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We report results on the quantum thermal statisdi¢s Gibbs—Shannon—Szilard—
Jaynes based ap-entropiesSy[ p]=(q— 1) Y1 —tr(pY) (0<q # 1) and the in-
ternal energy functiondU[ p]=tr(pH) proposed by C. Tsallif]. Stat. Phys52,
479-487(1988]. © 1996 American Institute of Physics.
[S0022-24886)01303-3

I. INTRODUCTION

For a discrete probability distributiop=(p1,p>,- - -), with p,=0, andZ,p,=1, consider
Sq[p]=<q—1>‘1( 1-2 pﬂ).

whereq is a positive real number distinct from &[ - ] was introduced, with a different prefactor,

by Z. Darazy' who obtained the basic properties and gave an axiomatic characterization. One
sees easily that lign,1Sy[ p]= —Znpn IN(py), the well-known Boltzmann—Shannon entropy. The
guantum mechanical version

Slpl=(q—1)"*A—tr(p%), @

of the g-entropy appears on p. 247 of Wehrl's reviéw.

The monoparametric family of entropi&g[ - | reappears in a paper by Tsaffigsho proposed
a generalization of standard statistics obtained by maximizinggteatropy at fixed internal
energy given byE p.e,. This formalism has been applied to self-gravitating systear] leads
to a phase-space distribution with finite associated mass in contradistinction to the results obtained
using the standard statistico-mechanical formalism which lead to an infinite mass. “Specific heat”
calculations for the harmonic oscillator using this scheme are given in Ref. 5.

In order to solve the basic problem of maximizig[ -] at fixed internal energy, Tsalfis
introduced the function

Sq[p]+a§n: pn_at(q_l)En: €nPn

and after a standard variation obtains the equation

, 9-1
on lZTCV[lﬂL'f(l—Q)fn]-

The left-hand side must be a non-negative number. If for a giveatl the brackets on the
right-hand side are non-zero and have the same sign we get a solution, after deteanbyitige
normalization condition
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-1
Pn= 2 (1+(1- Q)ten)ll(q_l) 1+(1— q)ten)ll(q—l)_
n

The distribution will be non-degeneraije;>0 for all n. When the brackets on the right-hand side

do not all have the same sign or some are zero, the distribution must be degenerate; it must lie in
a face of the simplex of probability distributions. One has to determine the appropriate range for
t. Althought provides a convenient and explicit parametrization of the distribution with minimal
free energy, it is not the reciprocal temperature associated to the problem. The reciprocal tempera-
ture is given byat(g—1), which readsfl is the Hamiltonian operator with spectrufa,}):

,3(t):=qt[tr{(1+(1_q)tH)1/<q71)}]1,q. o

The results presented here determine the range of the reciprocal pseudo-tempetadiitee
connection with the reciprocal temperatethey also describe precisely the quantum mechani-
cal statep; minimizing the functional

p=>Btr(pH) =Syl p]. )

All analogues of the familiar thermostatistical results known for the gasé are obtained. From

the point of view of Boltzmann—Gibbs statistics, we find qualitative changes onty>¥dr where
“temperatures” inside a certain interval containing O are inaccessible, a fact described in Refs. 3,
and 5. However, the '®-law (i.e., transitivity of thermal equilibriutndoes not hold in this for-
malism.

We point out that Curado and Tsaflisubsequently proposed another formalism where the
standard energy functionalU[p]=tr(pH) is replaced by the non-affine functional
Uglp]=tr(p9H) while keepingSy[ - ] as the entropy. The corresponding non-standard “thermo-
statistics” is studied in Ref. 7 in the same spirit as the present paper. We include here a final
section where we compare both formalisms.

The basic observation for the proofs is an application ofdeids classic inequalities to the
quantity=,p,(e,— €_) wheree_ is the ground-state energy. With'={n:e,>¢€_}, one obtains

1-q

q
(1—q)—1n2/_pﬁs(l—qu(nE/,pn(en—e)) (nZ/«en—e)‘*“q—”
and thus an upper bound & p] in terms of the energy expectation value.

