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We consider the two-spin-subsystem entanglement for eigenstates of the Hamiltonian H
=�1�j�k�N� 1

rj,k
��� j ·�k for a ring of N spin-1/2 particles with associated spin vector operator �� /2�� j for the jth

spin. Here rj,k is the chord distance between sites j and k. The case �=2 corresponds to the solvable Haldane-
Shastry model whose spectrum has very high degeneracies not present for ��2. Two-spin-subsystem en-
tanglement shows high sensitivity and distinguishes �=2 from ��2. There is no entanglement beyond nearest
neighbors for all eigenstates when �=2. Whereas for ��2 one has selective entanglement at any distance for
eigenstates of sufficiently high energy in a certain interval of � which depends on the energy. The ground state
�which is a singlet only for even N� does not have entanglement beyond nearest neighbors, and the nearest-
neighbor entanglement is virtually independent of the range of the interaction controlled by �.

DOI: 10.1103/PhysRevA.77.022109 PACS number�s�: 03.65.Ud, 03.67.�a

I. INTRODUCTION

Since the first studies �1–3� of entanglement in the ground
state of interacting spin-1/2 systems, a considerable amount
of work has been devoted to analyze this feature. The Hamil-
tonians most studied have been those with antiferromagnetic
nearest-neighbor interactions �XX, XY, XYZ, XXZ, etc.� be-
tween the spins in the presence of an external magnetic field
�usually constant� which is the order parameter for quantum
phase transition �i.e., nonanalyticity in the ground-state en-
ergy �4��. The fascinating and intricate connections and rela-
tions between �mainly two-site subsystem� entanglement and
the quantum phase transition have been systematically stud-
ied after Refs. �5,6�. At the other extreme, namely models
where each spin interacts identically with all the others, there
are studies of the Lipkin-Meshkov-Glick model �7� which is
of the XY type in an external field, and of an equivalent of
the BCS model �8� which is of the XX type in an external
field. Reference �9� presents a study of entanglement for
nearest and next-nearest neighbors for the ground state of a
Heisenberg chain with nearest and competing ferromagnetic
next-nearest-neighbor interactions. A recent review of the
subject is Ref. �10�. Most of the studies we are aware of are
restricted to the entanglement analysis of the ground state.
Reference �11�, however, presents the nearest-neighbor en-
tanglement analysis for nearest-neighbor XXX and XY
Heisenberg models �with zero field� dealing with all excited
states. This reference is the work we are aware of which is
most related to the point of view and results we report here.

Here, we are not concerned with the quantum phase tran-
sition aspects but concentrate on the dependence of entangle-
ment on the range of the spin pair interactions. From this
point of view, one of the basic facts emerging from the stud-
ies mentioned above is that two-site subsystem entanglement
in the ground-state is short-ranged in models with finite-
range interactions; e.g., in models with nearest-neighbor in-

teractions, it vanishes if the sites are not nearest or next-
nearest neighbors. Extrapolating, if in a spin-1/2 chain every
spin interacts only with its two neighbors at a distance k,
then two-site entanglement in the ground state will show up
for sites at distance k, and basically only for this distance if
there are no further contributions to the energy. This is not a
general claim we are making; it has just been checked in a
number of simple models. We outline a rough argument to
sustain this in the concluding remarks. As another motivating
example, consider the Hamiltonian for N spin-1/2 particles
�� j = �� j

x ,� j
y ,� j

z� is the vector operator formed with the three
Pauli operators associated to the jth spin�,

�
1�j�k�N

�� j · �k� + a �1 · �p,

with a real and p=2,3 , . . . ,N, for which the interaction con-
stant for the spin pair �1, p� is 1+a, while for every other
pair it is 1. The ground state shows entanglement for the pair
�1, p� only for 0�a, and no entanglement for all other pairs
independently of the value of a.

On the positive side, one of the basic properties of quan-
tum entanglement, namely monogamy �12,13�, conspires
against the buildup of entanglement of a spin with too many
neighbors. Thus one of the questions we posed ourselves was
will we obtain two-site entanglement in the ground state at
large distances if the interaction is long ranged? The other
question we posed ourselves is what about two-site entangle-
ment in excited states?

