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Abstract

A stronger version of an anomaly matching theorem (AMT) is proven that allows to anticipate the matching of continuous as
well as discrete global anomalies. The AMT shows a connection between anomaly matching and the geometry of the null cone
of SYM theories. Discrete symmetries are shown to be broken at the origin of the moduli space in Seiberg—Witten theories.
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Global symmetries play an important role in the after a simple inspection of a sample of points in the
study of supersymmetric gauge theories. In particu- elementary field space that are D-flat and completely
lar, 't Hooft condition [1] that the massless fermions break the gauge groupln this Letter we prove a
in the low energy theory have the same continuous stronger anomaly matching theorem (AMT) improved
global symmetry anomalies as the fundamental fields to: (i) anticipate the matching afiscreteanomalies as
is so restrictive, that gives us a strong confidence on awell as continuous ones, (ii) allow non-D-flat points
proposed low energy spectrum if this test is passed. in the sample set of elementary fields, (iii) allow field
Analogous conditions for discrete symmetries were configuration that do not break the gauge group com-
given in [2] and references therein. Anomaly match- pletely. Condition (i) is very useful when dealing with
ing can be used to set necessary conditions to decide iftheories with unconstrained basic invariants, because
the classical moduli spack1,. of a SYM theory cor- the matching of the anomalies of the full global sym-
rectly describes the set of vacua and their low energy metry group can be checked by looking at a single
massless spectrum in the quantum regime. Comput- point, a suitable non-zero elementary field configura-
ing anomalies at a point o¥1., however, is a difficult tion above the origin of moduli space. A point like that
task that implies finding the basic invariants and their is necessarily non-D-flat. Condition (iii) is useful to
constraints, linearizing constraints at the desired point, understand why anomalies match in theories such as
and decomposing the resulting tangent space into irre- SQN) with N — 4 vectors.
ducible representations of the flavor group. Theorems |
and Ilin [3] allow to anticipate the outcome of this test

1A complexified gauge orbit is closed, as required in Theorem |
E-mail addressgdotti@fis.uncor.edu (G. Dotti). in [3], if and only if is the orbit of a D-flat point.
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Throughout the Letter we use the following termi-
nology and notationy € C" = {¢} denotes a space-
time constant configuration of the elementary matter
chiral fields.G is the gauge groupy its representa-
tion on{¢}, p = EB F; p; its decomposition into ir-
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Discrete symmetries classify into two types, and
only type | anomalies are required to match [2].
Type | anomalies aréSLJZZM, which should only
match modu, and the gravitationdt,,, which has to
match modu /2 [2]. The UV space on the rhs of (1)

reducible representatlons The classical flavor group is and (2) is the complex vector spagg of elementary

F = SU(F1) x - -- x SU(Fy) x U(L)g x U(L)*, anom-
alies break the/(1)¥ piece down toU ()%~ x Z,,,
w=; Fiu; the (properly normalized [2]) Dynkin
index of p. The resulting quantum flavor group is
called F, all the elementary fields have charge one
underZ,. ¢*(¢), « =1,...,s is a basic set of ho-
mogeneous, holomorphi@ invariant polynomials on
C", which, being holomorphic, are also invariant un-
der the action of the complexified gauge grop.
The level setsp(¢) = ¢, of the mapgp:C* — C*
are calledfibers the fiber throughg being Fy =
#~1($(¢)). Due to theG® invariance of the map
¢ :C" — C*, fibers contain completé* orbits. There

is precisely oneG orbit of D-flat points in every
fiber [4], then, for theories with zero superpotential,
the classical moduli spackt. = {D-flat pointg/ G =
$(C") < C*. A particularly important fiber we will
be dealing with is the one through= 0, Fo = {¢ €

C" | q3(¢) = 0}, called thenull cone The G orbit of
D-flat points in the null cone i$0}. If the basic in-
variantsd?"‘(¢>),a =1,...,s are algebraically inde-
pendent thenM,. = $(C") = Cs. If they are con-
strained by polynomlal relatlonp,(d)(q&)) =0, then
M. =¢(C") = {¢ € C* | p,(¢) = 0}. The tangent
space of M, at #, denotedT; ML, is the linear set
of allowedsé’s obtained by Iinearizing ab the con-

straints p, (¢) = 0. The differential ap of ¢:C" —
M, denotedégb, is a linear map from the tangent
spaceT,C" ~ C" into the tangent space adt(p) of

the moduli spaced),:C" — Ty, M., ¢,:8¢' —
8% = (34 /3¢7)8¢ . 't Hooft's condition states that
the global and gravitational anomalies of the unbro-
ken symmetries at a given vacuum, computed in the
space of massless elementary fermions (or UV, for ul-
traviolet, as in [3,5]) should match the corresponding
anomalies in the low energy theory (or IR, for infrared
sector), i.e., given any three global symmetry unbro-
ken generators

tnrbatbs, bet =truv halbs, bel,
thrb; =tryvhi, i=A,B,C.

