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Weyl algebras

The n-th Weyl algebra An = An(k):
generators: xi , ∂i , i = 1, . . . , n
relations

xixj = xjxi , ∂i∂j = ∂j∂i ,

∂ixj − xj∂i = δij , i , j = 1, . . . , n.

� An is a simple Noetherian domain;
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� Dixmier problem: End(An) ' Aut(An)?

e.g. ∀x , y ∈ A1, s.t. xy − yx = 1 ⇒ < x , y >= A1?
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Let Pn = C[x1, . . . , xn]. ∀φ ∈ End(Pn) define φi = φ(xi ).

Then φ defines a polynomial function

F : Cn → Cn,

F (z1, . . . , zn) = (φ1(z1), . . . , φn(zn)).
Let

JF (x̄) = (∂fi/∂xj), ∆(F ) = det(JF ).

If F is invertible then ∆(F ) ∈ C∗.
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� Jacobian Conjecture: Let F : Cn → Cn be a polynomial
function such that ∆(F ) ∈ C∗. Then F is invertible (Keller, 1939).

� Dixmier problem ⇒ Jacobian Conjecture (Bass, McConnel,
Wright, 1982; Bavula, 2001)

� Van den Essen: Jac(2n) ⇒ Dix(n) ⇒ Jac(n)
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In An, the elements ti = ∂ixi , i = 1, . . . , n, generate the polynomial
algebra D = C[ti | i = 1, . . . , n], which is a maximal commutative
subalgebra of An. Denote by G the group generated by the
automorphisms σi , i = 1, . . . , n, of D, where σi (tj) = tj − δi ,ja1.
Then G acts on the set maxD of maximal ideals of D.
A module VV for An is said to be a weight module if
VV =

⊕
m∈maxD VVm, where VVm = {v ∈ VV | mv = 0}.

If VV is a weight module and VVm 6= 0 for m ∈ maxD, then m is
said to be a weight of VV , and the set {m ∈ maxD | VVm 6= 0} of
weights of VV is the support of VV .

We have xi VVm ⊆ VVσi (m) and ∂i VVm ⊆ VVσ−1
i (m).

V.Futorny Representations of Weyl algebras



In An, the elements ti = ∂ixi , i = 1, . . . , n, generate the polynomial
algebra D = C[ti | i = 1, . . . , n], which is a maximal commutative
subalgebra of An. Denote by G the group generated by the
automorphisms σi , i = 1, . . . , n, of D, where σi (tj) = tj − δi ,ja1.
Then G acts on the set maxD of maximal ideals of D.
A module VV for An is said to be a weight module if
VV =

⊕
m∈maxD VVm, where VVm = {v ∈ VV | mv = 0}.

If VV is a weight module and VVm 6= 0 for m ∈ maxD, then m is
said to be a weight of VV , and the set {m ∈ maxD | VVm 6= 0} of
weights of VV is the support of VV .

We have xi VVm ⊆ VVσi (m) and ∂i VVm ⊆ VVσ−1
i (m).

V.Futorny Representations of Weyl algebras



1. All indecomposable weight modules for An, n <∞ were
classified by Bavula, Bekkert (1999).

(i) Every irreducible weight module of A1 is isomorphic to one of
the following xλ11 C[x±11 ], λ1 /∈ Z, C[x1], C[x±11 ]/C[x1].

(ii) Every irreducible weight module of An =
⊗n

i=1A{i} is
isomorphic to the outer tensor product of n simple modules of
A{i}, i = 1, ..., n.

2. All irreducible weight modules for A∞ (with some restrictions)
were classified by Benkart, Bekkert and V.F. (2000)

3. All irreducible weight modules for A∞ were classified by V.F.,
Grantcharov, Mazorchuk (2012).
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For λ ∈ CN we will consider formal expressions xλ = xλ11 xλ22 ... and
assume that xλxµ = xλ+µ. In particular, the standard basis of
C[x±1] can be written as {xn | n ∈ ZN

fin}. For λ ∈ CN define

xλC[x±1] := {xλf | f ∈ C[x±1]}.
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(i) The module xλC[x±1] is a weight module with basis consisting
of the monomials xλ+n, n ∈ ZN

fin. In particular,
Supp(xλC[x±1]) = λ + ZN

fin.