We record here some of the basic properties ofgrentropy. The proofs are written out in
Ref. 8, and are consequences of the fact 8t | is a member of the family of entropy func-
tionals given byp—>tr( f(p)) wheref is a concave function defined on the unit interV&lpe-
cifically

Sq[P]:tr(ﬂq(P)),

with nq(x)z(q—l)*l(x—xq). One hasSy[ p]=0 with equality iff p is pure. In the finite dimen-
sional casédimensiond), S[ - ] is strictly concave and one h&g[ p]<(q— 1)~ (1—d' % with
equality iff p is the normalized trace. In the infinite dimensional case andyfed, Sy -] is
strictly concave and one h&[ p]<(q— 1)L moreoverSy[ - | is Lipschitz in the trace norm. For
0<g<1 and in infinite dimensiorS[ - ] is generically(on a set of second category but the set
where it takes finite values is convex af - | is strictly concave on it.

Il. GENERAL REMARKS

Assume given a selfadjoint operatdron a Hilbert space. In the infinite dimensional case, we
assume thatl is unbounded but its spectrum is purely discrete and consists entirely of eigenvalues
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of finite multiplicity. We enumerate these és,} according to their multiplicities. We write _
(resp.€.) for the minimal(resp. maximalenergy:e_ :=inf,¢,, €, :=sup,€,; and assume the
non-trivial casee _< e, in the finite-dimensional case. The convex set of density operédss
the state space. Thénterna) energy functional idJ[p]=tr(pH). In the unbounded case, the
trace is defined by taking any orthonormal bgslg} of eigenvectors oH when the correspond-
ing sumX e{(¢n,p¥n) is absolutely convergent. With this definition, the §gf of statesp with
finite U[ p] is convex.

For anyu in the intervalZZ=[€_ ,e, ] (but = excluded, in the infinite dimensional case
we consider the entropy as a function of energy given by

Sq(u):= sup{Sy[pl:U[p]=u}, ue#. (4

pelly

We will distinguish the “thermodynamic” functionals, such & - |, defined on the states from
the “thermodynamic” functions, such &, by using square brackets for the arguments of the
former.

Since U[-] is affine, the set of statep e O, with U[p]=u is convex. If
u=Au;+(1—A)u, where <A <1 andu,,u, € 77; then

Sq(U)=sud Sy[Ap1+(1—N)po]:U[p;]=u;,j=1,2
=sugASy[p1]+ (1 —N)Sy[p2]:U[pj]=uj,j =1,2 =ASq(uy) + (1—N)Sy(uy),

so the entropy functio, is concave. lfw is a maximizing state, i.e$;(u) = Sy[ w]<; then it
is unique becausg[ - | is strictly concave, and we denote it ly, .
Consider the Legendre-Fenchel transfornBgfgiven by

¢q(B):= inf {Bu—Sy(u)}, BeR. ©)

ue 7

The functionﬂ»e,B‘lqﬁq(ﬂ) is — in appropriate dimensionless variables — the analogue of the
Helmholtz free-energy of the system. We first remark hais equal to theénfimum over states
of the corresponding free-energy functioi(al:

¢q(B)= inf {BU[p]—Sy[p]}. (6)

pelly

Because the function#B) is strictly convex where it is finite we conclude thapifis a minimizer
of (6) —i.e., dq(B)=BU[p]—Syp], for somes — then it is unique and we denote it lpy; .

From (5) it is clear that¢, is a concave function. Frorf6) and the positivity ofSy[ -] one
concludes that the “free-energy” functioyi?H,B‘quq(ﬂ) is non-decreasing in the intervals
(—=,0) and (0). The inequalityBe.. + ¢4(0)=< ¢q(B8)<pPBe- , where thet+ sign(resp.— sign
applies for negativéresp. positive B, is obtained directly fron{6), for e.. finite respectively.

If, in the infinite dimensional caseH is unbounded abovdresp. below we have
¢q(B) = — for all negative(resp. positive 8. Thus, ifH is unbounded both above and below
then ¢ = —o except at3=0 wheng>1; the “thermostatistics” is empty.

The next question is if the unique minimizer; (resp. maximizero,) is diagonal in an
orthonormal basis diagonalizirtd. Let {,} be such a basis; and define

Iazzn: <‘/’n vp¢n>|‘/’n><‘/’n|-

Thenp is a state andU[p]=U[p]. Moreover, one concludes thsg[f)]zsq[p], since for any
unit vectory in the Hilbert space one hass, p%y)= (i, p)9 if q>1; and{ i, p%)<(i,p )Y if
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0<q<1. This then implies that the minimizéresp. maximizeris indeed diagonal. The reader

will notice that all the above results are quite general since they depend exclusively on the strict
concavity property of the entropy functiondThe problem is now to fing ; andw,, explicitly for

the specific entrop,[ - |. This problem will be solved completely in the following two sections.

