INDEX	Associahedra
	000

Permutohedra 000 Shuffle Algebras

Permutads

María Ronco

Tafí del Valle 2013

Index	Associahedra 000	Pre-Lie systems (M. Gerstenhaber)	Permutohedra 000	Shuffle algebras	
Α	<i>ssociahedra</i> Stasheff po Algebraic st	lytope tructures associated to the S	Stasheff polyto	pe	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pre-Lie systems (M. Gerstenhaber)

Monad on graded vector spaces

Permutohedra

Definition Algebraic structure associated to permutohedra

Shuffle algebras

Permutads Monad on graded vector spaces INDEX

....

Planar rooted trees

Associahedron \mathfrak{A}_n is a *n*-1 dimensional polytope, whose faces of dimension *r* correspond to planar rooted trees with *n*+1 leaves and *n*-*r* internal vertices.

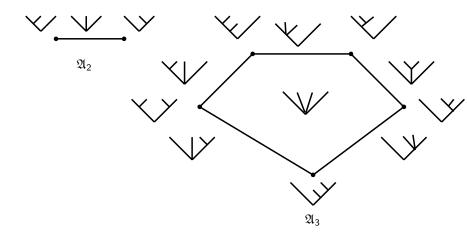
Let \mathcal{T}_n^r denotes the set of planar rooted trees with n+1 leaves and r internal vertices,

 $\mathcal{T}_0^0 = \{ \ | \ \} \qquad \qquad \mathcal{T}_1^1 = \{ \ \Upsilon \ \} \qquad \qquad \mathcal{T}_2^2 = \{ \ \swarrow \ \checkmark \}$ $\mathcal{T}_2^1 = \{ \ \checkmark \}$

Permutohedra 000 Shuffle Algebras

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Associahedron or Stasheff polytope



Associahedra

Algebraic structures associated to the Stasheff polytope

- Pre-Lie system is a colored operad (i.e. the operations are not always defined, they depend on the degree of the elements). Pre-Lie systems are equivalent to non- Σ operads, modulo a shift of the degree. We add a section describing non- Σ operads as monads in certain category of functors, following V. Ginzburg and M. Kapranov).
- Tridendriform is a non- Σ operad, which extend the notion of dendriform algebras defined by J.-L. Loday .

Pre-Lie systems

Graftings

A pre-Lie system or non-symmetric operad is a graded vector space $L = \bigoplus_{n \ge 0} L_n$ equipped with linear maps

$$\circ_i: L_m \otimes L \longrightarrow L, \text{ for } 1 \leq i \leq m,$$

satisfying

1.
$$x \circ_j (y \circ_i z) = (x \circ_j y) \circ_{i+j} z$$
, for $0 \le i \le |y|$ and $0 \le j \le |x|$,
2. $(x \circ_j y) \circ_i z = (x \circ_i z) \circ_{j+|z|} y$, for $0 \le i < j$.

Remark: Let (L, \circ_i) be a pre-Lie system, then L with the binary product

$$x \circ y := \sum_{i=0}^{|x|} x \circ_i y,$$

is a pre-Lie algebra, as defined by M. Gerstenhaber. **Gerstenhaber's example:** The space of Hochschild cochains of an associative algebra A. INDEX

SOCIAHEDRA

Pre-Lie systems (M. Gerstenhaber)

Permutohedra 000 Shuffle Algebras 0000

Free pre-Lie systems

Let *t* and *w* be planar rooted trees, the element $t \circ_i w$ is the tree obtained by grafting the root of *w* on the *i*-th. leaf of *t*. **Free objects** Denote by Pre-Lie(*V*) the free pre-Lie system spanned by a vector space *V*. The vector space spanned by all planar binary rooted trees, with the \circ_i 's, is the free pre-Lie system spanned by one element Pre-Lie(\mathbb{K}). The vector space spanned by all planar rooted trees, with the operations \circ_i , is the free pre-Lie system spanned by the graded vector space $\bigoplus_{n>1} \mathbb{K}c_n$.

Index	Associahedra 000	Pre-Lie systems (M. Gerstenhaber)	Permutohedra 000	Shuffle algebras

In general, let X be a basis of a vector space V. Let \mathcal{T}_n^X be the set of planar rooted trees with n + 1 leaves and the vertices colored by the elements of X in such a way that each vertex with r + 1 inputs is colored by an element of X of degree r.

The free pre-Lie system spanned by V is the space spanned by the set $\bigcup_n \mathcal{T}_n^X$ with the product \circ_i given by the grafting at the *i*-th. leaf.