(ii) xλC[x±1] is isomorphic to the A∞-module with underlying
vector space C[x±1] and action

xi 7→ xi ; ∂i 7→ ∂i + λix
−1
i .

(iii) The A∞-modules xλC[x±1] and xµC[x±1] are isomorphic if
and only if λ− µ ∈ ZN

fin.
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Let λ ∈ CN be such that for every i ∈ N, if λi ∈ Z then λi ≥ 0.
Then the A∞-module xλC[x±1] has a unique irreducible submodule

M = {m ∈ xλC[x±1] | for every i ∈ I(λ), ∂ni m = 0, for some n > 0},

where I(λ) stands for the set of all i ∈ N for which λi is integer.

The unique irreducible submodule M of xλC[x±1] will be denoted
by xλC [x±1]∂ .
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Example

Take λ = (1, 1, ....), i.e. λi = 1 for every i , and consider the simple
module M = xλC[x±1]∂ . Then M is ∂i -locally finite, for every i on
one hand, but there is no m ∈ M for which ∂im = 0 for every i , on
the other. Similar examples were considered by Mazorchuk, Zhao.

� The A∞-module xλC[x±1] is irreducible if and only if λi /∈ Z for
every i ∈ N.

� If M is a irreducible weight A∞-module with λ ∈ SuppM and
such that all xi , ∂i act injectively on M, then M ' xλC[x±1].
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For J ⊂ N consider the multiplicative subset XJ of A∞ generated
by xj , j ∈ J.

Denote by DJA∞ the localization of A∞ with respect to XJ .

For an A∞-module M, let DJM = DJA∞ ⊗A∞ M the
J-localization of M.
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Let J ⊂ N, and µ ∈ CN be such that µi = 0 if i /∈ J. Define
Ψµ

J : DJA∞ → DJA∞ to be the homomorphism

xi 7→ xi , i ∈ N;

∂i 7→ ∂i + µix
−1
i , i ∈ N.

Denote by Ψµ
J (L) the DJA∞-module obtained from L after

twisting it by the automorphism Ψµ
J .

Dµ
J M := Ψµ

J (DJM) the (J, µ)-twisted localization of M.

(i) If J = N then DJC[x] ' C[x±1].

(ii) Let λ ∈ CN and J ⊂ N be such that λi = 0 for i /∈ J. Then
xλC[x±1] is a DJA∞-module which is isomorphic to Ψλ

J (C[x±1]).
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Lemma
Let J ⊂ N and M be an irreducible weight A∞-module on which xi
and ∂j , i ∈ N, j /∈ J, act injectively, and ∂j , j ∈ J, act nilpotently.
Let µ ∈ CN be such that µi = 0, i /∈ J and µj /∈ Z, j ∈ J. Then
Dµ

J M is an irreducible weight module on which all xi , ∂i , i ∈ N act
injectively.
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For any J ⊂ N we define the automorphism θJ of A∞ as follows.

θJ(xj) = ∂j , θJ(∂j) = −xj , if j ∈ J;

θJ(xi ) = xi , θJ(∂i ) = ∂i , if i /∈ J.

For an A∞-module M, the module obtained from twisting M by θJ
will be denoted by MθJ .

Theorem
(i) Every irreducible weight module of A∞ is isomorphic to
M(λ, J) := xλC[x±1]θJ∂ for some J ⊂ I(λ) and some λ ∈ CN with
the property that λi ∈ Z implies λi ≥ 0.

(ii) M(λ, J) ' M(λ′, J ′) if and only if λ− λ′ ∈ ZN
fin and J = J ′.
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Kac-Moody algebras

Cartan matrix A = (aij), aij ≤ 0, i 6= j , aii = 2, aij = 0⇒ aji = 0
for all i , j , positive definite ⇒

generators + Serre relations ⇒ simple complex finite-dimensional
Lie algebras.