In this paper we get some answers to both questions, in-
asmuch as we present some results on entanglement of two-
spin subsystems for eigenstates of a Hamiltonian where the
spins are subject to a long-range interaction inversely propor-
tional to a power of their distance and the external magnetic
field vanishes. Our study is not restricted to the ground
state�s�, but includes the whole spectrum. In particular, we
are interested in which eigenstates show two-site entangle-
ment for long distances, i.e., beyond nearest or next-nearest
neighbors. Besides, we are interested in the dependence on
the range of the interaction, of the distance for which it is
possible to obtain two-site entanglement.
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The model is presented in the next section, together with
some information on its spectral properties. In Sec. III, we
deal with the pair or two-site entanglement. We give the
relation between the concurrence of the eigenstates reduced
to the two-site subsystem, and the two-site spin-correlation
functions; and present our results emphasizing their qualita-
tive aspects. In the concluding section, Sec. IV, we highlight
those features observed which we consider interesting and
provide an argument for the short range of pair entanglement
in the ground state, which proceeds via power law decay of
spin correlations.

II. MODEL

The model studied is the simplest possible with a very
regular dependence on the distance; it is obtained by multi-
plying the Heisenberg pair interaction � j ·�k with a factor
inversely proportional to a power of the distance between the
sites. It is thus an XXX Heisenberg model incorporating a
power law decay of the interaction strength. Instead of con-
sidering a linear chain with periodic boundary conditions, we
consider a ring. Specifically we consider N spin-1/2 particles
and the Heisenberg Hamiltonian is given by

HN��� = �
1�j�k�N

� j · �k

�rj,k�� , � � 0,

where

rj,k =
sin���j − k�/N�

sin��/N�
, j,k = 1,2, . . . ,N

is proportional to the dimensionless distance �length of the
chord� between vertexes j and k in a regular, flat, Ngon
whose vertices are numbered consecutively. The constant in
the definition is chosen so that the nearest-neighbor distance
rj,j+1 is 1. For a given N, the number of distinct distances is
�N /2�, the largest integer not above N /2. We observe that
HN�0� is the isotropic Heisenberg model where each spin
interacts identically with every other spin. For N	2 fixed,
the limit �→
 corresponds to the nearest-neighbor antifer-
romagnetic XXX model studied in Ref. �11�. Thus � provides
a smooth control of the spatial decay of the interaction as one
varies the distance between sites, and also an interpolation
parameter between two well known models. We often drop
the index N and parameter � in HN���, when these are irrel-
evant.

The Hamiltonian H is “antiferromagnetic,” while −H
�H is “ferromagnetic.” If N is even then the least energy
eigenvalue is nondegenerate, whereas it is degenerate for un-
even N.

For �=2 this is the Haldane-Shastry model �14,15� which
is explicitly solvable �16,17�, giving us an effective control
on numerical results; this was one of the basic reasons for
considering this model �and a ring, not a chain�. For �=2,
the least eigenenergy is fourfold degenerate for uneven N,
and the largest energy eigenvalue �ground-state energy of the
ferromagnetic version� is always degenerate with multiplic-
ity N+1.

The spectrum for �=2 is highly degenerate with com-
paratively few eigenvalues and very different from the spec-

trum for ��2 and the same N. For example, for N=8, where
the Hilbert space has dimension 28=256, H has 5 eigenval-
ues for �=0, 19 for �=2, and 45 for 0���2, except for a
discrete and finite set of values of �, where a crossing or two
reduces the number of distinct eigenvalues by 1 or 2 �see
Fig. 1�; the nearest-neighbor XXX model corresponding to
�=
 has 40 eigenvalues. These qualitative features do not
depend on N.

Due to the absence of computable necessary and sufficient
conditions for multipartite entanglement in mixed states, we
study only the entanglement of the possible pairs of spins,
that is, two-site entanglement. It suffices to consider the pairs
�1, j� for j=2, . . . , �N /2�+1; corresponding to the possible
distances. Given a state � of a system of N spins, � j,k denotes
the reduction of � to the subsystem with components �i.e.,
sites� j and k. The entanglement of this reduced state is de-
tected and quantified by its concurrence �18�.

