INVERTIBLE MODULE CATEGORIES OVER THE REPRESENTATION CATEGORY

 OF THE TAFT ALGEBRA
Bojana Femić
 (joint with M. Mombelli)

Facultad de Ciencias
Universidad de la República
Montevideo (Uruguay)

Lecture Outline

The setting and motivation
$\operatorname{BrPic}(\mathcal{C})$ for a finite tensor category $\mathcal{C}(=\operatorname{Rep}(H))$ Embedding $\operatorname{BiGal}(H, H)$ into $\operatorname{BrPic}(\operatorname{Rep}(H))$

Exact indecomposable $\operatorname{Rep}\left(T_{q}\right)$-bimodule categories

Motivation

- Extensions of tensor categories by a finite group
- tensor subcategory $\mathcal{C}=\mathcal{C}_{e} \subseteq \bigoplus_{g \in G} \mathcal{C}_{g}$ - G-extension of \mathcal{C}
- in order to classify G-extensions of \mathcal{C} one needs:

1. a group map $g \mapsto\left[\mathcal{C}_{g}\right], \quad G \rightarrow \operatorname{BrPic}(\mathcal{C})$
\mathcal{C}_{g} is an exact invertible \mathcal{C}-bimodule category;
2. a 3-cocycle and a 4-cocycle over G.

- Mathematical Physics

Motivation

- Extensions of tensor categories by a finite group
- tensor subcategory $\mathcal{C}=\mathcal{C}_{e} \subseteq \bigoplus_{g \in G} \mathcal{C}_{g}$ - G-extension of \mathcal{C}
- in order to classify G-extensions of \mathcal{C} one needs:

1. a group map $g \mapsto\left[\mathcal{C}_{g}\right], \quad G \rightarrow \operatorname{BrPic}(\mathcal{C})$
\mathcal{C}_{g} is an exact invertible \mathcal{C}-bimodule category;
2. a 3-cocycle and a 4-cocycle over G.

- in order to find extensions of $\mathcal{C}=\operatorname{Rep}(H)$ one needs to compute $\operatorname{BrPic}(\operatorname{Rep}(H))$.
- Mathematical Physics

Motivation

- Extensions of tensor categories by a finite group
- tensor subcategory $\mathcal{C}=\mathcal{C}_{e} \subseteq \bigoplus_{g \in G} \mathcal{C}_{g}$ - G-extension of \mathcal{C}
- in order to classify G-extensions of \mathcal{C} one needs:

1. a group map $g \mapsto\left[\mathcal{C}_{g}\right], \quad G \rightarrow \operatorname{BrPic}(\mathcal{C})$
\mathcal{C}_{g} is an exact invertible \mathcal{C}-bimodule category;
2. a 3-cocycle and a 4-cocycle over G.

- in order to find extensions of $\mathcal{C}=\operatorname{Rep}(H)$ one needs to compute $\operatorname{BrPic}(\operatorname{Rep}(H))$.
- Mathematical Physics
- the Brauer-Picard group is related to 3-dim. Topological Field Theory, see [J. Fuchs, Ch. Schweigert, A. Valentino, Bicategories for boundary conditions and for surface defects in 3-d TFT, http://arxiv.org/pdf/1203.4568.pdf]

$\operatorname{BrPic}(\mathcal{C})$ for a finite tensor category $\mathcal{C}(=\operatorname{Rep}(H))$

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple
- \mathcal{M} a right \mathcal{C}-module cat. $\leftrightarrow \mathcal{M}^{o p}$ a left \mathcal{C}-module cat.

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple
- \mathcal{M} a right \mathcal{C}-module cat. $\leftrightarrow \mathcal{M}^{o p}$ a left \mathcal{C}-module cat.
- \mathcal{M} a $(\mathcal{C}, \mathcal{D})$-bimodule cat. $\leftrightarrow \mathcal{M}^{\text {op }}$ a $(\mathcal{D}, \mathcal{C})$-bimodule cat.

