Métodos Matemáticos de la Física II

Solución¹ del Problema 7, Guía 2

Mr. Feynman no me contestó asi que resuelvo el problema por fuerza bruta.

Como la condición en la superficie es periódica (de período 2τ) en el tiempo y uniforme (temperatura constante) en cada instante, propongo una solución que sea periódica del mismo período y dependa solamente del radio r:

$$u(r,t) = \sum_{n>0} \left\{ \alpha_n(r) \cos(n\pi t/\tau) + \beta_n(r) \sin(n\pi t/\tau) \right\} .$$

Abrevio $\lambda_n := n\pi/\tau$ para $n \ge 1$ con lo cual $\lambda_n > 0$. Ahora la condición en la superficie r = a es

$$\varphi(t) = u(a, t) = \sum_{n>0} \left\{ \alpha_n(a) \cos(\lambda_n t) + \beta_n(a) \sin(\lambda_n t) \right\} ; \tag{1}$$

lo que reconocemos como la serie de Fourier de la función 2τ -periódica φ (la que nos dieron o cualquier otra). Por lo tanto, como se sabe,

$$\alpha_0(a) = \frac{1}{2\tau} \int_{-\tau}^{\tau} \varphi(t)dt , \qquad (2)$$

$$\alpha_n(a) = \frac{1}{\tau} \int_{-\tau}^{\tau} \varphi(t) \cos(\lambda_n t) dt , \quad \beta_n(a) = \frac{1}{\tau} \int_{-\tau}^{\tau} \varphi(t) \sin(\lambda_n t) dt . \tag{3}$$

Además,

$$u_t = \sum_{n\geq 1} \left\{ -\lambda_n \alpha_n(r) \sin(\lambda_n t) + \lambda_n \beta_n(r) \cos(\lambda_n t) \right\} .$$

La parte radial del Laplaciano es

$$(\partial^2/\partial r^2) + 2r^{-1}(\partial/\partial r)$$
;

de modo que

$$\Delta u = \alpha_o'' + 2r^{-1}\alpha_o' + \sum_{n \ge 1} + \sum_{n \ge 1} \left\{ (\alpha_n'' + 2r^{-1}\alpha_n')\cos(\lambda_n t) + (\beta_n'' + 2r^{-1}\beta_n')\sin(\lambda_n t) \right\}.$$

De la unicidad de la expansión en serie de Fourier obtenemos

$$\alpha_o'' + 2r^{-1}\alpha_o' = 0$$
;

$$\alpha_n'' + 2r^{-1}\alpha_n' = \frac{\lambda_n}{k}\beta_n , \quad n \ge 1 , \quad \beta_n'' + 2r^{-1}\beta_n' = -\frac{\lambda_n}{k}\alpha_n , \quad n \ge 1 .$$

La solución de la primera ODE es

$$\alpha_o(r) = c + d/r \; ,$$

que es singular en r=0 salvo cuando d=0. Rechazamos la singularidad y convenimos en que $\alpha_o(r)=\alpha_o=const.^2$. La segunda linea para $n\geq 1$ es un sistema de 2 ODE para el par $(\alpha_n,\beta_n)^3$. Todos estos sistemas son estructuralmente idénticos; sólo cambia el valor de λ_n/k .

¹G.A. Raggio

²En nuestro caso por (2) $\alpha_o = T_o/2$

³Esto es consecuencia de que la euación de difusión no admite soluciones reales en variables separadas que sean periódicas en el tiempo (salvo la solución constante).

Solución del sistema de 2 ODE: El sistema es⁴:

$$\alpha'' + 2r^{-1}\alpha = 2\omega^2\beta$$
, $\beta'' + 2r^{-1}\beta = -2\omega^2\alpha$

con $\omega > 0$. En forma matricial con

$$m{y} := \left(egin{array}{c} lpha \ eta \end{array}
ight) \; ,$$

$$[(d^2/dr^2) + 2r^{-1}(d/dr)] m{y} = 2\omega^2 \left(egin{array}{c} 0 & 1 \ -1 & 0 \end{array}
ight) m{y} \; .$$

El siguiente truco (muy usado en mecánica cuántica) es útil: si busco R(r) con $R'' + 2r^{-1}R' = G$ donde G es alguna función radial, entonces con $\xi(r) := rR(r)$ tengo

$$\xi'' = (R + rR')' = 2R' + rR'' = r(R'' + 2r^{-1}R) = rG.$$

Si definimos entonces

$$a(r) = r\alpha(r)$$
, $b(r) := r\beta(r)$, $\boldsymbol{z} = r\boldsymbol{y} = \begin{pmatrix} a \\ b \end{pmatrix}$,

entonces

$$\mathbf{z}'' = 2\omega^2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{z} . \tag{4}$$

La matriz que aparece es simétrica; sus autovalores son⁵ $\pm i$ con correspondientes autovectores (normalizados)

$$e_{\pm} = 2^{-1/2} \left(\begin{array}{c} 1 \\ \pm i \end{array} \right)$$

De modo que la matriz

$$S = (2)^{-1/2} \left(\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right)$$

-cuya determinate es -i- es invertible con inversa

$$S^{-1} = (2)^{-1/2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} ,$$

y se tiene

$$S^{-1} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) S = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right) .$$

Por lo tanto, si definimos

$$\boldsymbol{\zeta} := S^{-1} \boldsymbol{z}$$

entonces

$$\boldsymbol{\zeta}'' = S^{-1}\boldsymbol{z}'' = 2\omega^2 \ S^{-1} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \boldsymbol{z} = 2\omega^2 S^{-1} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) S \boldsymbol{\zeta} = 2\omega^2 \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right) \boldsymbol{\zeta}$$

y hemos logrado desacoplar el sistema:

$$(\zeta^{(1)})'' = i2\omega^2\zeta^{(1)}$$
, $(\zeta^{(2)})'' = -i2\omega^2\zeta^{(2)}$.