@
)

chiral matter fields, plus the gaugino space (&)
(which only contributes in the case &f symmetries).
We are interested in checking 1. gives a correct
IR description, i.e., if IR= T; M, (plus leftover
gauginos if the theory is in a époulomb phase) passes
't Hooft test. This has implications for theories with
guantum modified moduli spaces [3,5]. Theorems |
and 1l in [3] allow us to anticipate (without even
finding the invariants to construg¥t.) the matching

of continuous global anomalies &, if there is a
D-flat point¢ that completely break& and satisfies
$(¢) = po. Since there is no such a D-flat point over
the origing, = 0 of M., to explain anomaly matching
at the origin of, e.g., theories with an affine moduli
space (AMS) [6] or s-confining theories [7], a st

of D-flat points that completely break is used, such
that anomaly matching for the unbroken symmetry
groups F; imply matching for F at the origin
[3,5]- The résults in [3,5] were used to prove anomaly
matching at every point of1,. for s-confining theories
and theories with a quantum modified moduli space,
and also to show that anomaly matching in dual
theories is a consequence of the similarities in their
chiral rings [8]. They do not allow, however, to test
discrete anomaly matching and see if it is a truly
independent test. The anomaly matching theorem
(AMT) below overcomes this difficulty, and can also
be applied at points that maximally brealG, even

if G is not completely broken, and most important,
even if ¢ is not D-flat. As an examplep could be

a point in the null-cone (i.e.¢3(¢) = 0), where F

is unbroken, and be used to anticipate full anomaly
matching in AMS theories, or Seiberg—Witten (SW)
theories [9]. As we will see, computations do not
simplify when testing discrete anomalies, or when
the gauge group is not completely broken. However,
interesting relations arise between the geometry of the
null-cone and anomaly matching at the origin/ef,.

Anomaly matching theorem (compare to Theo-
rems | and Il in Ref. [3]).Assume thatG is semi-
simple,G¢¢, has maximal dimension antl¢,) is a
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smooth point ofM.. Leth4, hp andhc be any three
generators of the unbroken global symmetry subgroup
at ¢ (¢,), with the firstk of them(k =0, 1, 2, 3) equal

to h =1, the generator of the anomalot&1) D> Z,,.

There are generatogs, g andgc of G¢ such that
(hi +9i)¢, =0fori = A, B, C. Furthermore, the UV—
ng(%)/\/lc gravitational anomaly mismatch is

truv bi =ty e bi = triie(Ge,,) Adg;

(¢0)
and the flavor anomaly mismatch is
truv ba{bs, bl
=15, Mo halba,bc}
— trLie(Gf%) AdgA {Ang s Adgc}
3)

where Ad,, must be replaced with Ag — r, I if b; is
an R symmetry ¢, is the gaugind/ (1) chargé).

Before proving the theorem we will show some
applications.

—ktrigy{gs, gc},

Theories with D-flat points that breakk com-
pletely This is the case studied in [3,5].4f, is D-flat
and breaksG completely then also breakG“ com-
pletely [10]. Furthermoreg(¢,) is in the principal
stratum ofM ., and so is smooth [4]. The AMT Eq. (3)
can then be applied ap,. Since Li€G¢y,) is triv-
ial, according to the AMT continuous anomalies will

match between the UV ariqb(%)/\/lc. This argument

holds foreverypoint¢ in the principal stratum of the-
ories where the gauge group can be completely bro-
ken, among which are all SYM theories with matter in
gauge representations with Dynkin index greater than
the index of the adjoint [11]. These facts can be used
to simplify the proofs in [3,5] that anomalies match at
every point of the moduli space for s-confining the-
ories and theories with a quantum modified moduli
space; and also the proof in [8] that matching in dual
theories is a consequence of the similarities of the chi-

ral rings of the duals, rather than an independent dual-

ity test.