Our analysis proceeds as follows. One has

� j · �k = 2� j,k − 1 ,

where � j,k is the transposition interchanging the jth and kth
components of the product basis vectors

�1,2, . . . ,N�, n = � , n = 1,2, . . . ,N , �1�

where �z�� �= � �� �. That is,

� j,k�1,2, . . . , j, . . . ,k, . . . ,N�

= �1,2, . . . ,k, . . . , j, . . . ,N� .

To simplify the structure of the corresponding matrix in
the above basis, we consider the operator �Hamiltonian�

H̃N��� =
1

2 �
1�j�k�N

� 1

rj,k
	�

�� j,k − 1�

which differs from HN��� by an additive, �N ,��-dependent

constant �see Ref. �11��. Thus HN��� and H̃N��� have the
same number of distinct eigenvalues with the same multi-
plicities and the same spectral orthoprojectors. Figure 1

shows the spectrum of H̃ for N=8 as a function of � up to
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FIG. 1. Spectrum of H̃8���. 0 is the largest eigenenergy and has
degeneracy 9 �=N+1� for all �	0. Beyond �
7.29 there are no
further crossings. The monotone increase of the �differentiable� en-
ergy vs � curves is a consequence of the Hellman-Feynman for-
mula. Here and in all figures the energies are dimensionless.
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�=5. We find that beyond � about 7.29 there are no cross-
ings, but eigenvalue curves do approach each other asymp-
totically leading to 40 eigenenergies in the nearest-neighbor

model ��=
�. The largest eigenenergy of H̃N��� is zero, it is
�N+1�-fold degenerate for every �	0, and the correspond-
ing spectral orthoprojector is independent of � �19�. In fact,
an orthonormal basis of this eigenspace is easily described: it
consists of N+1 vectors, each of which is the normalized
sum of the � N

s
� vectors of the form �1� where exactly s of the

n’s are +; and s=0,1 , . . . ,N.

III. ENTANGLEMENT

Denote the spectrum with spec; suppose

H = �
E�spec�H�

EPE, PEPE� = �E,E�PE, �
E�spec�H�

PE = 1

is the spectral decomposition of the Hamiltonian H. Then
tr�PE� is the multiplicity �degeneracy� of the eigenenergy E.

At this point, we must recall Theorem 2 of Ref. �20�
which says that any subspace of dimension at least 2 of the
four-dimensional Hilbert space of two qubits contains at least
one product vector. Thus if the eigenenergy E of a two spin-
1/2 system is degenerate, then there is a separable eigenvec-
tor to E. Extensions of this result to sufficiently high dimen-
sional subspaces of N ��2� qubits are possible but this is not
the point of this paper. To analyze entanglement in the case
of degenerate eigenvalues, we must consider the �uniform�
eigenstate

��E�: = PE/tr�PE�, E � spec�H� .

Notice that this state is obtained by mixing with equal
weights �namely 1 / tr�PE�� any �pairwise orthogonal� pure
eigenstates whose corresponding vectors constitute an ortho-
normal basis of the eigenspace of the eigenvalue E of H.
This is the very same eigenstate notion as that used in Ref.
�11�.

For the Haldane-Shastry model ��=2�, we use the known
eigenvalues and degeneracies �17�, and determine the ortho-
projectors by PE=�E��E

H−E�
E−E�

. For ��2 we determine the
eigenenergies and corresponding spectral projections nu-
merically.

Due to the particular symmetry of H or H̃ which com-
mutes with � j=1

N � j
z and with � j� j

z �11,19,21� the reduced den-
sity operators �in the basis �1� of product eigenvectors of � j

z,
j=1,2 , . . . ,N� for any pair �j ,k� of spins have the same
structure, namely

�
a 0 0 0

0 b c 0

0 c b 0

0 0 0 a
 ,

where a ,b	0, with a+b=1 /2; and c is real with
�c��b. The concurrence of this two-spin state is
max�0,2 max�a ,b+ �c��−1�=max�2��c�−a� ,0�. But the iso-
tropic nature of H �SU�2� invariance�, implies �as observed
in Ref. �11� for the nearest-neighbor model�

2c = tr�� j,k�E�� j
x�k

x�

= tr�� j,k�E�� j
y�k

y�

= tr�� j,k�E�� j
z�k

z�

= 2�a − b� . �2�

From this we conclude that b= �1−2c� /4, a= �1+2c� /4, and
−1 /2�c�1 /6. The concurrence is