Ill. THE FINITE DIMENSIONAL CASE

We distinguish the two cases depending on whethexr below or above 1.

A. 0<g<1

Lett,=(q—1) (e, —e_)"L. Fort in the interval ¢,,>), let B(t) be defined bycompare
with (2)]

B(t):=qtftr{(1+(1—-q)t(H—e_))Ma~by)i-q, @)

Then, B(-) is a strictly increasing and continuous function, with imB(t)=—o and
lim;_.B(t)=0c°. ThusB(-) maps the intervalt(,») one-to-one and ontB. Tsallis'sreciprocal
pseudo-temperatureis given by the map:R—(t,,*) inverse toB(-).

Proposition 1: For0<q<1, with H#c-1 and in finite dimension one has:

1. The maps”Z> u—Sy(u) and R> B— ¢4(B) are strictly concave, differentiable and each
other’s Legendre transforms. One has

1

Sy(ex)= gz (1=, ®)

where g. is the degeneracy of the eigenvalae.

The derivativeR s B— (d¢g)/(dB) (B) =:U(B) of ¢ is strictly decreasing and the inverse
of the derivative of . One haslim,_,..U(B)=¢€=; andlim,_. (dS;)/(du) (u)=Fc°.

2. For each ue 7 there exists a unique maximizer, with S;(u)=S,[w,]. For eachg
€ R there exists a unique equilibrium statg minimizing¢,. One has

©YE) =P Ou=Paw) 9

where 8(u) is determined uniquely by (8(u))=u. One has

U(B)=U[pgl. (10
3. For eachB e R, the unique equilibrium statp, is given by

A+ rB)(H—e MY
PR [+ (1—q)(B) (H—e_ )@ I]

(11)

From the point of view of Boltzmann—Gibbs thermodynamics there are no qualitative changes
whatsoever; these will appear in the other following case.

B. g>1
Forg>1, we define criticah-dependent reciprocal “temperatures” by

qgt ¢ B qg} ¢
= >0; = +-<0;
G-Die—e) 2 Pl -

Be (12)

wheree? is the first energy below the ceiling energy, aidis the first excited state energy. Let
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B 1 _ 1
e ) " gD

An index & denotes the positive part of the indexed operator. Define

[tr{1+(1—q)t(H—e, )Y 11179 for t;<t<0O

otr{@+@—ot(H—e_)Ma=Dyi-a  for o<t<t, (13

B(t)=qt
Then, B(-) is a strictly increasing and continuous function with tlimlﬁ(t)zﬂc_ and
IimHtZ,B(t)=,8c+. Thus B(-) maps the interval t¢,t,) one-to-one and onto/=(S; ,B.).
Tsallis’s reciprocal pseudo-temperatureis given by the map :.7— (t{,t,) inverse tos(-).
Proposition 2: For ¢>1, with H#c-1 and in finite dimension one has:

1. The map7/= u—Sy(u) is strictly concave and differentiable; (8) is satisfied. The rRap
> B—>¢4(B) is concave, and differentiable. Moreover

/35+%(1—g1__q), it p=p;
¢q(ﬂ): 1 ,

B6++m(l—g]j:q), if ,Bgﬁ(?

and ¢, is strictly concave ov= (g, BL). S, and ¢ are each others Legendre transforms, but
Sq(u)=infz. ABU—d4(B)}. The derivative U-) of ¢ is continuous; it satisfies

€_, if B=87

e, it B=<p;’

and is strictly decreasing on7 with inverse given by the derivative ofy S One has
limy_., (dS)/(du) (u)=8; .

2. For each u e 7 there exists a unique maximizer, with S,(u) =Sy w,]. For eachg
€ R there exists a unique equilibrium statg minimizing ¢,. One has

g-'P-, if B=8;
pB_ g;1P+, If Bgﬂc_’

U(B)=[

where P~ is the orthogonal projection onto the eigenspace to the eigenvaluévoreover (9) is
satisfied withB(u) in the closure of7 determined uniquely by (8(u))=u. (10) is satisfied.
3. For each e .7, the unique equilibrium statp is given by

A+(1A-g)n(B)(H—e, )5 Y
tr{(1+(1—a)r(B)(H—e )4 Y]
(+(1—q)7(B)(H—e_))5" Y
tr[A+(1-q)7(B)(H—e_ )9 1]"

for B; <B=<0
pPp= (14

for 0<pB<pB.