2 Usually set equal to one, it may be assigned a different value to
avoid non integel/ (1) g charges. This is relevant when computing
mixed discrete-& (1) g anomalies.
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Theories with unconstrained basic invariant¥e
show some applications of the AMT that require the
stronger version given above. Instead of looking at
é in the principal stratum, we explore the opposite
situation: ¢ = 0. We would like to understand why
anomalies match at the origip = 0 of the moduli
space of theories such as the AMS theories in [6], or
the Seiberg—Witten theories [9]. These are examples of
theories with unconstrained basic invariants, for which
M_, is a vector space, anpl= 0 a smooth point. The
AMT can be applied ap = 0 if there is a pointp, in
the null-cone that maximally breaks’, i.e.,

¢($o) =0, (4

If such a point exists, the anomaly mismatch between
the basic invariants and the UV is given by Eqg. (3).
In particular, ifd = dg = dimG all continuous anom-
alies must match.

Eight out of the eleven AMS theories in Table | of
[6] have matter content in irreducible representations
of the gauge group. Irreducible representations of sim-
ple gauge groups with unconstrained basic invariants
share the rare property that all of their fibers have the
same dimension and contain a finite numbeG6for-
bits [13]. Thus, the dimension of a fibgrequals the
maximum dimension of &¢ orbit in it, sayds, and,
since all fibers have the same dimension, it must be
dy =d for all f, in particular, for the null cone. We
conclude that Eqg. (4) has a solution. Besides being
irreducible, the gauge representations in Theories T8
through T11 of Table | in [6] have Dynkin index
greater than the adjoint index,g;, then dimG“¢, =
dg for ¢, satisfying (4). Applying the AMT a#, con-
tinuous anomaly matching at the origin follows. The
existence of a maximal dimensi@rf orbit in the null
cone implies continuous anomaly matching! Why do
continuous anomalies match for the other AMS the-
ories? According to the AMT, because the restricted
Adg representation of (3) is anomaly free. As an ex-
ample consider the theory with = SQ(2n + k) andn
vectors, collected in &n + k) x n matrix¢. The fla-
vor group isSUn) x U (1) g x Z2,, the scalar piece of
¢ transforms ag(l, (2—n — k)/n, 1). The point

dimG°¢, = d (maxima).

]Il’an

¢o (%)

i]Il’an

0k><n
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b) Symmetric of SO(5,C)

A(h,)

~ )

Fig. 1. Weight diagram of the adjoint (a) and symmetric (bpef5, C) showing the convex hull spanned by, €1 + €2, 2¢1, €2 and 2».

satisfies Eq. (4). The Lie algebra of the unbroken done above (Egs. (5) and (8)), itis no longer sufficient

gauge group ap, is spanned by matrices of the form

A iA B
( iA —A iB) (6)
—-BT —iBT A

with A an antisymmetricn x n block and A’ an
antisymmetrick x k block. Givenb in Lie(SU(n)),
h=s +ia (s real symmetrica real antisymmetric), a
gy satisfying(g, + )¢, =0, (predicted by the AMT)
can be chosen as

ia —is O
0 0O O

Similarly, g. = —rgandgz = —g, wherer = (2—n—
k)/n is ther-charge of the scalar fields and

Onxn _iann 0n><k
g= iTyxn On><n 0n><k . (8)
kan kan kak

Under theSU(n) x U(D)g x Z2, Ad representation
(Ad —1 for the U (1)g generator) that enters Eq. (3),
Aisa(H, -1+ 20 +k-2)/n,—2), BakD, -1+
(n+k—2)/n,—1) and A’ a (1, —1,0). This repre-

to know that such &, exists. Although this makes the
AMT computationally useless (it is certainly easier to
go through the usual steps to verify anomaly match-
ing), an interesting geometrical picture arises. Solv-
ing Eq. (4) for theories with invariants of high degree
is a very difficult problem, we would like to show
a way around it. A recipe to find points in the null
cone is given in [13]: fix a Cartan algebra, obtain the
weight decomposition = Y, ¢5, ¢, # 0, and con-
struct the convex hull spanned by the weightslf

the hull does not contain the origin thenis in the
null cone. Now add the requirement thiatoreak G¢
completely. This condition is guaranteed if we make
sure that under no root translation will all thés in

the weight decomposition af “drop off” the weight
diagram, and that two different root translations will
not leave exactly the same weight spaces occupied.
For example, in the AMS theory = SQ(5) with mat-

ter in theT we readily see from Fig. 1 that points
containing the weightss, €1 + €2, 2¢1, €2 and 2, are

in the null cone (any Weyl rotation of this set would
equally work). We have made the standard choice of
Cartan generator€f{ has a Paulb> matrix in theith