NDEX ASSOCIAHEDRA 000 Pre-Lie systems (M. Gerstenhaber)

Permutohedra 000 Shuffle Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Relation with non- Σ -operads

Let *L* be a pre-Lie system, define \mathcal{P} as $\mathcal{P}_{n+1} = L_n$, with the partial operation \circ_i and the trivial action of the symmetric group Σ_{n+1} , then \mathcal{P} is non- Σ operad.

Coalgebra structure on a pre-Lie system

Let $L = \bigoplus_{n \ge 0} L_n$ be a pre-Lie system. A coproduct on L is a linear map $\Delta : L \longrightarrow L \otimes L$ such that:

$$\Delta(x \circ_i y) = \sum_{|x_{(1)}| < i} x_{(1)} \otimes (x_{(2)} \circ_{i-|x_{(1)}|} y) + \sum_{|x_{(1)}| = i} (x_{(1)} \circ_i y_{(1)}) \otimes (x_{(2)} \circ_0 y_{(2)}) + \sum_{|x_{(1)}| > i} (x_{(1)} \circ_i y) \otimes x_{(2)}.$$

If (V, Θ) is a graded coassociative coalgebra, then Pre-Lie(V) is equipped with a natural coproduct:

- 1. $\Delta_{\Theta}(c_n, x) := \sum_{i=0}^n \sum_{|x_{(1)}=i|} (c_i, x_{(1)}) \otimes (c_{n-i}, x_{(2)}).$
- Δ_Θ is a coproduct for the pre-Lie system structure of Pre-Lie(V).

NDEX ASSOCIAHEDRA 000 Pre-Lie systems (M. Gerstenhaber)

Permutohedra 000 Shuffle Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Coproduct and pre-Lie structure

Let (L, \circ_i) be a pre-Lie system. The products:

• *x* ∘₀ *y*,

•
$$x \circ_L y = x \circ_{|x|} y$$
,

are associative.

Index	Associahedra 000	Pre-Lie systems (M. Gerstenhaber)	Permutohedra 000	Shuffle algebras

Remark: Note that the relationships satisfied by Δ and the \circ_i 's imply that:

1.

$$\Delta(x \circ y) = \sum x_{(1)} \otimes (x_{(2)} \circ y) + (x_{(1)} \circ y) \otimes x_{(2)} + \sum (x_{(1)} \circ_L y_{(1)}) \otimes (x_{(2)} \circ_0 y_{(2)}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

2.
$$\Delta(x \circ_0 y) = \sum y_{(1)} \otimes (x \circ_0 y_{(2)}),$$

3. $\Delta(x \circ_L y) = \sum x_{(1)} \otimes (x_{(2)} \circ_L y) + (x \circ_L y_{(1)}) \otimes y_{(2)}.$
 $(L, \circ_0^{op}, \Delta)$ and $(L, \circ_L^{op}, \Delta)$ are unital infinitesimal algebras.

Index Associahedra 000 Pre-Lie systems (M. Gerstenhaber)

Permutohedra 000 Shuffle Algebras

Bar construction

Let (V, θ) be a conilpotent coassociative coalgebra. Define a boundary map on Pre-Lie(V) as follows:

1.
$$\delta(x) := \sum (-1)^{i|x_{(1)}|} x_{(1)} \circ_i x_{(2)}, \text{ for } x \in V \text{ with}$$
$$\overline{\theta}(x) = \sum x_{(1)} \otimes x_{(2)},$$

2. δ is a derivation for all the binary products \circ_i .

When $V = \bigoplus \mathbb{K}c_n$ is the space spanned by all corollas with the coproduct given by:

$$\theta(c_n) = \sum_{i=0}^n c_i \otimes c_{n-i},$$

we get the associahedra as the bar construction.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Non- Σ operads as monads (V. Ginzburg and M. Kapranov)

Let \mathbb{N}^+ Vect be the category of positively graded vector spaces. Objects of \mathbb{N}^+ Vect are families $M = \{M_n\}$ of \mathbb{K} -vector spaces. Planar rooted trees define a monad in the category \mathbb{N}^+ Vect as follows:

• For
$$t \in \mathcal{T}_n$$
,
 $M_t := \bigotimes_{\substack{v \in Vert(t)}}$

|v| is the number of inputs of v.

• For $M \in \mathbb{N}^+$ Vect, the graded vector space $\mathbb{P}(M)$ is:

$$\mathbb{P}(M):=\bigoplus_{t\ \varepsilon\ \mathcal{T}_n}M_t,$$

 $M_{|v|},$

and $\mathbb{P}(M)_1 := \mathbb{K}$.

