotential lifting all flat directions.

A B;; #0 example isW = Bx1x? 4 Cx5.

3.2.4. Patterns of gauge symmetry braking¥in 0 theories

Theorem la—c gives a well defined pattern for the breaking of the gauge synthetry
in theories with zero superpotential. There is an order relation in th& sk{classes of)
unbroken subgroups af at different vacua, namelyH) < (H') if H is conjugate to a
proper subgroup of’. S contains a unique maximal clag&) and a unique minimal
isotropy groupG p), and, wherb is arranged as explained at the beginning of Section 2.2,
all patterns of gauge symmetry breaking of #ie= 0 theory fromG to G p are exhibited.
If a superpotentialV is turned on, the resulting moduli space will intersssimeof the

5 Any x3 = 0 solution would also be a solution of Eq. (49) unleds= x2 =0.
6 The Affleck, Dine and Seiberg theory corresponds to the chBjge=0, Ap = A3 =0.
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strataX ) of the W = 0 theory. From the stratificatioM = U ), Z(n) of M, and the
fact thatM"W < M, we obtain the stratification of1":

MY = U (MWOE(H)), (50)
(H)eSw

Sw being the set of (classes of) unbroken subgroups at vacua in the theory with
superpotentialv, i.e., the set of strata intersectilg". As W lifts flat directions, some
of the unbroken subgroups of tH& = 0 theory are missing iy . The partial order
relation inS is inherited bySy, this is used to order tha1" stratamW N X Itis
then natural to ask if some of the conditions in Theorem la—c subsist in the theory with
superpotential. Consider first Theorem 1a, the stratification (50) is finite, but it is easy
to see that, generically, the strata are not manifolds. Consider, e.gSQli8) theory
with a spinor of Example 3.2.1 with a superpotentialp, ¢) = (p — po)2(q — q0)2. g0 #
0, p(2)/4. The SU(3) x SU(3) stratum of this theory, being singular g, go), is not a
manifold. Point (b) in Theorem 1 does not holdWf # 0, the three superpotentials in
Example 3.2.1 illustrate this fact. Most important, point (c) in Theorem 1 is no longer
true either. Generically, the set of minimal (classes of) unbroken subgroups contains more
than one element. A simple example is 8@13) theory with a spinor and superpotential
W(p, q) = q(q — p?/4), which exhibits the following pattern of symmetry breaking:

G2 x SU3)
/
SQ(13) (51)

SU(6)

Although dim G2 x SU(3) < dimSU(6), G2 x SU(3) is not conjugate to arsU(6)
subgroup, there is no Higgs flows between these two unrelated theories. A unique maximal
unbroken gauge subgroup (minimal stratum) exists if the theory contai@ssiwlets, this

is (G) (X(c))- Yet, theories with a gauge singlet may not even have a maximal unbroken
gauge subgroup when a superpotential is turned on. As an example, 81 singlet

r to the SQ(13) theory with a spinor. The moduli spaceAd = {(p, g, r)} = C3 and the

strata are the sets ¢p, ¢, r) constrained by the same equationsin (42). Tak, q,r)=

r(p — po), po # 0, then MW is the line {(po, ¢, 0),q € C} which does not intersect
Ysa13 ={(0, 0, r)}. The pattern of gauge symmetry breaking of this theory,

G2 x SU3)
SUB) x SU3) (52)

SU(6)

hastwo maximal SQO(13) subgroups (minimal strata) from where to start flowing down
to smaller subgroups by Higgs mechanism. The reader can check that the superpotential
W = q(q — p%/Z) + r(p — po)2 po # 0 lifts all SO(13) and SU3) x SU(3) vacua,
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then the moduli space of this theory has two maximal (minimal) unbroken gauge
subgroups.