sentation happens to be anomaly free precisely whenZ2 x 2 diagonal block) and weights; (¢;) = §;;. Since
k =4—n, i.e., when the number of vectors is four less €1 — €2 andez are not simultaneously drop off the di-
than the number of colors, as expected. This is why agram under root translations, vectordin_, @ Ve,
global anomalies match in this case. Back to theories completely brealSQ(5, C), and so are particular so-

with d = dg, we may ask what the AMT tells us about

lutions of Eq. (4), as the reader may check. Is there

discretesymmetries. To test the matching of discrete any other property to require frog,? We may ask

anomalies we need to explicitfind ¢, and gz, as

thatgz (o g.) in the AMT belongs to the Cartan sub-
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algebra. If this is the case, thep¢, = —¢, reads Cartan subalgebra of the matter fields in the adjoint do
Mgz) = —1 for all A in the weight decomposition  get a non-zero vev, showing thai, is actually bro-

of ¢,. This defines a hyperplane in weight space, the ken2 In the SU(N) case, the Cartan subalgebra is the

weights ing, must lie in this hyperplane if we want subspace of the diagonal Lie algebra matrices defined
gz in the Cartan subalgebra. In t&€X5) theory with by Z,’(\'zl ar = 0, and the vevsay) are given by [9,14]

a [1J a possible choice i®, € Ve, ® Ve;—c,, With

gz = —(2€1 + &). Once we have theg;’s of the
AMT, we may apply Eq. (3). Note that the mismatch (@) = ?ékswdx’ ©)
of anomalies involvind/ (1) g andZ,, will be propor- Vi

tional to thg) gz2 = (u/mad) tradjgz2 1/ D2, D the

distance t{g}the origin of \J/veig#n space of the hyper- Where y; are the N branch cuts of the complex

plane containing the weights ¢f,. We conclude that, ~ functiony = f(x) defined by [14]

for the theories under consideration: (i) the matching

of continuous anomalies is a consequence of the exis- N 2

tence of an orbiG¢¢, of maximal dimension in the ~ y* =k(x) = (ZsaxN“) — A%, (10)

null cone, the weights af, can be chosen lying on a a=0

hyperplane in weight space, and (ii) the distance of this

hyperplane to the origin gives the discrete anomaly

mismatch. This is the anomaly matching—geometry N

interplay referred to above. _, \dx
Theories in a Coulomb phase also have a classi- Asw (Z(N — )sex™ a)? (11)

cal moduli space spanned by unconstrained basic in- «=0

variants. We will concentrate on the SW t_heories With Here 50 = 1,51 = 0 and the remainings,’s are

one flavor of matter in the adjoint (of a simple gauge the vev's of basic invariants, related to the standard

groupG). The flavor group i/ (1) g x Zj.,4, the un- invariantsp® = tr ¢ through

broken gauge subgroup at a D-flat point that maxi-

mally breaksG is U(1)", r the rank ofG. Continuous .

symmetry anomalies are known to match between the ,.; Zsrfaé)“ =0, r=1.23,....

elementary fields and the unconstrained moduli if the o

unbroken gauginos in L&/ (1)"), which transform

non trivially underU (1), are added to the moduli. The 2V zeroes ofk(x) in (10) are of the form

The matching ofU (1) symmetries follows readily —x = gi(s,£A"),i =1,..., N, where theg; can be

from the AMT, Eq. (3), when applied at a D-flat point unambiguously defined ifs| > |A|, then the cuts

¢, that breaks5 to U (1)". SinceU (1) acts trivially Ci,i=1...,Nof

onthe scalar matter fields, we can chogge= 0 (h the

generator ot/ (1)g), then Ad,, = 0 and (3) precisely . , ,

says that/(1)z anomalies Cr%batch if the light, unbro- y®) = n[‘/x —&ils. M)\/x = 8i(s,=2")]

ken Lig(U (1))" gauginos are assigned charge one and

added to the moduli. Regarding discrete symmetries, can be chosen witti; the segment frong; (s, A") to

they can be treated exactly as done for #@&5) the- gi(s, —A™). For the vacuum at the origin of the moduli

ory above. A point satisfying (4) can be explicitly space, the roots df(x) arew’'1A,i=1,...,N, v =

found using elementary Lie algebra facts. It is found ¢i7/N and it is not obvious how th& roots of 1 pair

that type | [2] discrete anomalies only match for the to the N roots of —1. From the observation in [14]

even rank, simply lace@ : Az,, D2,, Es andEg. This that a rotationd2V — ¢27* A2N ¢ € [0, 1] transforms

implies thatZ,, must be broken at the origin of the  a root ofk into its pair, we conclude that the cdt

other SW theories [2], a fact that is not obvious, since

the vev’s of all basic invariants are zero. A possible

explanation is that the microscopic fields that span the 3 I thank Witold Skiba for suggesting this possibility.