The map $\iota(M) : M \longrightarrow \mathbb{P}(M)$ consist in associating to $\mu \in M_n$ the corolla with n + 1 leaves, colored by μ . $\mathbb{P}_{n+1}(M)$ is spanned by planar rooted trees with n + 1 leaves and the vertices decorated by elements of M. The grafting of trees defines $\Gamma : \mathbb{P} \circ \mathbb{P} \longrightarrow \mathbb{P}$

$$\Gamma(t; w_0, \ldots, w_n) := (((t \circ_0 w_0) \circ_{|w_0|+1} w_1) \ldots) \circ_{|w_0|+\dots+|w_{n-1}|+1} w_n,$$

which is an associative and unital transformation of functors.

Index	Associahedra 000	Pre-Lie systems (M. Ger	RSTENHABER)	Shuffle algebras

 $(\mathbb{P}, \Gamma, \iota)$ is a monad in the category \mathbb{N}^+ Vect. A non- Σ operad is an algebra over this monad. That is, an object $M = \{M(n)\}_{n \ge 1}$ in \mathbb{N}^+ Vect with:

$$\mathbb{P}(M) \longrightarrow M,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

compatible with Γ and ι .

NDEX ASSOCIAHEDR.

Pre-Lie systems (M. Gerstenhaber

Permutohedra

Shuffle Algebras

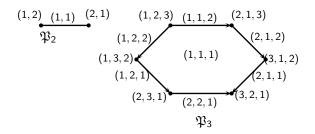
Permutohedra

The permutohedron \mathfrak{P}_n is a *n*-1 dimensional polytope whose faces of dimension *r* correspond to all surjective maps from $\{1, \ldots, n\}$ to $\{1, \ldots, n - r\}$. Surj_n is the set of surjective maps defined on $\{1, \ldots, n\}$. Note that for r = 0, we get the set Σ_n of permutations of *n* elements.

Index	Associahedra 000	Pre-Lie systems (M. Gersten	HABER)	Permutohedra 000	Shuffle algebras

<ロ> (日) (日) (日) (日) (日)

æ



Relation with associahedra

There exist canonical maps $\operatorname{Surj}_n \longrightarrow \mathcal{T}_n$ which are graded and surjective.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ 1 \\ 2 \\ 3 \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(1, 3, 3, 4, 4, 1, 2 \right) \\ \\ \end{array} \\ \\ \end{array}$$

A. Tonks: The associahedron may be obtained from the permutohedron by contracting some faces.

Permutohedra 000 Shuffle Algebras

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Shuffle algebras

A shuffle algebra is a graded vector space $A = \bigoplus_{n \ge 1} A_n$, endowed with operations:

$$\bullet_{\gamma}: A_m \otimes A_n \longrightarrow A_{n+m}, \text{ for } \gamma \in \mathsf{Sh}(n,m)$$

satisfying:

$$x\bullet_{\gamma}(y\bullet_{\delta} z)=(x\bullet_{\sigma} y)\bullet_{\lambda} z,$$

whenever $\gamma \cdot (\delta \times 1_n) = \lambda \cdot (1_r \times \sigma)$ in Sh(n, m, r). Since any k-shuffle $\sigma \in \text{Sh}(i_1, \ldots, i_k)$ can be written as a composition of 2-shuffles, there exists:

$$\bullet_{\sigma}: A_{i_1} \otimes \cdots \otimes A_{i_k} \longrightarrow A_{i_1 + \cdots + i_k}.$$

NDEX ASSOCIAHEDRA 000 Pre-Lie systems (M. Gerstenhaber

Permutohedra 000 Shuffle algebras

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Free shuffle algebras

The vector space spanned by all permutations, with the operations:

$$\alpha \bullet_{\gamma} \beta := (\beta \times \alpha) \cdot \gamma^{-1},$$

is the free shuffle algebra spanned by one element.

The vector space spanned by $\bigcup_{n\geq 1} \operatorname{Surj}_n$ is the free shuffle algebra spanned by the maps $c_n = (1, \ldots, 1) : \{1, \ldots, n\} \longrightarrow \{1\}$.

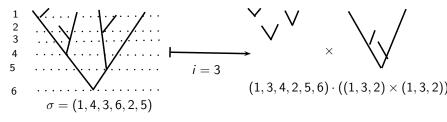
NDEX ASSOCIAHEDRA 000 Pre-Lie systems (M. Gerstenhabei

Permutohedra 000 Shuffle Algebras

Coalgebra structure

Let $\sigma \in \Sigma_n$ and $0 \le i \le n$, there exist unique $\gamma \in Sh(i, n-i)$, $\sigma_{(1)}^i \in \Sigma_i$ and $\sigma_{(2)}^i \in \Sigma_{n-i}$ such that

$$\sigma = \gamma \cdot (\sigma_{(1)}^i \times \sigma_{(2)}^i).$$



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

A shuffle bialgebra is a shuffle algebra A equipped with a coassociative coproduct Δ such that:

$$\Delta(x \bullet_{\sigma} y) = \sum_{r=1}^{n+m-1} \left(\sum_{r=1}^{n+m-1} \left(\sum_{r=1}^{n+m-1} (x_{(1)} \bullet_{\sigma_{(1)}^r} y_{(1)}) \otimes (x_{(2)} \bullet_{\sigma_{(2)}^{n+m-r}} y_{(2)}) \right) \right).$$