SinceU(B) is constant outside the closure of the intervalwe have that the analogue of the
specific heat is zero for all “temperaturesT with [1—q)g% Yq] (e, —€¥)<T<[(q
—1)g% Yq] (e* —€_). These “temperatures” are thus inaccessible. Notice also that the equi-
librium statep ; will be degenerate as soon as the corresponding operator on the right-hand side of
(14) has a non-zero negative part. =0 the equilibrium state is the normalized trace. As we
increase B away from zero (decrease positive “temperaturg”we reach apB; where
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1+(1—q)7(B1) (e, —€_)=0; at this B3, the ceiling state is depopulated and remains so if we
increaseg further. Proceeding, we reach@ such that ¥ (1—q)7(8,)(eX —€_)=0 and the
first de-excited state energy’ is depopulated. Continuing, one depopulates successively from
above the energies, until 8] is reached where only the ground-state energy levels popu-
lated. Decreasingd away from O (increasing negative “temperaturesthe energy levels are
depopulated successively from below until the ceiling energy leyeis reached a3, .

We mention here that fog=2 the “specific heat"C, connected to the second derivative of
bq by Cq=—B?[(d?¢,)/(dB?)1(B) has discontinuities at eagh where a depopulation occurs.
This does not happen whern<g<2.

C. Peierls—Bogoljubov Inequality

In both cases, the equilibrium state; depends continuously o@ and on the Hamiltonian
H specifyingU[ - ]. From this and the concavity of the map»gbgwlﬂl_”Hz)(ﬂ) on the unit
interval for eachB, one obtains the inequality

by V(B)= ¢y 2(B)+Btr(pg ? (Hi—Hy));

which in terms of the free-energi¢™(8)=B"1¢{"(B) is the familiar Peierls—Bogoljubov in-
equality

fy (B)<T 2 (B)+1r(py P (Hi—Hy)),  B>0;

(B =11"2(B) +tr (p'? (H1—Hy),  B<0.

D. Equilibrium ?

We have referred to the unique minimize of the variational problent6) as the equilibrium
state. This is pushing the analogy with statistical mechanics too far because the analogue of the
0'"-Law of Thermodynamics is not satisfied at all! Indeed, if one considers two non-interacting
systems with Hamiltonianld ; andH, respectively, then the composite is described by the Hamil-
tonianH=H,;®I+1®H, on the Hilbert space”,®.7%,. It is clear from Propositions 1 and 2,
that the unique minimizepg*) associated withH is not a product-state, i.e.,

g #(pg)1® (pg")2,
where (- - -); denotes the restriction of the state to fhth subsystemj(=1,2) obtained by taking
the partial trace over the other subsystem. Moreoyéf',)][j * prH,j) for all possibleg’. Thus itis
impossible to assign a “temperature” to the subsystems; and it follows that “equilibrium” defined
via B is not transitive.
The reason behind this feature is the fact that although the internal energy functional is
additive

UM p@e]=Ur[p]+ U2 ¢];
the g-entropy is not

Sqlp® ¢]=S4[p]+ Sel ]+ (1—a)Selp]Sel ¢]-

The variational problen6) for the composite non-interacting system does not “factorize.”
J. Math. Phys., Vol. 37, No. 4, April 1996
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IV. THE INFINITE DIMENSIONAL CASE

We have already commented on the unbounded case. The refifid-8) = ¢ " (8),
obtained directly from(6), shows that it suffices to study the case whdres bounded below but
not above. We assume this, and recall our standing assumption that the spectiuis pdirely
discrete — that is it consists entirely of eigenvalues of finite multiplicities. Theims an eigen-
value, andz=[e_,»). We have remarked before tha(B)= — for all 3<0.

A. 0<g<1

Looking at the corresponding finite dimensional case, the parargtghich gives us the
minimal reciprocal pseudo-temperature is 0. The transformation

B(t):=qtftr{(1+(1-gt(H—e_ )Y@ V}17a >0 (15

is well defined if the trace

> (L+(1-q)t(en—e )@ D (16)

is finite. This imposes a condition on the spectramtice that 1/¢ — 1)<<0). An illustrative
example is the spectruey,=n". If r=1, then(16) is finite for allg € (0,1); if 0<r<1, then(16)
is infinite for allq € (0,1—r] and finite for allg € (1—r,1).