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple
- \mathcal{M} a right \mathcal{C}-module cat. $\leftrightarrow \mathcal{M}^{o p}$ a left \mathcal{C}-module cat.
- \mathcal{M} a $(\mathcal{C}, \mathcal{D})$-bimodule cat. $\leftrightarrow \mathcal{M}^{o p}$ a $(\mathcal{D}, \mathcal{C})$-bimodule cat.
- a $(\mathcal{C}, \mathcal{D})$-bimodule cat. \mathcal{M} is invertible \leftrightarrow $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{o p} \simeq \mathcal{C}$ and $\mathcal{M}^{o p} \boxtimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{D}$ as bimodule cat.'s

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple
- \mathcal{M} a right \mathcal{C}-module cat. $\leftrightarrow \mathcal{M}^{o p}$ a left \mathcal{C}-module cat.
- \mathcal{M} a $(\mathcal{C}, \mathcal{D})$-bimodule cat. $\leftrightarrow \mathcal{M}^{o p}$ a $(\mathcal{D}, \mathcal{C})$-bimodule cat.
- a $(\mathcal{C}, \mathcal{D})$-bimodule cat. \mathcal{M} is invertible \leftrightarrow $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{o p} \simeq \mathcal{C}$ and $\mathcal{M}^{o p} \boxtimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{D}$ as bimodule cat.'s
- a $(\mathcal{C}, \mathcal{D})$-bimodule cat. \mathcal{M} is exact $=$ exact as a left $\mathcal{C} \boxtimes \mathcal{D}^{\text {rev }}$-module cat. $=$ $\forall P \in \mathcal{C} \boxtimes \mathcal{D}^{\text {rev }} \quad \forall M \in \mathcal{M} \Rightarrow P \otimes M \in \mathcal{M}$ is projective

The necessary ingredients

- finite tensor category $=k$-linear abelian rigid monoidal cat. equivalent to a cat. of finite-dim. representations of a finite-dim. k-algebra s.t. the unit object is simple
- \mathcal{M} a right \mathcal{C}-module cat. $\leftrightarrow \mathcal{M}^{o p}$ a left \mathcal{C}-module cat.
- \mathcal{M} a $(\mathcal{C}, \mathcal{D})$-bimodule cat. $\leftrightarrow \mathcal{M}^{o p}$ a $(\mathcal{D}, \mathcal{C})$-bimodule cat.
- a $(\mathcal{C}, \mathcal{D})$-bimodule cat. \mathcal{M} is invertible \leftrightarrow $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{o p} \simeq \mathcal{C}$ and $\mathcal{M}^{o p} \boxtimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{D}$ as bimodule cat.'s
- a $(\mathcal{C}, \mathcal{D})$-bimodule cat. \mathcal{M} is exact $=$ exact as a left $\mathcal{C} \boxtimes \mathcal{D}^{\text {rev }}$-module cat. $=$ $\forall P \in \mathcal{C} \boxtimes \mathcal{D}^{\text {rev }} \quad \forall M \in \mathcal{M} \Rightarrow P \otimes M \in \mathcal{M}$ is projective
- \mathcal{C} : a finite tensor cat. $\rightarrow \operatorname{BrPic}(\mathcal{C})=$ the group of equiv. classes of invertible exact \mathcal{C}-bimodule cat.'s

How do invertible cat.'s over $\mathcal{C}=\operatorname{Rep}(H)$ look like

Let K, L be fin.-dim. Hopf algebras

How do invertible cat.'s over $\mathcal{C}=\operatorname{Rep}(H)$ look like

Let K, L be fin.-dim. Hopf algebras

- $\operatorname{Rep}(K)-\operatorname{Rep}(L)$-bimodule cat. $=$ left $\operatorname{Rep}\left(K \otimes L^{c o p}\right)$-module cat.

How do invertible cat.'s over $\mathcal{C}=\operatorname{Rep}(H)$ look like

Let K, L be fin.-dim. Hopf algebras

- $\operatorname{Rep}(K)-\operatorname{Rep}(L)$-bimodule cat. $=$ left $\operatorname{Rep}\left(K \otimes L^{c o p}\right)$-module cat.
- Any invertible (\mathcal{C}, \mathcal{D})-bimodule cat. \mathcal{M} is indecomposable \leftrightarrow $\mathcal{M} \neq \mathcal{M}_{1} \oplus \mathcal{M}_{2}$ for any non-triv. $(\mathcal{C}, \mathcal{D})$-bimodule cat.'s $\mathcal{M}_{1 \mid 2}$.