and the Seiberg—Witten one form is

i
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links w?2Atow?~1A,i=1,...,N, then diagram commutés
2i-1 4 (]
’ XN {8}/ Ty, —>T(p,)Me
(a;) f —dx. (12)
_ x2N — A2V [gh] h (14)
w?2a 195,) 7

A change of the integration variable4e= »?x shows (9)/Tg, —> T, Me
that (a;+1) = 0?(a;), then(}"7_,a;) =0, as expected. ~Now consider the map:Lie(G¢) — Ty, given by
The change of integration variakde= x" in (12) t(g) = g¢,. This mapis onto and has kernel L& ¢, ).
If (g, h) € (G x F)g, thenghae, = ghg(gh) ¢ =
(gag Do, and alsogLie(G,)g "t C Lie(G%,).
(13) We have a situation analogous to that leading to the

e | 2
e 72— AN diagram (14)

may suggest théw;) = 0 if N is odd, explaining the  Lie(G)/ Lie(G¢y,) —1=Ty,
discrete anomaly matching at the origin of the odd
. L [Ad,] (g.h) (15)
N theories. However this is not correct, the branch
of zY/N in (13) is not the one taking real values for Lie(G®)/ Lie(GC%)LJE%
negativez, the integrand is not odd, and tke;) do

not vanish. We have constructed the correct integrand Now let h;,i = A, B, C be three nor/ (1)g genera-

tors of F; The differential version of (14) reads

(reproducing the desired branch cuts) and evaluated b (¢o)
numerically the integrals definin@1) for SU(N) for ) —1 4 b 27 1—1 16
the first few N'’s. We have found thata1) doesnot o) M [¢¢0 [Lg: + i) /T 119,] (16)

vanish, even for oddv. Repeating this calculation for  and that of (15) is

other simple groups, such as the exceptional groups, .

is much more difficult, due to their complex branch (8 + bz, = [11IAdg; | ee) Lieoe,,,) 1111 17)
structure. Our results, however, seem to indicate that
anomaly matching at the origin of the even rank, subspaceW C V invariant, th,w[0] = try O —

simply laced SW theories, is accidental. try O. This, together with (16), (17), the facts that any
G representation is traceless far semisimple, and

Proof of the AMT. SinceG is semisimpleG°¢, has  that theG action on{¢} is free of anomalies, imply
maximal dimension ang(¢,) is smooth, the differ-

ential 43; o) = Ty, Me is onto [12], and (using U7y, a. bi =gy bi + trLie(Ge,,) Ady,
dlmMc = d|m{¢} dimG) has ketnel Li(aGf)qso =
f b € LIE( ¢(¢ ))a then 0= bd’(d’()) = ¢:pob¢o-
Smce b, € kerg), =Ty, there is agy € Lie(G) rr; 4, M Daths, bt =gy batbhs, bel
such thaigy, + b € Lie((G¢ x F )g,). gy, iS not unique =1rLie(Ge,,) Adg, {Adg,, Adg.}
if Lie(G%,) is no_n-tnwal, and SO there is no “star” +trig) galoz. be)
flavor representation under whi¢t} breaks intdly,
plus an invariant complement, as in the proof of The- +trgy gaibs, gc} +trg) hafgs. acl. (18)
orem Il'in [3]. It can easily be checked tH&}, is in- The last three terms vanish for non-anomaldus
variant undexG¢ x F)d,o, but this group may be non-  generators, and give the term of (3) whenk of
reductive if¢, is not D-flat, and this implies thak,,
may not have an invariant complement (as an example,———— ) ) )
. . . Given an onto linear map : V — W with kernel V,,, we call
considerp, of Eq. (5))- The way out of this prOblem IS [0]:V/V, — W the induced isomorphism. 9 :V — V is linear

to work W|th thequotientvector spac¢g}/Ty,, where andV, C V an invariant subspacgQ] denotes the induced linear
a(Ge x F)% action is well defined, and the following  mapv/Vv, - v/ V,.

If O:V — V is a linear operator that leaves the

and
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the b;’s equal the anomaloug = I that generates
U)s D Z,. Anomalies involvingh € LieU(1)g
must be computed using the fermiorfic= h — rel
charge matrix. We leave it for the reader to check
that calculations go through if we replace Advith
Adgy, —r,I, use the facts tha (instead offp) is
anomaly free, and that UV gets enlarged {tt} ®

Lie G¢4, for cubic U (1) anomalies. The AMT then
follows. O
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