The situation gets better if we consider instéagducible components\t’ ;)
MW According to the results in Appendix A, there is a unique maximal strafiym,
intersectingM" ;, and Eq. (40) holds. This is analogous to Eq. (1) in Theorem 1b when
applied to the maximal stratum (only). Irreducible moduli spaces share this important
property with theW = 0 (irreducible) moduli spaces.

The results in Section 3.2 are gathered below.

Corollary 1 of Theorem 1. Let ¢3"(¢), i=1,...,s, be a basic set of holomorph@
invariants of the theory with matter contefgt} and gauge grou, pu (¢(¢)) = 0 the
algebraic constraints among the basic invariams—= {cf& S (C‘Y|pa(¢3) = 0} the moduli
space of theW = 0 theory. LetX ) € M be the stratum of vacua with (classes of)
unbroken gauge subgroups conjugatéfte- G, KEH)(JS) = 0 the polynomial equations
defining (the closure ofF ). Let W(¢) = W($(¢)), be a superpotential arﬁ’(g) the
restriction of W to the complex manifoldE, ).

(a) The set of vacua it sy, M" N Ty, is the set of critical pointd W, = 0 [1,7].
This can be obtained (i) by covering the complex manifblg,, with local coordinates’
and solvingd VT/(H)(x)/ax" =0, or (ii) by using Lagrange multipliers to find the stationary
points ofW(d?) +CP KéH) ((/’3), and then discarding the solutions notiyy, .

(b) Generically, if W # 0 the strataX(y) N M" are not manifolds, MW N Xy #
U(L)>(H)(MW N X)), and the sets of maximal and minimal classes of unbroken gauge
subgroups contain more than one element.

) If MY =u; MY, is the decomposition of"W into irreducible components,
then for eachi there is a maximal stratunXy,, intersectingM" ), and MY ;) =
MW iy 0 Zay.

3.3. Massless fields after Higgs mechanism

The dif'ferentialyr(;0 of the mapr :¢p — $(¢) at the D-flat point ¢o is given by the
matrix 0’ (¢o) /0!, m) :8¢7 — 8¢' = (3¢’ ($0)/9¢7)8¢/. Note thatr :C" — M =
{¢p € C*| pa(p) = O}, thenyr(;)0 1Ty, C" — T(,;OM, ¢o = ¢d(¢o). The tangent apg of C" is
T4, C" >~ C", and the tangerif; M is the space of modulip consistent with the linearized
constraints(dpy (¢0)/9¢’)8¢’ = 0 (assuming the constraints satisfy the requirement in
Footnote 2). A natural question to ask is wheth((;\or makequ;OMW C TqSOM isomorphic
to the space of massless modes at a supersymmetric vagiiarthe classical regime. We
devote this section to answering this question.

W =0case

The spacgdp} = Ty, C" =Ty ® Ny @ Sy, 8¢ uniquely decomposes dg = 6r + én +
8s. The fieldssz in Ty are eaten by the broken gauge generators (two real fields per heavy
vector superfield). Thus, iV = 0, the light fields in unitary gauge, i.e., the massless fields
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after Higgs mechanism (MFHM) are those ity & Sy = NMFHM & SMFHM, where
(N)SMFHM is a short for (non)singlet massless fields after Higgs mechanism. According
to Theorem ler; annihilatesNy,, the NMFHM are not represented iff; M. On the
other hand, the rank of, is not the wholef; M but the tangent to the stratulg, ) =

5 throughdo, and sothere are spurious field§(;50 - TQ;OM, unrelated to theMFHM.

The situation is illustrated in the following diagram:

LM = T5%5, & Cg,
I (53)

MFHM = S¢0 D N¢0'

We would like to know WherC(i;0 andNgy, are null. We consider separately the following
two cases:

() do € ZGy) (83, = E(Gp): From Theorem 1b, M = X, thenT;, =, = T; M
andCy, is null. From Theorem 1Ny, is null if and only if the theory is stable.