How do invertible cat.'s over $\mathcal{C}=\operatorname{Rep}(H)$ look like

Let K, L be fin.-dim. Hopf algebras

- $\operatorname{Rep}(K)-\operatorname{Rep}(L)$-bimodule cat. $=$ left $\operatorname{Rep}\left(K \otimes L^{c o p}\right)$-module cat.
- Any invertible (\mathcal{C}, \mathcal{D})-bimodule cat. \mathcal{M} is indecomposable \leftrightarrow $\mathcal{M} \neq \mathcal{M}_{1} \oplus \mathcal{M}_{2}$ for any non-triv. $(\mathcal{C}, \mathcal{D})$-bimodule cat.'s $\mathcal{M}_{1 \mid 2}$.

Theorem. [Andrusk.-Mombelli, 2007]

Any exact indecomposable left $\operatorname{Rep}\left(K \otimes L^{c o p}\right)$-module cat. is equivalent to $A_{A} \mathcal{M}^{f}$ - the cat. of fin.-dim. A-modules, where A is a fin.-dim. right $K \otimes L^{\text {cop }}$-simple, left $K \otimes L^{C O P}$-comodule algebra with trivial coinvariants.

Some candidates for invertible Rep(H)-categories

Let A be a left coideal subalgebra of a fin. dim. Hopf algebra H. Then:

Some candidates for invertible Rep(H)-categories

Let A be a left coideal subalgebra of a fin. dim. Hopf algebra H. Then:

- [Skryabin, 2007] A is H-simple.

Some candidates for invertible Rep(H)-categories

Let A be a left coideal subalgebra of a fin. dim. Hopf algebra H. Then:

- [Skryabin, 2007] A is H -simple.
- [Mombelli, 2008] if σ is a 2-cocycle over H compatible with A $\Rightarrow A^{\sigma} \mathcal{M}$ is an exact indecomposable module cat. over $\operatorname{Rep}(H)$.

Some candidates for invertible $\operatorname{Rep}(H)$-categories

Let A be a left coideal subalgebra of a fin. dim. Hopf algebra H. Then:

- [Skryabin, 2007] A is H -simple.
- [Mombelli, 2008] if σ is a 2-cocycle over H compatible with A $\Rightarrow A^{\sigma} \mathcal{M}$ is an exact indecomposable module cat. over $\operatorname{Rep}(H)$.
\Rightarrow
- we are interested in finding all coideal subalgebras of $H \otimes H^{c o p}$

Some candidates for invertible $\operatorname{Rep}(H)$-categories

Let A be a left coideal subalgebra of a fin.dim. Hopf algebra H. Then:

- [Skryabin, 2007] A is H -simple.
- [Mombelli, 2008] if σ is a 2-cocycle over H compatible with A $\Rightarrow A^{\sigma} \mathcal{M}$ is an exact indecomposable module cat. over $\operatorname{Rep}(H)$.
\Rightarrow
- we are interested in finding all coideal subalgebras of $H \otimes H^{c o p}$
- and their 2-cocycle twists.

Product of module categories

Let A be a right $L \otimes K^{c o p}$-simple, left $L \otimes K^{c o p}$-comodule algebra and B a right $K \otimes L^{C O P}$-simple, left $K \otimes L^{C O p}$-comodule algebra.

Product of module categories

Let A be a right $L \otimes K^{c o p}$-simple, left $L \otimes K^{c o p}$-comodule algebra and B a right $K \otimes L^{C O P}$-simple, left $K \otimes L^{C O P}$-comodule algebra.

Theorem. "Product Theorem"

If any of the following two conditions is fulfilled, then there is an equivalence of $\operatorname{Rep}(L)$-bimodule categories:

$$
A \mathcal{M} \boxtimes_{\operatorname{Rep}(K) B} \mathcal{M} \simeq A \square_{\kappa} B \mathcal{M}
$$

Product of module categories

Let A be a right $L \otimes K^{c o p}$-simple, left $L \otimes K^{c o p}$-comodule algebra and B a right $K \otimes L^{C O P}$-simple, left $K \otimes L^{C O P}$-comodule algebra.