Esto se resuelve inmediatamente recordando que $\sqrt{i} = \pm (1+i)/\sqrt{2}$ y $\sqrt{-i} = \pm (1-i)/\sqrt{2}$:

$$\zeta^{(1)}(r) = \zeta_{1,+}e^{(1+i)\omega r} + \zeta_{1,-}e^{-(1+i)\omega r}$$

⁴El factor 2 se incluye por conveniencia.

⁵; aparecieron los complejos! No se asuste y siga adelante.

con constantes arbitrarias $\zeta_{1,\pm}$; y una fórmula similar para $\zeta^{(2)}$ con el factor en la exponencial cambiado a $(1-i)\omega$. Al volver a las componentes a,b de z vemos que podemos expresar a estas componentes como combinaciones lineales de las cuatro funciones : $e^{(1+i)\omega r}$, $e^{-(1+i)\omega r}$, $e^{-(1+i)\omega r}$, $e^{-(1-i)\omega r}$; o, alternativamente, como combinaciones lineales de las cuatro funciones: $\cosh(\omega r)\cos(\omega r)$, $\cosh(\omega r)\sin(\omega r)$, $\sinh(\omega r)\cos(\omega r)$, $\sinh(\omega r)\sin(\omega r)$. Si volvemos a las funciones α y β originales, vemos que ellas se expresan como combinaciones lineales de las cuatro funciones

$$\frac{\cosh(\omega r)\cos(\omega r)}{r} , \cosh(\omega r)\frac{\sin(\omega r)}{r} , \frac{\sinh(\omega r)}{r}\cos(\omega r) , \frac{\sinh(\omega r)\sin(\omega r)}{r} .$$

Recordando que

$$\cos(\mu r) \approx 1$$
, $\cosh(\mu r) \approx 1$, $\sin(\mu r) \approx \mu r$, $\sinh(\mu r) \approx \mu r$, $r \to 0$,

y rechazando a la función $r \mapsto r^{-1} \cosh(\omega r) \cos(\omega r)$ por su singularidad en r = 0, obtenemos las siguientes expresiones

$$a(r) = a_1 \operatorname{shc}(\omega r) + a_2 \operatorname{shs}(\omega r) + a_3 \operatorname{chs}(\omega r)$$
,

$$b(r) = b_1 \operatorname{shc}(\omega r) + b_2 \operatorname{shs}(\omega r) + b_3 \operatorname{chs}(\omega r) ;$$

donde hemos introducido:

$$\operatorname{shc}(p) := \sinh(p)\cos(p)$$
, $\operatorname{shs}(p) := \sinh(p)\sin(p)$, $\operatorname{chs}(p) := \cosh(p)\sin(p)$.

Las constantes a_1, b_1, a_2, b_2, a_3 y b_3 deben ser tales que se obtenga una solución del sistema (4). Insertando esto en el sistema de ODE, obtenemos la solución general y regular en el origen:

$$\alpha(r) = a \frac{\operatorname{shc}(\omega r)}{r} + b \frac{\operatorname{chs}(\omega r)}{r} , \quad b(r) = b \frac{\operatorname{shc}(\omega r)}{r} - a \frac{\operatorname{chs}(\omega r)}{r} .$$

Podemos entonces volver a nuestro problema y obtener la siguiente expresión para u (con $\omega_n := \sqrt{\lambda_n/2k}$):

$$u(r,t) = \alpha_o + \sum_{n \ge 1} \cos(\lambda_n t) \left\{ a_n \frac{\operatorname{shc}(\omega_n r)}{r} + b_n \frac{\operatorname{chs}(\omega_n r)}{r} \right\}$$
$$+ \sum_{n \ge 1} \sin(\lambda_n t) \left\{ b_n \frac{\operatorname{shc}(\omega_n r)}{r} - a_n \frac{\operatorname{chs}(\omega_n r)}{r} \right\}$$

donde a_n, b_n son constantes a determinar.

Formalmente se tiene

$$u(0,t) = \alpha_o + \sum_{n>1} \omega_n \{ (a_n + b_n) \cos(\lambda_n t) + (b_n - a_n) \sin(\lambda_n t) \}$$
.

La evaluación en r = a (lamento que hay tantas "a") y la comparación con (1) nos indican que

$$a_n \operatorname{shc}(\omega_n a) + b_n \operatorname{chs}(\omega_n a) = a\alpha_n(a)$$
,

$$b_n \operatorname{shc}(\omega_n a) - a_n \operatorname{chs}(\omega_n a) = a\beta_n(a)$$
,

que admite una única solución para (a_n, b_n) pues la determinante de los coeficientes de este sistema lineal para el par (a_n, b_n) es $a^{-2}(\operatorname{shc}(\omega_n a)^2 + \operatorname{chs}(\omega_n a)^2)$ lo que no es nulo.

Hasta ahora no hemos usado ninguna propiedad de la función de borde φ mas allá de la periodicidad y de la uniformidad (i.e. $t \mapsto \varphi(a,t)$ no depende de ángulos). Le dejo los detalles de los cálculos para la φ específica.