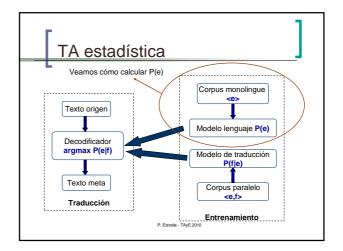
Modelos de lenguaje

- Basados en n-grams
- Sintácticos
- Factorizados
- aleatorios
- Tamaño de los modelos generados

P. Estrella - TAyE 2010



Modelos de lenguaje

- Objetivo: asignar probabilidades a cada posible frase de un idioma
 - Buenas combinaciones de palabras deberían obtener probs altas y frases sin sentido probs bajas
- Intuitivamente se encarga de la fluidez del idioma
 - Fluidez = que el texto generado sea fácil de leer, gramaticalmente correcto y que parezca natural del LM
- Algunas aplicaciones que usan modelos de lenguajes: reconocimiento del habla, reconocimiento de la escritura (handwriting), correcciones ortográficas, OCR, TA, ...

P. Estrella - TAyE 2010

Modelos de lenguaje

- Para crea un ML hay que contestar estas preguntas
 - 1. Cómo sabemos qué frases son posibles en un idioma?
 - 2. Cómo calculamos P(e)?
- Podría tomar un corpus monolingüe gigante, la web
 - Para 1. podemos tomar cada oración que aparece en la web como una frase posible del LM
 - Para 2. calcular la frecuencia relativa de todas las frases de un idioma (#veces_que_aparece/#total_frases_idioma)
- Problemas de este modelo simplista
 - Muchas frases no aparecen en la web → obtienen 0 sean correctas o no en LM

P. Estrella - TAyE 2010

Modelos basados en n-grams

- Una mejor opcion es partir cada oración observada en n-gramas
 - Hipótesis: si una oración contiene muchos n-gramas probables → más chances de sea una buena frase en LM
- Los ML basados en n-gramas asumen que la késima palabra depende de las k-1 anteriores (historia)
 - $P(w_1^k) = P(w_1)^* P(w_2|w_1)^* ... *P(w_k|w_{k-1})$
 - En P($w_k|w_{k-1}$): w_k es la predicción y w_{k-1} la historia
- Un estimador usado comúnmente usado es P_θ(w|h) = count(h,w)/count(h)
 - count = #ocurrencias en corpus entrenamiento

Modelos basados en n-grams

 Estos modelos describen el lenguaje como cadenas de Markov de orden n-1

 $Pr(w|h) = Pr(w_n|w_1, w_2, ..., w_{n-1}) \approx Pr(w_n|w_{n-N+1}, ..., w_{n-1})$

- Cadena de Markov = serie de eventos, en la cual la probabilidad de que ocurra un evento depende del evento inmediato anterior.
- Se dice que tienen memoria: "recuerdan" el último evento y esto condiciona las posibilidades de los eventos futuros.
 - Esto las distingue de eventos independientes, como tirar una moneda al aire o un dado.

Modelos basados en n-grams

- Dado un vocabulario de tamaño $\,V\,{\rm los}\,$ parámetros libres que deben estimarse son $\,V^{\rm n}$ -1
 - Por ej con V=10 un modelo por palabras o 1-gram tiene 9 p.l, 2-gram tiene 99 pl, 3-grams tiene 999, etc
- La elección de n influye en la performance del modelo

 Con n grande el modelo es más preciso pero los estimadores (EMV) son menos confiables
- Otro problema de elegir n muy grande es la baja densidad (data sparseness) de n-grams de orden alto
- Es decir, habrá muchos n-grams nunca vistos
- Un valor aceptable es n = 3
 - Intuitivamente, genero palabras y sólo recuerdo las dos anteriores que se generaro

P. Estrella - TAyE 2010

Ejemplo

- Supongamos que tenemos la frase x="el perro ladra mucho'
 - P(x) = P(el | inicio_frase inicio_frase) *
 P(perro | inicio_frase el) *
 P(ladra | el perro) *
 P(mucho | perro ladra) *
 P(fin_frase | ladra mucho) *
 P(fin_frase | mucho fin_frase)
- Si alguno de estos n-grams no aparece en el corpus de entrenamiento la oración recibe prob 0
 - → Smoothing

