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Motivation

• Extensions of tensor categories by a finite group

I tensor subcategory C = Ce ⊆
⊕

g∈G Cg - G -extension of C
I in order to classify G -extensions of C one needs:

1. a group map g 7→ [Cg ], G → BrPic(C)
Cg is an exact invertible C-bimodule category;

2. a 3-cocycle and a 4-cocycle over G .

I in order to find extensions of C = Rep(H) one needs to
compute BrPic(Rep(H)).

• Mathematical Physics

I the Brauer-Picard group is related to 3-dim. Topological Field
Theory, see [J. Fuchs, Ch. Schweigert, A. Valentino, Bicategories

for boundary conditions and for surface defects in 3-d TFT,

http://arxiv.org/pdf/1203.4568.pdf]
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C(=Rep(H))
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The necessary ingredients

I finite tensor category = k-linear abelian rigid monoidal cat.
equivalent to a cat. of finite-dim. representations of a
finite-dim. k-algebra s.t. the unit object is simple

I M a right C-module cat. ↔ Mop a left C-module cat.

I M a (C,D)-bimodule cat. ↔ Mop a (D, C)-bimodule cat.

I a (C,D)-bimodule cat. M is invertible ↔
M�DMop ' C and Mop �CM' D as bimodule cat.’s

I a (C,D)-bimodule cat. M is exact =
exact as a left C �Drev -module cat. =
∀P ∈ C �Drev ∀M ∈M⇒ P ⊗M ∈M is projective

I C: a finite tensor cat. → BrPic(C) = the group of equiv.
classes of invertible exact C-bimodule cat.’s
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How do invertible cat.’s over C = Rep(H) look like

Let K , L be fin.-dim. Hopf algebras

• Rep(K )- Rep(L)-bimodule cat. = left Rep(K⊗Lcop)-module cat.

• Any invertible (C,D)-bimodule cat. M is indecomposable ↔
M 6=M1 ⊕M2 for any non-triv. (C,D)-bimodule cat.’s M1|2.

Theorem. [Andrusk.-Mombelli, 2007]

Any exact indecomposable left Rep(K⊗Lcop)-module cat. is
equivalent to AMf - the cat. of fin.-dim. A-modules,
where A is a fin.-dim. right K⊗Lcop-simple,
left K⊗Lcop-comodule algebra with trivial coinvariants.
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Some candidates for invertible Rep(H)-categories

Let A be a left coideal subalgebra of a fin.dim. Hopf algebra H.
Then:

I [Skryabin, 2007] A is H-simple.

I [Mombelli, 2008] if σ is a 2-cocycle over H compatible with A
⇒ AσM is an exact indecomposable module cat. over
Rep(H).

⇒
• we are interested in finding all coideal subalgebras of H⊗Hcop

• and their 2-cocycle twists.
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Product of module categories

Let A be a right L⊗K cop-simple, left L⊗K cop-comodule algebra
and B a right K⊗Lcop-simple, left K⊗Lcop-comodule algebra.

Theorem. “Product Theorem”

If any of the following two conditions is fulfilled, then there is an
equivalence of Rep(L)-bimodule categories:

AM�Rep(K) BM' A2KBM

1. [Mombelli, 2008]

• A⊗ B is free as a left A2KB-module;
• the module cat. A2KBM is exact;
• AM is an invertible (L,K )- and

BM an invertible (K , L)-bimodule category.

2. [Femić, Mombelli]

A is a Hopf-Galois extension, as a left L-comodule algebra.
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Embedding BiGal(H ,H) into BrPic(Rep(H))

Lemma.

If A be an (H,H)-biGalois object then [AM] ∈ BrPic(Rep(H)).

Illustration: AM�Rep(H) AopM' A2HAopM' HM

Proposition.

There is a group embedding BiGal(H,H) ↪→ BrPic(Rep(H))
given by [A] 7→ [AM].

Used: Ψ : BrPic(Comod(H))→ BrPic(Rep(Hop))

[N ] 7→ [Vecop �Comod(H) N �Comod(H) Vec]

Ψ([Comod(H)A2H−]) = [MA].
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Exact indecomposable Rep(Tq)-bimodule
categories
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Left coideal subalgebras of Tq ⊗ Tq−1

It is Tq ⊗ T cop
q
∼= Tq ⊗ Tq−1 . Set H = Tq ⊗ Tq−1 .

I We classified all homogeneous left coideal subalgebras of H

I We found their 2-cocycle twists

I We computed the “liftings” of the latter

I All the latter 5 (families) are proved to be H-simple, left
H-comodule algebras with trivial coinvariants

I Any exact indecomposable Rep(Tq)-bimodule category
turns out to be equivalent to AM, where A is one of the
above 5 (families of) algebras.

• It remains to see which of the above 5 (families of) bimodule
categories are invertible.
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Deciding which bimodule categories are invertible

1. The family LM. For some parameters the algebras L are left
Hopf-Galois extensions over Tq.

⇒ L1M�Rep(Tq) L2M' L12TqL2M ' L3M
and we computed (LM)−1 ' L′M.
These parameters/invertible categories contribute to the subgroup
(k× n k+)× Z2 in BrPic(Rep(Tq)).

2. The family kψGM. We know that (kψGM)−1 = (kψG)opM.

Suppose that both categories are invertible.
Then they fulfill the conditions of the “Product Theorem”.
Hence: kψGM�Rep(Tq) (kψG)opM' kψG2Tq (kψG)opM' TqM.

However, kψG2Tq(kψG )op is semisimple and Tq is not. �
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Deciding which bimodule categories are invertible

3./4. The families K01M and K10M.

We know that (K01M)−1 = K10M.

Suppose that both categories are invertible.
Then they fulfill the conditions of the “Product Theorem”.
Hence: K01M�Rep(Tq) K10M' K012TqK10M' TqM. �

5. The family K11M - is still to be investigated.
There are candidates for some parameters, however it is difficult to
compute the product of two (bi)module categories.

THAT IS ALL...
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