Remark: A pre-Lie system, equipped with a coproduct is a shuffle bialgebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Pre-Lie systems (M. Gerstenhaber

Permutohedra 000 Shuffle Algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bar construction

Let (V, θ) be a conilpotent coassociative coalgebra. Define a boundary map on Shuff(V) as follows:

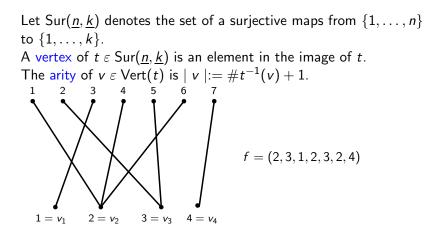
1.
$$\delta(x) := \sum \operatorname{sgn}(\sigma)(-1)^{|x_{(1)}|} x_{(1)} \bullet_{\sigma} x_{(2)}$$
, for $x \in V$ with $\overline{\theta}(x) = \sum x_{(1)} \otimes x_{(2)}$,

2. δ is a derivation for all the binary products \bullet_{σ} .

When $V = \bigoplus \mathbb{K}c_n$ is the space spanned by all corollas with the coproduct given by:

$$\theta(c_n) = \sum_{i=0}^n c_i \otimes c_{n-i},$$

we get the permutohedra as the bar construction.



▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

INDEX

SSOCIAHEDRA

Pre-Lie systems (M. Gerstenhaber

Permutohedra 000 Shuffle algebras

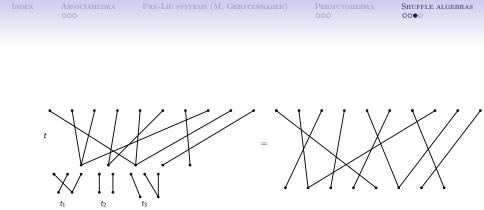
▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Substitution

Let $t \in \text{Sur}(\underline{n}, \underline{k})$ and $t_j \in \text{Sur}(\underline{i}_j, \underline{m}_j)$, j = 1, ..., k, be surjective maps such that $i_j = \#t^{-1}(j)$. Let $m := \sum_j m_j$. The substitution of $\{t_j\}$ in t is the surjective map $(t; t_1, ..., t_k) \in \text{Sur}(\underline{n}, \underline{m})$ given by

$$(t; t_1, \ldots, t_k)(a) := m_1 + \cdots + m_{j-1} + t_j(b),$$

whenever t(a) = j and a is the b-th element in $t^{-1}(j)$.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Substitution is associative.

Permutohedra 000

Monad

(joint paper with J.-L. Loday, to appear in J. of Combinatorial Theory, Series A)

Surjective maps define a monad in the category \mathbb{N}^+ Vect as follows:

For *t* ε Sur(<u>*n*</u>, <u>*k*</u>),

$$M_t := \bigotimes_{v \ \varepsilon \ Vert(t)} M_{|v|},$$

|v| is the number of inputs of v.

• For $M \in \mathbb{N}^+$ Vect, the graded vector space $\mathbb{P}(M)$ is:

$$\mathbb{P}(M)_{n+1} := \bigoplus_{t \in Surj_n} M_t,$$

and $\mathbb{P}(M)_1 := \mathbb{K}$.

NDEX ASS

SOCIAHEDRA

Pre-Lie systems (M. Gerstenhaber

Permutohedra 000 Shuffle algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Permutad

Result: The substitution of surjective maps defines a transformation of functors $\Gamma : \mathbb{P} \circ \mathbb{P} \longrightarrow \mathbb{P}$ which is associative and unital. So $(\mathbb{P}, \Gamma, \iota)$ is a monad on graded vector spaces. A permutad is a unital algebra over the monad $(\mathbb{P}, \Gamma, \iota)$. DEX ASSOCIAHEDRA 000 Pre-Lie systems (M. Gerstenhaber

Permutohedra 000 Shuffle algebras

Applications

- 1. Study of combinatorial Hopf algebras (Hivert-Novelli-Thibon, Aguiar-Sottile, Lam-Pylyavskyy,...).
- 2. Generalized associahedra (Carr, Devadoss, Forcey)
- 3. Shuffle operads (Dotsenko, Koroshkin)