P. Estrella - TAyE 2010

Smoothing

- Smoothing = suavizar → la distribución de probabilidades
 - Re-distribuir masa de n-grams del corpus entre n-grams que no courren en corpus

 "Discount coefficients" se restan de la frecuencia relativa
- Back-off: si $w_1, \dots w_n$ no aparece en el corpus $P(w_n | w_1, \dots w_{n-1})$ se estima con $P(w_n | w_2, \dots w_{n-1})$
- Good-Turing estimation: agrupa las palabras por su frecuencia en el corpus (#ocurrencias) y calcula $P(X) = r^*/N \text{ con } r^* = (r+1)^*E(N_{r+1})/E(N_r)$
 - r: #veces que se vio X, N: tamaño corpus, N,: #palabras vistas r veces, E(a): esperanza de a, r*: discount coefficient
 - Estima la probabilidad de que la próxima palabra que veamos sea X luego de haber visto un cierto corpus

P. Estrella - TAyE 2010

Modelos basados en n-grams

- Simple linear interpolation: la idea es que modelos de n-grams de menor orden son menos dispersos (sparse) entonces los usa para calcular los de
 - $\begin{array}{l} P(w_n | \ w_1, \ldots w_{n-1}) = \lambda_1 P(w_n) + \lambda_2 P(w_n | w_{n-1}) + \ldots + \lambda_n P(w_n | w_1, \ldots w_{n-1}) \\ \bullet \quad 0 <= \lambda_1 <= 1 \ , \ \Sigma \ \lambda_1 = 1 \ \Rightarrow \ \text{los } \lambda_1 \, \text{se calculan con EM} \end{array}$
- Katz Backoff: también usa n-grams de menor orden pero sólo uno a la vez
 - Descuenta menos a modelos más frecuentes
 - Smoothing se activa cuando aparece un n-gram desconocido y ahí se elije el modelo con
- General lineal interpolation: combina KB y SLI donde λ_i nn son fijos sino una función de la historia

Modelos basados en n-grams

- Existen otras estrategias de smoothing y combinaciones, por ej caching, skipping, clustering, Kneser-Ney,...
- Investigación en estas técnicas mejora la calidad de los MLs generados pero no resuelven algunos problemas básicos
 - Por ej que el tamaño de N (-gram) está muy limitado por el corpus usado $\,$
- Sin embargo estos son los más usados
 - De hecho, las herramientas libres más usadas son CMU y SRI, ambas implementando 2/3-grams (SRI tiene otros

P. Estrella - TAyE 2010

Modelos sintácticos

- Usan gramáticas PCFG para estudiar cómo se relacionan las palabras de un corpus
 - Son Probabilistic context-free grammars entrenadas sobre un corpus de árboles para aprender las probs de aplicar las reglas en oraciones nuevas (plain text)
- Las PCFG se usan para modelar lenguaje y traducir a la vez
 - Los trabajos más conocidos (Charniak 2003) usan PCFG para traducción "tree-to-string"

 Toman un árbol de parseo del LO, le aplican algunas operaciones (reordenamiento, borrado/inserción de nodos) y traducen las hojas del árbol al LM
- La hipótesis es que la traducción sea mas gramatical → mejor calidad
 - Al depender de parsers y treebanks no es posible aplicarlo a cualquier par de idiomas

Modelos factorizados

- Son una solución intermedia: extensión de los basados en n-grams y menos demandantes (en recursos) que los modelos sintácticos
- Tienen la opción de incorporar conocimiento lingüístico como POS tags, clases semánticas, etc
- En estos modelos una palabra w es una colección de características o factores (incuyendo la palabra misma o surface form)
- Las palabras se representan como vectores de características
 - o Ej la = ("la", artículo), gato = ("gato", sustantivo), ...

