ANALISIS MATEMATICO IV- Práctico 1 Ecuaciones diferenciales de primer orden

- 1. Comprobar si las funciones dadas son soluciones de la ecuación diferencial correspondiente:
 - a) y'' y = 0, $y_1(t) = e^t$, $y_2(t) = \cosh t$.
 - b) y'' + 2y' 3y = 0, $y_1(t) = e^{-3t}$, $y_2(t) = e^t$.
 - c) $2t^2y'' + 3ty' y = 0$, para t > 0, $y_1(t) = t^{\frac{1}{2}}$, $y_2(t) = t^{-1}$. d) y' 2ty = 1, $f(t) = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2}$.
- 2. Dibujar aproximadamente el campo de direcciones determinado por cada una de las siguientes ecuaciones diferenciales y esbozar algunas de sus curvas integrales.

 - i) $\frac{dy}{dx} = \frac{x}{y}$ ii) $\frac{dy}{dx} = \sqrt{x^2 + y^2}$. iii) $\frac{dy}{dx} = 1 + xy$. iv) y' = y(4 y).
- 3. Hallar la solución general de las siguientes ecuaciones diferenciales.
 - a) $y' + y\sqrt{t} \cdot \sin t = 0$,
 - b) $\dot{x} + x \cos t = 0$,
 - c) $y' + t^2y = 1$,
 - $d) \dot{y} + y = te^t$.
- 4. Resolver las siguientes ecuaciones diferenciales con condiciones iniciales.

 - a) $y' y = 2xe^{2x}$, y(0) = 1b) $y'' + 2y' = xe^{-2x}$, y(0) = a, y'(0) = b
 - c) $tx' + 2x = sen(t), x(\frac{\pi}{2}) = 1$
- 5. Encontrar la solución general de las siguientes ecuaciones.
 - a) $y' + 3y = x + e^{-2x}$

 - b) $\dot{x} = 3\cos(2t) \frac{x}{t}$ c) $(1+x^2)y' + 4xy = \frac{1}{(1+x^2)^2}$
- 6. (*) Resolver el siguiente problema $y' = \frac{1}{e^y x}$, y(1) = 0. Sugerencia: considerar x como variable dependiente de y.
- 7. Dado el problema de valores iniciales

$$y' = f(t, y), y(t_0) = y_0,$$

se fija una función inicial $\varphi_0(t)$ y se genera una sucesión φ_n de funciones por medio de la fórmula de Picard:

$$\varphi_{n+1}(t) = \varphi_0 + \int_{t_0}^t f(s, \varphi_n(s)) ds.$$

Para cada uno de los siguientes problemas determinar φ_n partiendo de φ_0 = y(0). Si es posible, encontrar una estimación del intervalo I_n en el cual φ_n es una buena aproximación de la solución para algunos valores de n = 1, 2, 3, 4. Analizar si es posible la convergencia de la sucesión $\{\varphi(t)\}$ hacia la función solución en cada caso.

- a) y' = 2(y+1), y(0) = 0.
- b) y' = -y 1, y(0) = 2.
- c) $y' = -\frac{y}{2} + t, y(0) = 0.$
- d) y' = y + 1 t, y(0) = 1.
- 8. a) Encontrar la solución de $x'=x^{1/2}$ que pasa por el punto (t_0,x_0) , donde $x_0>0$.
 - b) Encontrar todas las soluciones de esta ecuación que pasan por el punto $(t_0,0)$.
- 9. Dada la ecuación x'x = t, estudiar existencia y unicidad de las soluciones para distintas condiciones iniciales (x_0, t_0) .
- 10. La ecuación x' = f(t, x) se dice homogénea de grado cero si f satisface f(yt, yx) = f(t, x), para todo $y \in \mathbb{R}$. Mediante la substitución x = u(t)t, mostrar que la ecuación puede reducirse a la forma de variables separadas

$$u' = \frac{f(1, u) - u}{t}.$$

Hallar la solución general de las siguientes ecuaciones

- i) $x'(tx + t^2) = x^2$, ii) $x't = x + te^{-2x/t}$.
- 11. Encontrar las soluciones de las siguientes ecuaciones.
 - a) $tx' + x = 3t^2 1$, para t > 0.
 - b) $x' (\tan t) x = e^{\sin t}$, para $0 < t < \pi/2$.
- 12. Considerar la ecuación $t^2x' + 2tx = 1$ en el intervalo $0 < t < \infty$.
 - a) Mostrar que toda solución tiende a cero cuando $t \to \infty$.
 - b) Encontrar la solución ϕ que satisface $\phi(2) = 2\phi(1)$.
- 13. La población de cierta comunidad aumenta con una velocidad proporcional a la cantidad de personas que tiene en cualquier instante t > 0.
 - a) Plantear y resolver la ecuación diferencial que satisface la población p = p(t).
 - b) Si la población se duplicó en 5 años, cuándo se quintuplicará?
- 14. Resolver la Ecuación Logística: $\frac{dy}{dt} = r(1 \frac{y}{K})y$.
- 15. Un tanque tiene inicialmente 160 litros de agua pura. Una solución de concentración salina de 100 g/l entra al tanque a razón de 1/2 litro por minuto, y se mezcla muy rápidamente (en nuestra idealización instantáneamente) con el agua del tanque. Simultáneamente se extrae líquido del tanque a razón de 1/2 litro por minuto.
 - a) Plantear y resolver la ecuación diferencial que satisface la cantidad de sal en el tanque como función del tiempo.
 - b) Es obvio que al tender el tiempo a infinito, la concentración de sal en el tanque debe tender a 100 g/l. Verificar que esto se cumple usando la función

hallada en el apartado anterior.

- c) ¿Cuándo se tendrán 50 gramos de sal en el tanque?
- 16. Experimentos muestran que la tasa de cambio de la temperatura de la superficie de un cuerpo es proporcional a la diferencia entre la temperatura del cuerpo y la del ambiente (ley de enfriamiento de Newton).
 - a) Determinar la ecuación diferencial que satisface la temperatura de un cuerpo.
 - b) Cuando una torta se extrae de un horno, su temperartura superficial es de 150^{o} C. Tres minutos más tarde es de 100^{o} C. ¿Cuánto tiempo tarda la torta en enfriarse a la temperatura de 50^{o} C si la temperatura ambiente es de 20^{o} C?