(i) ¢o ¢ TG (T4, < ZGp): From Theorem 1hx; lies in the boundary of the
principal stratum, dim¥; - < dim X' ,) =dimM <dim7; M, and sdly X; C T; M,
C&o is nontrivial. In this case als@ 4,) > (G p), i.e.,G p iS conjugate to a proper subgroup
of G4,, as follows from the definition of the order relation among strata and isotropy
classes, and so diiig, > dimG p. We can use this information together with Theorem 1e
to show thaN,, is not null. Pick anyD-flat point¢; such thai(¢1) € Z(s,), then (see
Footnotes 1 and 2)

dimNg, = n — (dimg G — dimr G4,) — dim E(Gm)
> n — (dimg G — dimg Gp)—dimZ‘(G,,) =dimN¢1 >0. (54)
In other words, Higgs mechanism at a vacugmwith (G4,) > (Gp) always leaves a

theory with fields transforming nontrivially undé,.
In conclusion, for any¥ = 0 theory, spurious fields iiﬁqgo/\/l are always present unless

$o belongs to the principal straturrn(;)0 is an isomorphism between the space of SMFHM

and T3, %4, The NMFHM are unseen as moduélp, they are always present, except at
vacua in the principal stratum of a stable theory.

GenericW case

The space of massless fields at the supersymmetric vaggliisthe kernel ofV;; (¢o) =
32W (¢0)/3¢'d¢/. The kernel includes the eaten fielly,, as follows from theG¢
invariance ofW

. d
. ik _
Wi )T, ¢" = 75

W(e'T¢)=0, VT elie(GY), ¢eC, (55)
s=0

by taking a¢ derivative an using th&'-flatness otpg:

Wi ()T = Wij(9o) T o5, VT € Lie(GO). (56)
P=¢o

0=—
¢
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As W;; (o) is G, invariant, it cannot mixNg, andSy,, otherwise, we could write &,
invariant mass terniv;; (¢0)3¢' §¢/ mixing singletsss with non-singletsn. We conclude
that, underC" = Ty, ® Ny, © Sy, W;; is block diagonal:

T(bo N(bo S(bo
T,* (0 0 0O
Wij(po) = Ng,* | O N;; 0 |. (57)

See" \O 0 sy

After Higgs mechanism we are left witky,, @ Sy, and so MFHM= kerS;; @ kerN;; =
SMFHM & NMFHM. We consider the SMFHM space first. In view of Eq. (52’%0
makesSy, isomorphic tol; X' . From this isomorphism and the inverse function theorem
follows that a neighborhood of the origin 8§, can be used as a coordinate patch of the
complex manifoldX 3o aroundgo. Note that ifx/ andy* are any two local coordinate sets
of X5 with x = y = 0 at¢o, andgg € M", thend VT/(%)/ayk =0aty =0 (Corollary 1a
in Section 3.2), and

~ N 82W(G ) BZW(G ) ayk ay!
[W(G¢o)]ij (¢o) = ﬁ = <8k7¢? ><_, )(—, ) (58)
x'ox/ |,._p ykoy y=0 0x' |,—o/ \0x/ |, g
transforms as &0, 2) tensor atfso, " then
_ ) L 2WG, ) (P0)
_ i $0 Jj_
kel W(G,q) ] (#0) = {8}( a0 _0} (59)

is a well defined (coordinate independent) subspac@q;(())fdgo with complementD(‘B’V.
0

This subspace is obtained by linearizinggatthe constraintsa)W(G¢o)/8x’ = 0 defining
MY N Z,,) (Corollary 1a), then is the tangent spaf&)(/\/lw N E(G%)).B In the
coordinatess of 5o [W(Gd,o)],-j = S;;, theW # 0 analogous of Eq. (53) is

J— W w "y
M = ke, ], @ DY 6 G,
| (60)
MFHM = kerS;; @ kern;;.