P. Estrella - TAvE 201

Modelos factorizados

Palabra w con K características representada por

$$w \equiv \{f^1, f^2, \dots f^K\} = f^{1:K}$$

 Dada una historia de n-1 palabras, la prob de que la próxima sea w, es

$$P(w_1, w_2, ..., w_T) = P(f_1^{1:K}, f_2^{1:K}, ..., f_T^{1:K}) = P(f_{1:T}^{1:K})$$

 Estos modelos simulan la aplicación de varios modelos n-gram cada uno con sus parámetros y estrategias de smooth

P. Estrella - TAyE 2010

Modelos aleatorios

- Siguen siendo basados en n-grams pero en vez de guardar explícitamente cada n-gram distinto guardan un muestreo aleatorio
 - Usan filtros de Bloom para representar el muestreo con arrays de bits
- Intuitivamente, modela el hecho de alguna información se pierde en el proceso de tradución
 - Es decir, que podemos equivocarnos en un porcentaje ε
- La gran ventaja de estos modelos es la reducción del espacio de memoria necesario para guardar el

P. Estrella - TAyE 2010

Tamaño del ML

- Los ML pueden ser enormes dependiendo de la cantidad de textos usado
 - Ej [Osborne 2007] muestra la cantidad de n-grams distintos en dos corpora grandes

Corpus	Europarl	Gigaword
1-gms	61K	281K
2-gms	1.3M	5.4M
3-gms	4.7M	275M
4-gms	9.0M	599M
5-gms	10.3M	842M
6-gms	10.7M	957M

Table 2: Number of distinct n-grams

Tamaño del ML

- Durante el proceso de traducción el ML se utiliza muchas veces por oración pero no es posible alojarlos en memoria en una sola máquina
 - Según algunas estimaciones un ML 5-gram usando 2 billones de palabras no podría estimarse en una maquina con 50 GB RAM
- Podríamos filtrarlos por ej descartando n-grams con probs menor a un cierto imite (cut-off)
 - Estas estrategias ayudan pero también afectan la calidad
- Por lo tanto, queda usar el disco (swap) o distribuir entre varias maquinas

P. Estrella - TAyE 2010

Tamaño del ML

- El uso de grandes MLs es una rea de investigación bastante activa motivada por la necesidad de mejorar la calidad final de las aplicaciones de PLN
- Ejemplo: Google [Osborne 2010]
 - Entrenado con 2 trillones de tokens

 - Y ya vemos que esto puede ayudar bastante a la calidad de las traducciones!

Evaluación de MLs

- Para comparar distintos MLs es necesario establecer algunas métricas que indiquen la calidad de los mismos
- La más conocida es *perplexity (PP)* aunque también puede usarse la *entropía* del modelo
- La PP de un ML respecto a un corpus S de |S| palabras es $\Pr(S)^{-1/|S|}$
 - El ML con menor PP será el que asigne mayor probs a S
- Por lo tanto un ML es mejor que otro si su PP es menor

P. Estrella - TAyE 2010

Evaluación de MLs

- La PP depende de dos cosas: el ML y el corpus
 - o Como función del ML mide qué tan bien se ajusta al lenguaje modelado
 - Como función del corpus mide la complejidad del idioma en cuestión
- En la práctica
 - o Es importante que se use un corpus representativo de la aplicación pensada para el ML
 - Una reducción de la PP del 10% se considera significante

P. Estrella - TAyE 2010

Bibliografía

- Randomized LMs
- inf.ed.ac.uk/teaching/courses/mt/papers/randlm.pdf

- ntp://www.inf.ed.ac.uk/reaching/courses/m/papers/randim.pdf Google's LM http://www.inf.ed.ac.uk/teaching/courses/mt/lectures/lm.pdf Syntax-based LMs http://list.cs.brown.edu/research/pubs/pdfs/2003/Charniak-2003-SBL.pdf
- Factored LMs http://www.iccs
- cs.informatics.ed.ac.uk/~miles/phd-projects/axelrod.pdf
- N-gram LMs http://acl.ldc.upenn.edu/J/J92/J92-4003.pdf CMU toolkit http://www.speech.cs.cmu.edu/SLM/toolkit.html
- SRI Language Model http://www-speech.sri.com/projects/srilm/