Theorem. "Product Theorem"

If any of the following two conditions is fulfilled, then there is an equivalence of $\operatorname{Rep}(L)$-bimodule categories:

$$
A \mathcal{M} \boxtimes_{\operatorname{Rep}(K) B} \mathcal{M} \simeq A_{\square_{K}} B \mathcal{M}
$$

1. [Mombelli, 2008]

- $A \otimes B$ is free as a left $A \square_{k} B$-module;
- the module cat. $A \square_{k} B \mathcal{M}$ is exact;
- ${ }_{A} \mathcal{M}$ is an invertible (L, K)- and ${ }_{B} \mathcal{M}$ an invertible (K, L)-bimodule category.

Product of module categories

Let A be a right $L \otimes K^{c o p}$-simple, left $L \otimes K^{c o p}$-comodule algebra and B a right $K \otimes L^{C O P}$-simple, left $K \otimes L^{C O P}$-comodule algebra.

Theorem. "Product Theorem"

If any of the following two conditions is fulfilled, then there is an equivalence of $\operatorname{Rep}(L)$-bimodule categories:

$$
A \mathcal{M} \boxtimes_{\operatorname{Rep}(K) B} \mathcal{M} \simeq{ }_{A \square_{K} B} \mathcal{M}
$$

1. [Mombelli, 2008]

- $A \otimes B$ is free as a left $A \square_{k} B$-module;
- the module cat. $A \square_{\kappa} B \mathcal{M}$ is exact;
- ${ }_{A} \mathcal{M}$ is an invertible (L, K) - and ${ }_{B} \mathcal{M}$ an invertible (K, L)-bimodule category.

2. [Femić, Mombelli]
A is a Hopf-Galois extension, as a left L-comodule algebra.

Embedding $\operatorname{BiGal}(H, H)$ into $\operatorname{BrPic}(\operatorname{Rep}(H))$

Lemma.
If A be an (H, H)-biGalois object then $[A \mathcal{M}] \in \operatorname{BrPic}(\operatorname{Rep}(H))$.

Embedding $\operatorname{BiGal}(H, H)$ into $\operatorname{BrPic}(\operatorname{Rep}(H))$

Lemma.
If A be an (H, H)-biGalois object then $[A \mathcal{M}] \in \operatorname{BrPic}(\operatorname{Rep}(H))$.

Illustration: $\quad A_{\mathcal{M}} \boxtimes_{\operatorname{Rep}(H)} \quad A^{\circ \rho} \mathcal{M} \simeq{ }_{A \square H} A^{\circ \rho} \mathcal{M} \simeq{ }_{H} \mathcal{M}$

Embedding $\operatorname{BiGal}(H, H)$ into $\operatorname{BrPic}(\operatorname{Rep}(H))$

Lemma.

If A be an (H, H)-biGalois object then $[A \mathcal{M}] \in \operatorname{BrPic}(\operatorname{Rep}(H))$.

Illustration: $\quad A_{\mathcal{M}} \boxtimes_{\operatorname{Rep}(H)} \quad A^{\circ \rho} \mathcal{M} \simeq{ }_{A \square}{ }_{H} A^{\circ \rho} \mathcal{M} \simeq{ }_{H} \mathcal{M}$

Proposition.

There is a group embedding $\operatorname{BiGal}(H, H) \hookrightarrow \operatorname{BrPic}(\operatorname{Rep}(H))$ given by $[A] \mapsto[A \mathcal{M}]$.

Embedding $\operatorname{BiGal}(H, H)$ into $\operatorname{BrPic}(\operatorname{Rep}(H))$

Lemma.

If A be an (H, H)-biGalois object then $[A \mathcal{M}] \in \operatorname{BrPic}(\operatorname{Rep}(H))$.