�0, if − 1/6 � c � 1/6
− 3c − 1/2, if − 1/2 � c � − 1/6� . �3�

Thus for a given pair �j ,k�, there will be entanglement for
this pair in the state ��E� if and only if the correlation func-
tion tr���E�� j

��k
�� ��=x ,y ,z� which is independent of �, is

in the interval �−1,−1 /3�.
The above structure of � j,k also implies that the reduced

density matrix for the jth site is simply and always just
�1 /2�I which is the maximally mixed state for a spin-1/2
particle, and the expectation value of � j is the zero vector.
This remarkable feature of the model is independent of N,
��0 and the eigenenergy considered. As a consequence, the
Meyer-Wallach measure �25� �which, when the state is pure,
is a true measure of entanglement and not just a measure of
degree of mixture� given by 2− �2 /N�� j=1

N tr�� j
2� and often

misused as an indicator of multipartite entanglement, is iden-
tically equal to 1 �and thus of no use whatsoever� for every
eigenstate ��E� independently of N, ��0 and the eigenen-
ergy considered, even for the maximal energy where the
eigenstate is separable. This is not surprising at all, since the
N-qubit trace 2−N1= �1 /2� � �1 /2� � ¯ � �1 /2� which is a
product state and hence separable has maximal Meyer-
Wallach measure 1. But the model does provide a rather
blatant example of a whole zoo of eigenstates with very dif-
ferent entanglement properties which goes altogether unde-
tected by the Meyer-Wallach measure. Meyer and Wallach of
course proved that their measure is an entanglement measure
for pure states; they never claimed anything about mixed
states.

Another remarkable feature is that � j,k�0�, the reduced
density matrix for sites �j ,k� for the eigenstate of maximal
energy which was described above and seen to be indepen-
dent of �, is also independent of the pair �j ,k� �19�. It turns
out that this maximal energy eigenstate �ground state of the
ferromagnetic model� does not show entanglement at all site
distances.

Our calculations were performed for N=2,3 ,4 ,5 ,6 ,7 ,8.
Up to the degeneracies in the lowest eigenenergy, the quali-
tative features are independent of N in that range. The graphs
shown correspond to N=8.

Here is a list of some of our observations for the men-
tioned values of N �others will follow�. Some of these extend
or complement results of Ref. �11� which correspond to the
nearest-neighbor XXX model ��=
�:

�i� The isotropic model HN�0� shows no two-site entangle-
ment for all distances at every eigenenergy.

�ii� In the ground state there is exclusively nearest-
neighbor two-site entanglement for every ��0 ���0 was
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sampled rather completely only for N=8�; the corresponding
concurrence is a slowly varying increasing function of �
�0 which is discontinuous at 0 �see Fig. 6�.

�iii� For every ��0 nearest-neighbor entanglement ap-
pears only in the first few energy levels �i.e., for N=8, the
first four or five energy levels�. If an excited state presents
nearest-neighbor entanglement for some ��0 then the cor-
responding concurrence is below that of the ground-state
nearest-neighbor concurrence for that value of �. However,
nearest-neighbor concurrence is not generally a decreasing
function of the energy for fixed ��0 �see Fig. 2�.

�iv� The distinctive feature of the case �=2 with respect
to the cases ��2 is simple: For �=2 there is no two-site
entanglement beyond nearest neighbors at all eigenenergies.
For 0���2 two-site entanglement for other possible dis-
tances appear at some excited eigenenergy level. In fact,
two-site entanglement for all possible distances is present for
every � at some excited energy level except for � in a certain
bounded interval which depends on N.

�v� Except for exceptional values of �, one finds excited
states where the concurrence for sites further apart than near-
est neighbors have greater concurrence than the ground-state
nearest-neighbor concurrence. For example, for N=8 and al-
most all ��0 ��=1 is exceptional� one finds some excited
state where the concurrence for sites at maximal distance is
always above the nearest-neighbor concurrence for the
ground state.

�vi� In the ferromagnetic model −H, the ground state does
not show pair-entanglement at all distances and the same is

true for the low energy eigenstates, but the number of the
states with this property decreases with �. The first excited
states which exhibit two-site entanglement do so for the larg-
est distances. Only high energy eigenstates show nearest-
neighbor entanglement. All this is seen in Figs. 2–5.

