FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA, U.N.C.

Métodos Matemáticos de la Física I

Problema 1: Considere un espacio vectorial complejo \mathcal{H} con producto interno $\langle \cdot, \cdot \rangle$ y sea $||u|| := \sqrt{\langle u, u \rangle}$.

a) Muestre que se tiene la desigualdad de Cauchy-Schwarz

$$|\langle x, y \rangle| \le ||x|| ||y||, x, y \in \mathcal{H},$$

con igualdad si y sólo si x e y son linealmente dependientes. Sugerencia: Considere el vector $z := y - ||x||^{-2} \langle x, y \rangle x$ y calcule su norma.

b) Use la desigualdad de Cauchy-Schwarz para demostrar la desigualdad del triángulo para $\|\cdot\|$:

$$||x + y|| \le ||x|| + ||y||, \ x, y \in \mathcal{H}.$$

Problema 2: Considere un espacio vectorial complejo con producto escalar. Si $x_1, x_2, x_3, \cdots, x_n$ son $n \ (\geq 1)$ vectores escribimos $[x_1, x_2, \cdots, x_n]$ para el subespacio de las combinaciones lineales de estos vectores; o sea: $[x_1, x_2, \cdots, x_n] := \{\sum_{j=1}^n c_j x_j : c_1, c_2, \cdots, c_n \in \mathbb{C}\}.$

a) Verifique que la dimensión de $[x_1, x_2, \dots, x_n]$ es menor o igual a n con igualdad si y sólo si los vectores $\{x_j : j = 1, 2, \dots, n\}$ son linealmente independientes.

Para cualquier $x \in \mathcal{H}$ no nulo sea P_x el mapa de \mathcal{H} en \mathcal{H} dado por

$$P_x y := \frac{\langle x, y \rangle}{\|x\|^2} x , \ y \in \mathcal{H} .$$

- b) Verifique que:
 - 1) P_x es lineal;
 - 2) P_x es una proyección –vale decir $P_x \circ P_x = P_x$;
 - 3) Se cumple $\langle P_x z, y \rangle = \langle z, P_x y \rangle$ para $y, z \in \mathcal{H}$;
 - 4) El vector y es ortogonal a x si y sólo si $P_x y = 0$.
- c) Demuestre de que entre todos los vectores αx con $\alpha \in \mathbb{C}$ (esto es exactamente [x]) aquel de menor distancia a un dado $y \in \mathcal{H}$ es exactamente $P_x y$.
- d) Demuestre que si $\langle x,y\rangle=0$ entonces $P_x\circ P_y=0$ y P_x+P_y es una proyección lineal cuyo rango es el subespacio bi-dimensional generado por x e y, o sea [x,y]. Deduzca que si $\{e_j: j=1,2,\cdots,n\}$ es un conjunto de vectores normalizados y dos-a-dos ortogonales (i.e., $\langle e_j,e_k\rangle=\delta_{j,k}$) entonces $P:=P_{e_1}+P_{e_2}+\cdots+P_{e_n}$ es una proyección lineal cuyo rango es el subespacio n-dimensional $[e_1,e_2,\cdots,e_n]$ de $\mathcal H$ y verifique que (Teorema de Pitagoras en n-dimensiones)

$$||Px||^2 = \sum_{j=1}^n ||P_{e_j}x||^2 = \sum_{j=1}^n |\langle e_j, x \rangle|^2, \quad x \in \mathcal{H}.$$

- e) Muestre que si $\{e_j: j=1,2,\cdots,n\}$ y $\{f_j: j=1,2,\cdots,n\}$ son dos conjuntos de n vectores normalizados y dos-a-dos ortogonales tales que $[e_1,e_2,\cdots,e_n]=[f_1,f_2,\cdots,f_n]$ entonces $P_{e_1}+P_{e_2}+\cdots+P_{e_n}=P_{f_1}+P_{f_2}+\cdots+P_{f_n}$.
- f) Generalize b): Entre todos los vectores de $[e_1, e_2, \cdots, e_n]$ donde los n vectores e_j están normalizados y son dos-a-dos ortogonales aquel que tiene la menor distancia a un dado vector y es único y es Py.
- g) Construya un ejemplo de una proyección lineal Q tal que el rango de Q es unidimensional pero (vea b)3))

$$\langle Qz, y \rangle \neq \langle z, Qy \rangle$$

para algún par de vectores z, y en \mathcal{H} .

Sugerencia: busque en $\mathcal{H} = \mathbb{C}^2$ con el producto escalar usual.