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Abstract

In this paper we investigate a family of copointed Hopf algebras of the

Nichols algebra of the affine rack (F4, ω).

This is a joint work with Nicolás Andruskiewitsch and Cristian Vay.
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Conventions

k is an algebraically closed field of characteristic zero;

If G is a group, we denote by kG the group algebra of G and by kG the

function algebra of G .

The usual basis of kG is {g : g ∈ G} and {δg : g ∈ G} is its dual basis of

kG , i.e., δg (h) = δg ,h for every g , h ∈ G .
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Conventions

If H is a Hopf algebra, then ∆, ε, S denote respectively the

comultiplication, the counit and the antipode.

Let H
HYD be the category of Yetter-Drinfeld module over H.

The Nichols algebra B(V ) of V ∈ H
HYD is the graded quotient T (V )/J

where J =
⊕

l≥2 J l is the largest Hopf ideal of T (V ) generated by

homogeneous elements of degree ≥ 2.

Bárbara Pogorelsky (UFRGS) Representations of Copointed Hopf Algebras 4 / 16



(F4, ω)

Let F4 be the finite field of four elements and ω ∈ F4 such that

ω2 + ω + 1 = 0. The affine rack (F4, ω) is the set F4 with operation

a B b = ωb + ω2a.

Let (·, g , χG ) be a faithful principal YD-realization of ((F4, ω),−1) over a

finite group G , that is

· is an action of G on F4,

g : F4 → G is an injective function such that gh·i = hgih
−1 and

gi · j = i B j for all i , j ∈ F4,

χG : G → k∗ is a multiplicative character such that χG (gi ) = −1 for

all i ∈ F4.
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V (F4, ω)

These data define a structure on V (F4, ω) = k{xi}i∈F4 of Yetter-Drinfeld

module over kG via

δt · xi = δt,g−1
i

xi and λ(xi ) =
∑
t∈G

χi (t−1)δt⊗xt−1·i .
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B(F4, ω)

B(F4, ω) is the quotient of T (V ) = T (V (F4, ω)) by the ideal J (F4, ω)

generated by

x2
i ,

xj xi + xi x(ω+1)i+ωj + x(ω+1)i+ωj xj ∀i , j ∈ F4 and

z := (xωx0x1)2 + (x1xωx0)2 + (x0x1xω)2.
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B

To obtain a basis of B(F4, ω), which we will denote by B, we choose one

element per row of the next list and multiply them from top to bottom:

1, x0,

1, x1, x1x0,

1, xωx0x1,

1, xω, xωx0,

1, xω2 .
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AG ,λ

Let λ ∈ k and assume z ∈ T (V )[e]. The Hopf algebra AG ,λ is the

quotient of T (V )#kG by the ideal generated by

x2
i ,

xj xi + xi x(ω+1)i+ωj + x(ω+1)i+ωj xj ∀i , j ∈ F4 and

z-f where f = λ(1− χ−1
z ) and χz = χ6

G .

Notice that if either λ = 0 or χz = 1, then AG ,λ = B(F4, ω)#kG .
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AG ,λ

We think on AG ,λ as an algebra with generators {xi , δg : i ∈ F4, g ∈ G}

with relations:

δgxi = xiδgig , x2
i = 0, δgδh = δg (h)δg , 1 =

∑
g∈G

δg ,

x0xω + xωx1 + x1x0 = 0 = x0xω2 + xω2xω + xωx0,

x1xω2 + x0x1 + xω2x0 = 0 = xωxω2 + x1xω + xω2x1 and

xωx0x1xωx0x1 + x1xωx0x1xωx0 + x0x1xωx0x1xω = λ(1− χ−1
z ),

for all i ∈ F4 and g ∈ G .

A basis for AG ,λ is A = {xδg |x ∈ B, g ∈ G}.
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Theorem

Let H be a lifting Hopf algebra of B(F4, ω) over kG . Then

a If z ∈ T (V )×, then H ' B(F4, ω)#kG .

b If z ∈ T (V )[e], then H ' AG ,λ for some λ ∈ k.

c AG ,λ is a cocycle deformation of AG ,λ′ , for all λ, λ′ ∈ k.

d AG ,λ is a lifting of B(F4, ω) over kG for all λ, λ′ ∈ k.

e AG ,λ ' AG ,1 6' AG ,0 for all λ ∈ k∗.

Bárbara Pogorelsky (UFRGS) Representations of Copointed Hopf Algebras 11 / 16



Case 1

If either λ = 0 or χz = 1, then AG ,λ = B(F4, ω)#kG . In this case, the

simple modules of B(F4, ω)#kG are {kh}h∈G , where kg are

one-dimensional kG -modules of weight g .
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Case 2

From now we fix λ ∈ k∗ and assume z ∈ T (V )[e] and χz 6= 1. For

g ∈ G \ kerχz , we define

eg1 = − 1

f (g)
b1δg , eg2 = − 1

f (g)
b2δg , eg3 =

1

f (g)
b3δg ,

eg4 =
1

f (g)
(b4 − b3)δg , eg5 =

1

f (g)
(b5 + b1)δg and

eg6 = δg +
1

f (g)
(b2 − b4 − b5)δg ,

where

b1 = x0x1x0xωx0xω2 , b2 = x0xωx0x1xωxω2 , b3 = x1x0xωx0x1xω2

b4 = x1xωx0x1xωx0, b5 = x0x1xωx0x1xω.
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Case 2

A complete set of orthogonal primitive idempotents of AG ,λ is

E :=
{
δh, eg1 , eg2 , eg3 , eg4 , eg5 , eg6 | h ∈ kerχz , g ∈ G \ kerχz

}
.
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Theorem

Let egi ∈ E . Then AG ,λegi is an injective and projective simple module of

dimension 12.
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A. Garćıa Iglesias and C. Vay, Finite-dimensional pointed or

copointed Hopf algebras over affine racks, preprint.

Bárbara Pogorelsky (UFRGS) Representations of Copointed Hopf Algebras 16 / 16


