FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA, U.N.C.

Métodos Matemáticos de la Física I – Análisis Matemático IV

Problema 1: Calcule las series Taylor en los centros indicados y determine los radios de convergencia

a)
$$f(z) = 1/z$$
, $z_0 = 1 + i$.

$$c)$$
 j

$$\frac{z+1}{(z+2)}$$
, $z_0=2$.

a)
$$f(z) = 1/z$$
, $z_0 = 1 + i$.
b) $f(z) = z^i$, (rama principal), $z_0 = 1$.
c) $f(z) = \frac{z+1}{(z-1)^2(z+2)}$, $z_0 = 2$.

Problema 2: Encontrar las singularidades de cada una de las siguientes funciones y clasificarlas según sean polos o singularidades esenciales. Calcule todos los desarrollos de Laurent de cada función centrados en cada singularidad.

a)
$$f(z) = \frac{\sin(z)}{z^2(z-\pi)}$$
, b) $f(z) = z \exp(\frac{1}{z})$, c) $f(z) = \frac{z^2}{1+z}$.

b)
$$f(z) = z \exp\left(\frac{1}{z}\right)$$

$$c) \ f(z) = \frac{z^2}{1+z}.$$

Problema 3: Calcule los tres términos de orden más bajo, no nulos, de la serie de Laurent de $\csc(z)$ centrada en z=0 que converge: a) alrededor del origen, b) en el punto $z=\pi+i$.

Problema 4: Demostrar que las singularidades de las funciones siguientes son polos. Determinar su orden y los correspondientes residuos:

a)
$$f(z) = \frac{1 - \cosh(z)}{z^3}$$
 b) $f(z) = \tanh(z)$

b)
$$f(z) = \tanh(z)$$

$$c) \ f(z) = \frac{z}{\cos(z)}.$$

Problema 5: Si C es la circunferencia unitaria recorrido en sentido positivo, evaluar las siguientes integrales:

$$a) \int_C \frac{dz}{\operatorname{sen}(z)}$$

b)
$$\int_C \frac{\exp(1/z) dz}{z}$$
 c) $\int_C \frac{\exp(-z)}{z(z+2)} dz$

c)
$$\int_C \frac{\exp(-z)}{z(z+2)} dz$$

Problema 6: Calcular la integral $\int_C \frac{3z^2+2}{(z-1)(z^2+9)} dz$, en los casos en que C es la circunferencia: i) |z-2|=2, ii) |z|=4, ambas recorridas en sentido antihorario.