Illustration: $\quad{ }_{A} \mathcal{M} \boxtimes_{\operatorname{Rep}(H)} \quad A^{\circ \rho} \mathcal{M} \simeq{ }_{{ }^{\circ} \square_{H} A^{\circ \rho}} \mathcal{M} \simeq{ }_{H} \mathcal{M}$

Proposition.

There is a group embedding $\operatorname{BiGal}(H, H) \hookrightarrow \operatorname{BrPic}(\operatorname{Rep}(H))$ given by $[A] \mapsto[A \mathcal{M}]$.

Used: $\quad \Psi: \operatorname{BrPic}(\operatorname{Comod}(H)) \rightarrow \operatorname{BrPic}\left(\operatorname{Rep}\left(H^{\circ P}\right)\right)$

$$
\begin{gathered}
{[\mathcal{N}] \mapsto\left[\operatorname{Vec}^{o p} \boxtimes_{\operatorname{Comod}(H)} \mathcal{N} \boxtimes_{\operatorname{Comod}(H)} \operatorname{Vec}\right]} \\
\Psi\left(\left[\operatorname{Comod}(H)^{A \square H^{-}}\right]\right)=\left[\mathcal{M}_{A}\right] .
\end{gathered}
$$

Exact indecomposable $\operatorname{Rep}\left(T_{q}\right)$-bimodule categories

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}}$. Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H
- We found their 2-cocycle twists

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H
- We found their 2-cocycle twists
- We computed the "liftings" of the latter

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H
- We found their 2-cocycle twists
- We computed the "liftings" of the latter
- All the latter 5 (families) are proved to be H-simple, left H -comodule algebras with trivial coinvariants

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H
- We found their 2-cocycle twists
- We computed the "liftings" of the latter
- All the latter 5 (families) are proved to be H-simple, left H-comodule algebras with trivial coinvariants
- Any exact indecomposable $\operatorname{Rep}\left(T_{q}\right)$-bimodule category turns out to be equivalent to ${ }_{A} \mathcal{M}$, where A is one of the above 5 (families of) algebras.

Left coideal subalgebras of $T_{q} \otimes T_{q^{-1}}$

It is $T_{q} \otimes T_{q}^{c o p} \cong T_{q} \otimes T_{q^{-1}} . \quad$ Set $H=T_{q} \otimes T_{q^{-1}}$.

- We classified all homogeneous left coideal subalgebras of H
- We found their 2-cocycle twists
- We computed the "liftings" of the latter
- All the latter 5 (families) are proved to be H-simple, left H-comodule algebras with trivial coinvariants
- Any exact indecomposable $\operatorname{Rep}\left(T_{q}\right)$-bimodule category turns out to be equivalent to ${ }_{A} \mathcal{M}$, where A is one of the above 5 (families of) algebras.
- It remains to see which of the above 5 (families of) bimodule categories are invertible.

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.

$$
\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq{L_{1} \square_{T}} L_{2} \mathcal{M} \simeq L_{3} \mathcal{M}
$$

and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq{ }_{L_{3}} \mathcal{M}$ and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq L_{3} \mathcal{M}$ and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.
2. The family ${ }_{k_{\psi} G \mathcal{M}}$. We know that $\left({ }_{k_{\psi} G \mathcal{M}}\right)^{-1}=\left(k_{\psi} G\right)^{\text {op }} \mathcal{M}$.

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq{ }_{L_{3}} \mathcal{M}$ and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.
2. The family ${ }_{k_{\psi} G \mathcal{M}}$. We know that $\left({ }_{k_{\psi} G \mathcal{M}}\right)^{-1}=\left(k_{\psi} G\right)^{\text {op }} \mathcal{M}$. Suppose that both categories are invertible.

Deciding which bimodule categories are invertible

1. The family $\angle \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq{ }_{L_{3}} \mathcal{M}$
and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.
2. The family ${ }_{k_{\psi} G \mathcal{M}}$. We know that $\left({ }_{k_{\psi} G \mathcal{M}}\right)^{-1}=\left(k_{\psi} G\right)^{\text {op }} \mathcal{M}$.

Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".