The series of four Figs. 2–5 show the concurrence of
� j,k�E� for the possible eigenenergies E for N=8 and distinct
values of �. In all these figures the dot corresponds to
nearest-neighbor distance ��j−k�=1�, the cross � to the next-
nearest-neighbor distance ��j−k�=2�, the star � to �j−k�=3,
and the empty square � to the maximal distance �j−k�=4.

We mention a feature of the nearest-neighbor model
which is apparent in Fig. 5 and was observed in Ref. �11�. In
this model, the eigenenergies are proportional to the spin
correlation function of the corresponding eigenstate �Eq. �8�
of Ref. �11��. Nearest-neighbor concurrence, where it is posi-
tive, is a linear decreasing function of the energy: concur-
rence ��1,2�E��=max�−AE−B ,0�, where A ,B�0. This ex-
tends the observation of Ref. �3� to the whole spectrum.
Moreover, this linear regime is reached very rapidly as �
grows to infinity; e.g., for N=8 and ��6 one is practically
in the linear regime.

For N=8 we have also analyzed if energy is distance se-
lective for two-site entanglement. We find that if at some
eigenenergy there is two-site entanglement at nearest or next-
nearest-neighbor distance then there is no entanglement at all
the other possible distances. However, two-site entanglement
at maximal and next to maximal distances can be present for
the same energy level in certain intervals of � values.
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FIG. 2. Concurrence of � j,k�E� for N=8 and �=1. � corre-
sponds to �j−k�=1, � to �j−k�=2, � to �j−k�=3, and � to
�j−k�=4.
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FIG. 3. Concurrence of � j,k�E� for N=8 and �=2.
�j−k�=1��� ,2��� ,3��� ,4���.
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FIG. 4. Concurrence of � j,k�E� for N=8 and �=3.
�j−k�=1��� ,2��� ,3��� ,4���.

-6 -5 -4 -3 -2 -1 0

0

0.1

0.2

0.3

0.4

0.5

E

co
nc

ur
re

nc
e

FIG. 5. Concurrence of � j,k�E� for N=8 in the nearest-neighbor
model. �j−k�=1��� ,2��� ,3��� ,4���.
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Another way of presenting our results would consist in
graphing the concurrence of � j,k�E� for fixed N and distance
�j−k� as a function of � while keeping the number of the
�excited� level E fixed. The level crossings will produce
complicated graphs with a number of qualitatively distinct
and generally discontinuous behaviors of the concurrence. It
is more appropriate to adopt a perturbation theoretic point of

view. For fixed N, the operator families HN��� and H̃N��� are
holomorphic in ��C in the sense of Ref. �26�. Thus, for
example, for N=8, and away from the exceptional points
where crossings occur �see Fig. 1�, there are 45 pairwise
orthogonal projectors which depend real analytically on �.
The two-site concurrence for any pair of sites obtained by
normalizing these orthoprojectors to states will be real ana-
lytic functions of � away from the crossings. This alternative
way of analyzing two-site entanglement shows that only very
few of the orthoprojectors carry two-site entanglement as is
illustrated in the following figure pairs. Figure 6 shows all
the nonzero concurrences for nearest neighbors �namely five�
for N=8 as functions of � in the top graph, while the lower
graph shows which five of the energy curves of Fig. 1 give
rise to these nearest-neighbor concurrences. In the concur-
rence graph of Fig. 6, only the curve corresponding to maxi-
mal nearest-neighbor concurrence �
0.41� is associated to
only one level, in this case the ground state. All other con-
currence curves in this graph mix �due to crossings� energy
levels of different excitation numbers. The discontinuities
occur at crossings and not all of them are visible in the fig-
ure. The following pair of graphs, Fig. 7, deals with next-
nearest neighbors. The energy curves �lower graph� are only
drawn where two-site entanglement �at the corresponding
distance� is present and they are not drawn through the
whole range of values of � �this is repeated for the other
distances to be shown below�. Observe that the entanglement
at next-nearest-neighbor distance �j−k�=2 has a gap: for �

