Métodos Matemáticos de la Física II

Guía 1 - 10 de marzo de 2015

Problema 1: Muestre que hay una única solución al problema

$$u_x = 3x^2y + y$$
, $u_y = x^3 + x$, $u(0,0) = 0$.

Luego muestre que el problema

$$u_x = (3 - 10^{-82})x^2y + y$$
, $u_y = x^3 + x$

no tiene ninguna solución.

Problema 2: Muestre que cada una de las siguientes ecuaciones admite una solución de la forma $u(x,y) = \exp\{ax + by\}$ con a,b constantes.

- a) $u_x + 3u_y + u = 0$;
- **b)** $u_{xx} + u_{yy} = 5e^{x-2y};$

¿Que sucede si se cambian muy ligeramente los coeficientes a la izquierda en cada caso?

Problema 3: Sea p una función real diferenciable sobre los reales. Muestre que la ecuación

$$u_t = p(u)u_x , \quad t > 0 ,$$

tiene una solución de la forma u(x,t) = f(x + p(u(x,t))t) donde f es real y diferenciable sobre los reales y cumple cierta condición. Use esto para determinar soluciones de las ecuaciones

- a) $u_t = ku_x$, k constante;
- $\mathbf{b)} \ u_t = u u_x;$
- c) $u_t = u \sin(u) u_x$.

¿Que condición puede agregarse para determinar a f?

Problema 4: Considere el problema (de Neumann para el Laplaciano)

$$\Delta u = f \text{ en } V \text{ con } \boldsymbol{n} \cdot \nabla u = 0 \text{ en } \partial V$$
,

donde $V \subset \mathbb{R}^3$ con borde ∂V y n es el vector unitario normal a ∂V que apunta hacia afuera de V. Razone que la solución no es única. Use el Teorema de la Divergencia para establecer que

$$\int_{V} f(x, y, z) \, dx \, dy \, dz = 0$$

es condición necesaria para la solubilidad del problema.

Problema 5: Considere la temperatura en una esfera sólida y suponga que esta es función del radio (r) y del tiempo (t) solamente. Muestre que la ecuación del calor es entonces

$$\phi_t = a^2(\phi_{rr} + 2r^{-1}\phi_r) .$$

Discuta una transformación de tipo $\phi = r^{\alpha}\psi$ para reducir esta ecuación a la ecuación del calor usual.

Considere un cilindro recto y suponga que la temperatura es una función axial y del tiempo. ¿Que forma toma la ecuación del calor ? ¿ Que ocurre cuando se realiza la transformación $\xi = \ln(\text{coordenada axial})$?