Among the MFHM, the SMFHM kers;; ~ kel{W(Gm)],-j are represented as moduli,
whereas the NMFHM keW;; are not. The moduli irD(g‘g ® ngo are spurious. We establish
conditions under which the space keés; of NMFHM is null:

() ¢o € XG,): If the theory is stablelN; is null (Theorem 1f) and so is keY;;. If
the theory is unstabléYy, is nontrivial and the theory with gauge groGy = G4, and

7 This tensor can be written more covariantlygs/ ; W<G¢o> =9;0; VAV(G%) + Fl{‘j a VAV(G%), V; an arbitrary
covariant derivative on the manifold o’ as the second term vanishes when evaluated at a vacuum.
8 |t might actually be bigger tha’Wd;o(MW N E(Gm)) if there is problem of the type indicated in Footnote 2.

This may happen ii¥ ($) is of high degree in the invariants (therefore non renormalizable), or the constraints
defining the strata are high degree polynomials.
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matter contenfsn} = Ng, has no holomorphiG,, invariants. In particulary;;sn'sn/,
being holomorphic and 4, invariant, must be zero, thevy; = 0 and kerV;; = Ny, is not
null.

(i) o ¢ 2 p): According to Eq. (54) dinlNg, > 0. However, no general statement
can be made about kéf;; C Ny, if W is unknown. An exception is when the theory with
gauge groui 4, and matter conterty, is known to be chiral (no quadratic holomorphic
invariants), case in which we can repeat the argument above to show;that0 and so
ker N;; = Ng, is not null.

These results are gathered in the corollary below:

Corollary 2 of Theorem 1. The space MFHM of massless fields after Higgs mechanism
at a vacuum with residual gauge groHpis the direct sum of thé/ singlet space SMFHM
and the non-singlet space NMFHM.

(@) Letx’ be any set of local coordinates af ;, around a vacuungo. SMFHM is
isomorphic to the subspa¢&x’ [(32W (o) /0x'dx/) x/ =0} C T; 2y SMFHM =
Téo(MW N Xy) (see however Footnote 8).

(b) The NMFHM are annihilated byy(;)o, and so they are missing (unseen as mattblji
in the moduli space. For any, this set is trivial if¢o belongs to the principal stratum of
a stable theory, non-trivial ifg is in the principal stratum of an unstable theory.

(c) At vacua in nonprincipal strata there are (potentially) missing NMFHW it O

(W #£0).

Example 3.3.1
Coming back toAExampIe 3.1.2, aIg&Nfl) is WS(INfl) = my?/x,x # 0, then the
vacuum conditionl Wsoy—1y = (—my?/x2, 2my/x) = 0 impliesy = 0 and
~ 2m [ y%/x? —y/x) 2m <0 0)
Wson_1),. = — - = , 61
(Wsan-1);; = — (_y/x . ol (61)

giving a single masslesSQN — 1) singlet after Higgs mechanism, a fact that can be
readily verified in a microscopic field description.

Example 3.3.2
We continue the analysis of the three different cases of Example 3.2.1.

() W(p.q)=f(p)=(p— po)? po € R*° (Fig. 1b).
Using coordinate charts as in Example 3.2.1 we get

[WSU(3)><SU(3)],'A,' = diag(f"(p).0).
[Wsuel,; = (P,

[WszSU(3)]ij = f"(p). (62)

the dimensions of the SMFHM space&t)(3) x SU(3), G2 x SU(3), SU(6) andSQ(13)
vacua equal 10, 0 and 0, respectively. Note that there is no problem of the kind mentioned
in Footnote 8. We can use Corollary 2a, SMFI:H\/IF(;50 M"Y N E(Gm))' and the dimension
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of SMFHM can easily be read off from Fig. 1b. At the= 0 vacuum we have the
original theory, for which the space of SMFHM is null, that is why difs(X(c) N
MYy = dim ¥y = 0. The (real section)p,q) € R? of the componenp = po of
MY is a vertical line intersecting all strata biftsq13 (Fig. 1b). The line intersects
ZsuB)xSUB), 2G,xsud), and Xsye) at sets of dimension,D and O, these are the
dimensions of the SMFHM spaces for vacua in these strata. All vacua in the main stratum
have a null NNMFHM space, because the theory is stable. At vacua in smaller strata there
could be NMFHM, unseen as modatp.