Deciding which bimodule categories are invertible

1. The family $\angle \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq L_{3} \mathcal{M}$
and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.
2. The family ${ }_{k_{\psi} G \mathcal{M}}$. We know that $\left({ }_{k_{\psi} G \mathcal{M}}\right)^{-1}=\left(k_{\psi} G\right)^{\text {op }} \mathcal{M}$.

Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".

Deciding which bimodule categories are invertible

1. The family $L \mathcal{M}$. For some parameters the algebras L are left Hopf-Galois extensions over T_{q}.
$\Rightarrow L_{1} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} L_{2} \mathcal{M} \simeq L_{1} \square_{T_{q}} L_{2} \mathcal{M} \simeq L_{3} \mathcal{M}$
and we computed $(\angle \mathcal{M})^{-1} \simeq L^{\prime} \mathcal{M}$.
These parameters/invertible categories contribute to the subgroup $\left(k^{\times} \ltimes k^{+}\right) \times \mathbb{Z}_{2}$ in $\operatorname{BrPic}\left(\operatorname{Rep}\left(T_{q}\right)\right)$.
2. The family ${ }_{k_{\psi} G \mathcal{M}}$. We know that $\left({ }_{k_{\psi} G \mathcal{M}}\right)^{-1}=\left(k_{\psi} G\right)^{\text {op }} \mathcal{M}$.

Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem". Hence: ${ }_{k_{\psi}} G \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)}\left(k_{\psi} G\right)^{\text {op }} \mathcal{M} \simeq{ }_{k_{\psi} G \square \tau_{q}\left(k_{\psi} G\right)^{\text {op }}} \mathcal{M} \simeq T_{q} \mathcal{M}$. However, $k_{\psi} G \square_{T_{q}}\left(k_{\psi} G\right)^{o p}$ is semisimple and T_{q} is not. i

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".
Hence: $\mathcal{K}_{01} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} \mathcal{K}_{10} \mathcal{M} \simeq \mathcal{K}_{01 \square \tau_{q}} \mathcal{K}_{10} \mathcal{M} \simeq{ }_{T_{q}} \mathcal{M}$.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem". Hence: $\mathcal{K}_{01} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} \mathcal{K}_{10} \mathcal{M} \simeq \mathcal{K}_{01 \square \tau_{q}} \mathcal{K}_{10} \mathcal{M} \simeq{ }_{T_{q}} \mathcal{M}$.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem". Hence: $\mathcal{K}_{01} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} \mathcal{K}_{10} \mathcal{M} \simeq \mathcal{K}_{01 \square T_{q}} \mathcal{K}_{10} \mathcal{M} \simeq{ }_{T_{q}} \mathcal{M}$.
5. The family $\mathcal{K}_{11} \mathcal{M}$ - is still to be investigated.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".
Hence: $\mathcal{K}_{01} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} \mathcal{K}_{10} \mathcal{M} \simeq \mathcal{K}_{01 \square T_{q}} \mathcal{K}_{10} \mathcal{M} \simeq{ }_{T_{q}} \mathcal{M}$,
5. The family $\mathcal{K}_{11} \mathcal{M}$ - is still to be investigated.

There are candidates for some parameters, however it is difficult to compute the product of two (bi)module categories.

Deciding which bimodule categories are invertible

3./4. The families $\mathcal{K}_{01} \mathcal{M}$ and $\mathcal{K}_{10} \mathcal{M}$.

We know that $\left(\mathcal{K}_{01} \mathcal{M}\right)^{-1}=\mathcal{K}_{10} \mathcal{M}$.
Suppose that both categories are invertible.
Then they fulfill the conditions of the "Product Theorem".
Hence: $\mathcal{K}_{01} \mathcal{M} \boxtimes_{\operatorname{Rep}\left(T_{q}\right)} \mathcal{K}_{10} \mathcal{M} \simeq \mathcal{K}_{01 \square T_{q}} \mathcal{K}_{10} \mathcal{M} \simeq{ }_{T_{q}} \mathcal{M}$,
5. The family $\mathcal{K}_{11} \mathcal{M}$ - is still to be investigated.

There are candidates for some parameters, however it is difficult to compute the product of two (bi)module categories.

