Exercise: $M 24$ has two irreducible representations of dimension 45: V and its conjugate representation \bar{V}.

Let X be a $K 3$ manifold. Show that $H^{1}(X$, End $T X) \simeq$ $V \oplus \bar{V}$ naturally.

$N=4$ superconformal algebra

$$
\begin{gathered}
{\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\delta_{m,-n} \frac{m^{3}-m}{12} c} \\
{\left[J_{m}^{1}, J_{n}^{2}\right]=J_{m+n}^{3}, \quad\left[J_{m}^{i}, J_{n}^{i}\right]=m \frac{c}{3} \delta_{m,-n}} \\
{\left[L_{m}, J_{n}^{i}\right]=(m-n) J_{m+n}^{i}} \\
{\left[J_{m}, G_{n}^{ \pm}\right]=\left(J \cdot G^{ \pm}\right)_{m+n}, \quad\left[J_{m}, \bar{G}_{n}^{ \pm}\right]=\left(J \cdot \bar{G}^{ \pm}\right)_{m+n}} \\
{\left[L_{m}, G_{n}^{ \pm}\right]=\left(m-\frac{n}{2}\right) G_{m+n}^{ \pm}, \quad\left[L_{m}, \bar{G}_{n}^{ \pm}\right]=\left(m-\frac{n}{2}\right) \bar{G}_{m+n}^{ \pm}} \\
{\left[G_{m}^{ \pm}, G_{n}^{\mp}\right]=2 L_{m+n}+\frac{m^{2}-m}{6} \delta_{m,-n} c \quad\left[\bar{G}_{m}^{ \pm}, \bar{G}_{n}^{\mp}\right]=2 L_{m+n}+\frac{m^{2}-m}{6}}
\end{gathered}
$$