between about 2.54 and 3.71 there is no next-nearest-
neighbor entanglement at all eigenenergies; this is the only
distance which shows this feature. The graph pairs of Figs. 8
and 9 repeat this for the distances �j−k�=3, and 4, respec-
tively. Close inspection of Figs. 8 and 9 show that the maxi-
mal concurrence �labeled a in Fig. 9� at maximal distance
�j−k�=4 and the monotone increasing concurrence curve �la-
beled a in Fig. 8� for the distance �j−k�=3 originate in the
same energy curve �i.e., its corresponding orthoprojector�,
namely a in the lower graphs of Figs. 8 and 9. This feature
appears also for nearest-neighbor and maximal distance en-
tanglement: the energy vs � curves labeled c in Figs. 6 and 9
coincide; however, entanglement at maximal distance ap-
pears only above �see Fig. 10� �
3.88. A careful count
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FIG. 6. Top graph: nearest-neighbor concurrence vs � for
N=8. The top curve labeled a corresponds to the ground state. Not
all discontinuities are visible in the figure. Lower graph: the corre-
sponding five energies vs � curves which carry nearest-neighbor
entanglement for N=8. The curve labels a–e correspond to the
concurrence curves of the same label in the top graph. The dimen-
sion of the associated orthoprojectors are 1 �a�, 3 �b�, 1 �c�, 6 �d�,
and 6 �e�.
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FIG. 7. Top graph: Next-nearest-neighbor concurrence vs � for
N=8. Lower graph: The three energies vs � curves which carry
next-nearest-neighbor entanglement for N=8. The labels on the
curves correspond to those on the concurrence curves of the top
graph. The dimensions of the associated orthoprojectors are 1 �a�, 1
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FIG. 8. Top graph: concurrence vs � for N=8 and �j−k�=3.
Lower graph: the three energies vs � curves which carry entangle-
ment for N=8 at distance �j−k�=3. The curve labels correspond to
those of the top graph. Curves a and c cross at �
2.35. The di-
mensions of the associated orthoprojectors are 1 �a�, 1 �b�, and 3
�c�.
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shows that of the 45 orthoprojectors only 12 carry two site
entanglement; of these, ten do so for one distance only, only
one carries two-site entanglement at two distances simulta-
neously for all values of ��0, and only one carries two-site
entanglement at two distance simultaneously albeit above
some threshold value of � �as just described�.

Table I gives the dimension of the 45 orthoprojectors ap-
pearing for N=8 and the number of times each dimension
appears. All six one-dimensional orthoprojectors carry two-
site entanglement and two of these do so for two distinct
distances ��j−k�=3,4 for all ��0 and �j−k�=1,4 for
��3.88�. Moreover, their Meyer-Wallach measure being
maximal, they are maximally entangled pure states except at
crossings.

IV. CONCLUDING REMARKS

We present a study of pair �or two-site� entanglement for
the eigenstates of an N spin-1/2 model where the spins �sites�
are equidistant in a circular ring and the pair interaction is
inversely proportional to an arbitrary positive power � of the
site distance, and proportional to the scalar product of the
magnetic moments of the spins. The model interpolates be-
tween a nearest-neighbor interaction model �of type XXX�
and a model where every spin interacts equally with all the
others. The model is solvable for �=2 �Haldane-Shastry
model� where the spectrum is extremely degenerate, for ev-
ery N, relatively to ��2 and the same N. We do not include

an external magnetic field in the Hamiltonian, and thus ex-
clude a quantum phase transition, i.e., nonanalytic behavior
of the ground-state energy as a function of the magnetic field
strength. Although we have no proposal regarding the experi-
mental realization of the model, we consider it as a simple
yet typical example of a Hamiltonian with long-ranged anti-
ferromagnetic spin-1/2 pair interactions decaying smoothly
with distance; the features we observe are probably common
to such models. We do not concentrate on ground-state en-
tanglement �the ground-state energy is degenerate for uneven
N� but analyze all eigenenergies. The qualitative features re-
ported are independent of N up to N=8, and we have no
doubts that they are independent of N for all N.