(i) W(p.q)=(p?—4q —m®?/M* (Fig. 1c).
We use again Corollary 2 to read from Fig. 1c the dimension of the SMFHM space at
each vacuumM" has two irreducible componentst" = MW 1) U MY ), the two
parabolas in Fig. 1c. Althougit" 1, is one-dimensional, its intersection witsye)
is zero-dimensional, and so there is a single massless singlet atSé#8h x SU(3)
vacuum in/\/lW(l), no masslesSU(6) singlet at any of the twdsye) vacua. A similar
analysis holds for the one-dimensional manifaitt” o). MY 2N Zg,xsuz = MY (2)\
{q3 = 0} is one-dimensional, WhereaMW(z) N Ysqua = {(/’3 = 0} is zero-dimensional.
Correspondingly, SMFHM is one (zero) dimensional e’ ;) vacua with residuats, x
SU3) (SQ13)) gauge symmetry.

@iy W(p,q)=[p(p—a)—q1?/M* (Fig. 1d).
Refer to Fig. 1d. The moduli space has three irreducible components: a paradolg
intersecting all four strata, a one point componf&mf"(z) in X'sye) and a single vacuum
componentM ¥ 3, with residual gauge symmety, x SU(3). Every vacuum inm" 4,
has a one-dimensional space of massless singlets except for the three vacua with residual
gauge symmetrgz x SU(3), SU6) andSQ(13), which have no massless singlets in their
spectra. This is so becauﬁew(l) N X'y is zero-dimensional fof = SQ(13), SU(6) and
G2 x SU3), whereasM" (1) N Tsyz)xsuz = MW ) \ {three isolated poin}sis one-
dimensional. There are no SMFHM at vacua in the other two components.

We should stress here that the results in this section all refer to the classical regime.
Although for theories with a simple gauge groGp matter fieldsp in a G representation
with Dynkin index . greater than the indep of the adjoint, and¥ = 0 the classical
moduli spaceM and the quantum moduli space are equal, it is generaltytrue that
the spectrum of massless fields at each vacyum M agrees in the classical and
quantum regimes. As an example, consider the s-confining theories in [5]. These theories
have an effective superpotentitlef() Whose set of stationary points 1. In the
classical theory, at th¢ = 0 vacuum we have gauge grodp and matter conten,
without singlets. Quantum mechanically, evidence indicates@hiat completely broken
and the massless spectrum are the unconstrained mu(i§,10]. A secondu > g
example are the theories with a low energy dual [10,18], they have equal classical and
quantum moduli spaces, but the classical and quantum massless spectra are completely
different.
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4. Conclusions

A low energy description of the moduli spacetV of a W # 0, /' = 1 gauge
theory, one in whichMW is constructed entirely in the space spanned by the basic
holomorphic invariantg without knowing their elementary field contept), is possible.

The construction requires knowledge of the constraints among the basic invaritats
define theW = 0 moduli space\, and also of the stratificatioM = |_J; X x) according

to the unbroken gauge subgroups clég$ at different vacua. Some shortcuts are possible
when searching for isolated irreducible components i |, a fact that is useful to identify
heavy composite fields to integrate out from an effective superpotential, and to construct
superpotentials that lift all flat directions, leaving a candidate theory for dynamical
symmetry breaking. The stratification @#t, together with the low energy construction

of MY allows a systematic study of the patterns of gauge symmetry breaking. When

is trivial, there is theory with a minimal unbroken gauge subgréypto which flow by

Higgs mechanism leads in many different ways. A non-zero superpotential, on the contrary,
may leave a set of vacua with no unique minimal unbroken subgroup, then different Higgs
flows end up at different theories.