V.Kac, R.Moody (1967): without "positive definite"⇒ Kac-Moody
algebras;
If A is positive semidefinite (det(aij) = 0, with positive principal
minors) ⇒ Affine Lie algebras
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Example

ĝ = g⊗C[t, t−1], with the Lie bracket

[x ⊗ tn, y ⊗ tm] = [x , y ]⊗ tm+n

(loop algebra).
� the universal central extension G = ĝ ⊕ Cc ⊕ Cd ,

[x ⊗ tn, y ⊗ tm] = [x , y ]⊗ tm+n + n(x , y)δn+m,0c ,

d : ĝ→ ĝ degree derivation, d(x ⊗ tn) = n(x ⊗ tn), d(c) = 0
(non-twisted affine Kac-Moody algebra).
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A natural way to construct representations of affine Lie algebras is
via induction from parabolic subalgebras. Induced modules play an
important role in the classification problem of irreducible modules.
For example, in the finite-dimensional setting any irreducible weight
module is a quotient of the module induced from an irreducible
module over a parabolic subalgebra, and this module is dense (that
is, it has the largest possible set of weights) as a module over the
Levi subalgebra of the parabolic (Fernando, V.F.). Dense irreducible
module is always torsion free if all weight spaces are
finite-dimensional. In the affine case, a similar conjecture singles
out induced modules as construction devices for irreducible weight
modules. This conjecture has been shown for A(1)

1 (V.F.), A(2)
2

(Bunke) and for all affine Lie algebras for modules with
finite-dimensional weight spaces and nonzero central charge (V.F.,
Tsylke).
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In the latter case, a phenomenon of reduction to modules over a
proper subalgebra (finite-dimensional reductive) provides a
classification of irreducible modules. Moreover, recent results of
Dimitrov and Grantcharov show the validity of the conjecture also
for modules with finite-dimensional weight spaces and zero central
charge.
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A closed subset P ⊂ ∆ is called a partition if P ∩ (−P) = ∅ and
P ∪ (−P) = ∆ (root system). In the case of finite-dimensional
simple Lie algebras, every partition corresponds to a choice of
positive roots in ∆, and all partitions are conjugate by the Weyl
group. The situation is different in the infinite-dimensional case. In
the case of affine Lie algebras the partitions are divided into a finite
number of Weyl group orbits (Jakobsen-Kac, V.F.).
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Given a partition P of ∆, we define a Borel subalgebra BP ⊂ G
generated by H and the root spaces Gα with α ∈ P . Hence, in the
affine case not all of the Borel subalgebras are conjugate but there
exists a finite number of conjugacy classes.

A parabolic subalgebra of G corresponds to a parabolic subset
P ⊂ ∆, which is a closed subset in ∆ such that P ∪ (−P) = ∆.
Given such a parabolic subset P , the corresponding parabolic
subalgebra GP is generated by H and all the root spaces Gα,
α ∈ P .

The conjugacy classes of Borel subalgebras of G are parameterized
by the parabolic subalgebras of the associated finite-dimensional
simple Lie algebra g.
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Let P be a parabolic subset of ∆. Let N be an irreducible weight
module over P = GP = P0 ⊕P+, with a trivial action of P+, and

MP(N) = ind(P,G;N).

Then MP(N) has a unique irreducible quotient LP(N).

Borel subalgebras  Verma modules/Verma type modules

Parabolic subalgebras  generalized Verma modules/generalized
Verma type modules
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The subspace L := Cc ⊕
⊕

n∈Z\{0}Gnδ forms a Heisenberg Lie
subalgebra of the affine algebra G.

Theorem (Benkart, Bekkert, V.F., Kashuba, 2012; V.F., Kashuba,
≥ 2013)

Let λ ∈ H∗, λ(c) 6= 0, and assume VV is an irreducible L-module
where c acts by λ(c). Then ind(L,G;VV ) is an irreducible
G-module.
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