ÁLGEBRA III - Práctico 1 Repaso de Algebra lineal

1. a) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la transformación lineal tal que su matriz en la base ordenada

$$\mathcal{B} = \{(1,0,0), (0,1,0), (0,1,-1)\}$$

es

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 7 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

- $b) \ \ \text{Hallar la matriz} \ P^{\mathcal{C}}_{\mathcal{B}} \ \text{de cambio de base de } \mathcal{B} \ \text{a la base canónica} \ \mathcal{C} = \{(1,0,0),(0,1,0),(0,0,1)\}$
- c) Dar la matriz $[T]_{\mathcal{C}}^{\mathcal{C}}$ de T en la base canónica.
- d) Hallar T(3, 7, -5).
- 2. Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la transformación lineal definida por

$$T(x_1, x_2) = (x_1 + 2x_2, 3x_1 - 3x_2, 2x_2 - 3x_1).$$

- a) Considerar en \mathbb{R}^2 la base canónica y en \mathbb{R}^3 la misma base ordenada \mathcal{B} que en el ejercicio anterior. Hallar la matriz de T en dichas bases.
- b) Es T sobreyectiva?
- 3. Decidir si las siguientes afirmaciones son verdaderas o falsas y justificar.
 - a) Existe una transformación lineal $T: \mathbb{R}^7 \longrightarrow \mathbb{R}^4$ tal que la dimensión del núcleo es igual a la dimensión de la imagen.
 - b) Existe una base $\{A_1,A_2,A_3,A_4\}$ del espacio vectorial $M_2(\mathbb{R})$ de matrices 2×2 , con $tr(A_i)=0$ 0 para todo i = 1, ..., 4.
 - c) El conjunto $\{A \in M_2(\mathbb{R}) : tr(A_i) = 0\}$ es un subespacio vectorial de $M_2(\mathbb{R})$.
 - d) Existe una base $\{A_1, A_2, A_3, A_4\}$ del espacio vectorial $M_2(\mathbb{R})$ de matrices 2×2 , con $A_i^2 = 0$ para todo i = 1, ..., 4.
 - e) El conjunto $\{A \in M_2(\mathbb{R}) : A^2 = 0\}$ es un subespacio vectorial de $M_2(\mathbb{R})$.
- 4. Sea V el espacio vectorial de los polinomios en $\mathbb{R}[x]$ de grado ≤ 2 , y sean t_1, t_2, t_3 tres números reales distintos.
 - a) Calcular la dimensión de V.
 - b) Probar que las funcionales $L_1, L_2, L_3 : V \to \mathbb{R}$ definidas por $L_i(p) = p(t_i)$ son linealmente independientes. Más aún, probar que son base de V^* .
 - c) Hallar una base $\{p_1,p_2,p_3\}$ de V tal que $\{L_1,L_2,L_3\}\subset V^*$ sea su base dual.
 - d) Escribir cualquier polinomio $p \in V$ en términos de la base $\{p_1, p_2, p_3\}$.
- 5. Repetir el ejercicio 2 para los funcionales:

$$f_1(p) = \int_0^1 p(x) dx, \qquad f_2(p) = \int_0^2 p(x) dx, \qquad f_3(p) = \int_0^{-1} p(x) dx.$$

- 6. Sea V el espacio vectorial de los polinomios en $\mathbb{R}[x]$ de grado ≤ 2 y $D: V \to V$ el operador diferenciación sobre V, D(p) = p'.
 - Sea f la funcional lineal sobre V dada por $f(p) = \int_a^b p(x) \, \mathrm{d}x, \, a < b.$ Hallar $D^t f$.

- 7. Demostrar que si A es una matriz triangular entonces $\det A = A_{11}A_{22}\dots A_{nn}$, donde los A_{ii} son los de la diagonal de A.
- 8. Sea A una matriz $n \times n$. Demostrar que:
 - a) si A es antisimétrica ($A^t = -A$) y n es impar entonces $\det A = 0$;
 - b) si A es ortogonal $(AA^t = I)$ entonces $\det A = \pm 1$;
 - c) si $F = \mathbb{C}$ y A es unitaria ($A^*A = I$, donde A^* denota la transpuesta conjugada \bar{A}^t de A) entonces $|\det A| = 1$.
- 9. Si V es el espacio vectorial de las matrices $n \times n$ sobre F y B es una matriz $n \times n$ dada sobre F, sean L_B y R_B los operadores lineales sobre V definidos por $L_B(A) = BA$ y $R_B(A) = AB$. Demostrar que:
 - a) $\det L_B = (\det B)^n$;
 - b) $\det R_B = (\det B)^n$.