Among the massless fields after Higgs mechanism (MFHM) at a vaghiamvt",
the singlets (SMFHM) are represented by modylj whereas the non-singlet (NMFHM)
are not. Being gauge invarian/ (¢) = W(c{)). MY Ny is the set of critical points
of the restrictioan(H) of W to the stratumXz, whereas the space of SMFHM

at a vacuump € ¥ g is the kernel of the tensov;V; le(m at ¢, V any covariant

derivative on the complex manifol#, . In looking for critical pointsd W, = 0 local
coordinates on the complex manifoldy can be used. An alternative is using Lagrange
multipliers, adding toW terms containing the polynomial constraints in the definition

of ¥y). The Lagrange multipliers method is safe in all cases. The space of NMFHM
is null for vacua in the principal stratum (where the gauge group is broken to the minimal
subgroupG p) of a stable theory. In unstable theories, on the contrary, even for acua

at the principal stratum there are NMFHM, unseen as matfliUnstable theories are
characterized by the impossibility of breaking the complexified gauge group to a minimum
dimension subgroup by B-flat configuration. Another distinguishing feature of unstable
theories is that the dimension of théif = 0 moduli spaceM violates the rule diri\1 =

dim microscopic matter field space dim gauge group- dimG p. Theories with matter

fields in a real representation of the gauge group are stable, and this is the case for most (but
not all) of the allowed representations, since they must be anomaly free. Unstable theories,
therefore, are rare.
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Appendix A. Derivation of Eq. (40)

Let
MY = MY ) (A1)

be the decomposition o#4" into irreducible components. A%1 is the disjoint union of
its strataXy we have

MW(,') = U (MW(,') N E(H)), (A.2)
E(H)E(Ti
whereo; is the set of strata intersectingt" ;). Let o/ be the subset of maximal strata
ino;, i.e., Xy € o' if and only if any other stratunX’ ) € o; is either smaller than
or unrelated taX . From Theorem 1b, any stratum én lies in the closure of &

stratum, then the union of the stratadnequals the union of the closures of the strata in
o™ and

MW(,') = U (MW(,') N X ) (A.3)
E(H)eaimax
MW ;) being irreducible means that one of the closed sets in the union above contains the
others, i.e., there is &y, € /" such that
MY iy = MY i) N Zy. (A.4)
Eq. (A.4) implies thay"® contains a single element, namel . In fact, assuming
there is "> Xy # Xy, leads to a contradiction:
0 #MY iy 0 Ziy = MY o) 0 iy 0 Eany = Sy 0 Sy # 9. (A.5)

From Egs. (3) and (A.5) we g&(y,) > X(n), contradicting the assumption th&t, is
maximal. We conclude that there is a single maximal elemdgpt, in the seto; of strata
intersecting the irreducible component"” ;,. We will show now that we can replace
MY iy = MY ;) N Dy, by the more useful formula

MY iy = MW )0 Zy. (A.6)
Eq. (A.6) has the advantage (over Eq. (A.4)) of requiring only the determination of the
critical pointsd Wy, = 0, saving us the work of explicitly finding the1" ;, points in
smaller strata. To prove (A.6) we start by taking the closure of Eq. (A.2):

MW(,') = U (MW(,') N Xmy). (A.7)

E(H)E(Ti

Again, M"Y ;) being irreducible means that one of the sets in the union, say
(MW ) N Xyry), contains the others. To show thal,, = Xy, we start from
B+ MW(,') NXpy= (MW(,') N E(HI/)) NXmy C MW(,') N E(Hi/) N Xx,) (here we use
that for any two setst and B, AN B € A N B). This impliesX ;N Z(x,) # ¥ and,
from Eq. (3), Xy = Z(u,)- As Z(p, is the maximal set intersectingyt” ;) it must be
2wy = X(ny, and Eq. (A.6) follows.
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