A key feature is the observed insensitivity to the range of
the interaction of two-site entanglement for the ground state.
Not only there is no two-site entanglement beyond nearest
neighbors independently of the range of the interaction con-
trolled by �, but also, e.g., for N=8, taking the limit
�→0+ and comparing this with the nearest-neighbor concur-
rence in the nearest-neighbor interaction model ��=
�, the
variation is only about 2.5% over the whole range of values
of ��0. Moreover, the value is about 94% of the upper
bound claimed by Ref. �3�. We have no rationalization for
the small variation observed in the concurrence, beyond the
connection made in Sec. III that this means that the nearest-
neighbor spin correlation is virtually independent of the
range of the interaction in the ground state. As regards the
absence of two site entanglement beyond some cutoff dis-
tance, we view this as a general feature of antiferromagnetic
models with pair interactions proportional to � j

��k
� ��=x,y,

or z� decaying with distance whose two-site spin correlations
are bounded in modulus by some positive inverse power of
the distance. In the model studied here, as in many others,
the cutoff distance is that to the nearest neighbor.

An argument to sustain this goes as follows. Suppose that
in some given state � the two-site spin correlation functions

TABLE I. The dimension of the 45 orthoprojectors appearing for N=8 and the number of times each dimension appears.

Dimension of orthoprojector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 	15

Number of orthoprojectors 6 4 6 0 6 11 1 0 1 7 0 0 0 3 0
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FIG. 9. Top graph: concurrence vs � for N=8 and maximal
distance �j−k�=4. Lower graph: the three energies vs � curves
which carry entanglement for N=8 at maximal distance. The curve
labels correspond to those of the top graph. Curves a and b cross at
�
4.63 where the concurrence curves a and b have a discontinuity.
The dimensions of the associated orthoprojectors are 1 �a�, 6 �b�,
and 1 �c�.
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FIG. 10. Detail of the crossing of the energy curves a and b in
the lower graph of the previous Fig. 9. The curves do not coincide
to the right of the crossing, a feature which is not resolved at the
scale of Fig. 9.
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tr��� j
��k

�� ��=x , y,and z� are bounded in modulus by some
constant times a positive inverse power of the distance be-
tween sites j and k. The reduced density matrix for spins j
and k can be expressed in terms of these spin correlations
and so can its concurrence. If � is the ground-state, the an-
tiferromagnetic nature of the pair interactions will give nega-
tive spin-pair correlations, and pair entanglement will appear
only for sufficiently negative values of these spin correla-
tions. The power law will then produce a certain distance
beyond which entanglement is impossible because the corre-
lations are not sufficiently negative. This power law behavior
of the two-site spin correlations has been calculated �in the
macroscopic limit N→
� for the ground state of some solv-
able one-dimensional spin-1/2 chains �22–24�.

From our data for N=8, we obtain �recall Eq. �2��

�tr��0����1
��k

��� �
�tr��0�
��1

��2
���

r1,k
, k = 2,3,4,5,

for every ��0 including �=
, where �0��� is the ground
state of H8���. The associated cutoff distance dc determined
from Eq. �3�, �tr��0�
��1

��2
��� /dc=1 /3, is dc=1.8255 which

is below r1,3 ��1.8477� so there is indeed no entanglement

beyond nearest neighbors �r1,2=1� in the ground-state of
H8���.

Our second observation is that a simple glance at a figure
of the type of Figs. 2–5 allows the onlooker to decide
whether �=2 or not. Two-site entanglement of eigenstates is
extremely sensitive to a spectral “collapse.” If one is able to
control the parameter �, one can drastically reduce entangle-
ment by selecting �=2. In order to be useful, this property
should be present for some small interval and not just for a
point; but the feature is potentially interesting for applica-
tions. Third, one can produce selective two-site entanglement
at any required distance by appropriately choosing � and/or
the energy level; a feature which is again of some interest,
and is stable under small variations of �.

Finally, we point out that for N=8 and every 2���0,
including the nearest-neighbor model �see Fig. 5�, there is an
excited eigenstate which is pure �except for special values of
� where a crossing occurs; see Fig. 9� which presents en-
tanglement at maximal distance and at next to maximal dis-
tance simultaneously. This state corresponds to the energy vs
� curve labeled a in Figs. 8 and 9. The concurrence for
maximal distance in this state is the maximal concurrence for
all possible distances. It would be interesting to give an ex-
perimental procedure to prepare this state.
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