The following result isolates the pertinent spectral conditions and describes their interrela-

tions.
Lemma: Let0<g<1, and H be bounded below with purely discrete spectrum.
One has
(en—e )M D<o (17)
{nien#e_}

if and only if (16) is finite for some>t0; in which case it is finite and continuous for al+0, the
sum converging uniformly in t for any compact subsefGy).
One has

e }(en—f—)q’(“'*l)<OO (18
nie,#e_

if and only if

> (1+(1-q)t(en—e_))¥@D (19

is finite for some *0; in which case it is finite and continuous for alt0, the sum converging
uniformly in t for any compact subset (3,).
Moreover, (18) implies (17).

Remark that wher,=n, (17) is true, but(18) is true if and only if3<q<1.

Proposition 3: Let0<q<1, and H be bounded below with purely discrete spectrum. If (18)
holds theng(-) is well defined by (15), is strictly increasing and continuous, and ntaps)
one-to-one and onto itself. One has

1. The maps gand ¢, on 7Z=[€_,») and (0°), respectively, are strictly concave, differ-

entiable and each other’s Legendre transforms. One hgg §=[1/(q—1)] (1-g*™ 9.
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The derivative {-) of ¢, is continuous, strictly decreasing and the inverse of the deriva-
tive of §,. One haslimg_.U(B)=¢€_, andlim,_ . (dS;/du) (u)=ce.

2. For each u e 7/ there exists a unique maximizer, with S,(u)=Sy[ w,]. For eachg
€ (0,°) there exists a unique equilibrium stapg minimizing ¢,. One haswy s =pg,
and w,=pguy, where g(u) is determined uniquely by (B(u))=u. One has
U(B)=Ulpg].

3.For eachB e (0,»), the unique equilibrium statg, is given by (11) where is the inverse
of the map (15).

If (18) fails to hold, thenp,(B) = —< for all =0; and

(q 1)"Y1-g¥ %,  if u=e_

Sal(W)= if u>e_’

One hasw, =g-'P".

B. g>1

Looking at the corresponding finite dimensional case, we need only the positive kranch
t=0) of the map t—pB(t). The relevant maximal reciprocal pseudo-temperature is
t,=(q—1) (" —e_) "1, and the critical reciprocal “temperature” jSC+=qgl_’qt2. The trans-
formation

BO:=qttr{(1+(1-q)t(H—e_))Z " V}*79,  o<tst, (20)
is always well defined because the operator
A+ (1-gPt(H—€_))e (21

has finite rank for everyt € (0t,]. The trace in(20) is always a finite sum. One has
lim;_oB(t)=0=:8(0), andB(t,) =B, . Here, theeciprocal pseudo-temperaturer is given by
the map or{0,3; ] inverse to the strictly increasing continuous mgg ).
Proposition 4: For ¢>1, and H bounded below with purely discrete spectrum, the operator
(21) has finite rank for eachet (0t,]. One has
1. The map § on #=[e_ ,») s strictly concave and differentiable;
Sq(e-)=[1(g—-1)](1—- g*79). The map¢, on (0,2) is concave, and differentiable.
Moreoverqsq(,B) Be_+[1U(1—q)](1—g* 9 for all B=p; and ¢ is strictly concave
on (0,87). Sy and ¢ are each other’s Legendre transforms, with(&) = meE(OB )
X{Bu d>q(,8)} The derivative -) of qbq is continuous and given by () =e€_ for aII
B=p7 ; itis strictly decreasmg o1§0,8- ] with inverse given by the derivative of SOne
haslim,_,. (d§,/du) (u)= Be .
2. For each u e 7/ there exists a unique maximizer, with §,(u)=Sy[ w,]. For each,B
e (0,°) there exists a unique equilibrium staig m|n|m|2|ng¢q One hagpg=9g_ P~ for
all =B . Moreover w,= Pp),» Where g(u) is determined uniquely in(0,841 by
U(B(u))=u. One has Ypz]=U(B).
3.For eachpB € (0 ,BC) the unique equilibrium statgg is given by

A+ A-g (B (H—e )HTY
PET U@+ (1-q)r(B)(H—e )T 1]

(22

where r is the inverse of the map (20).
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V. PROOFS

Proof of the Lemma: Let a,(t)=1+(1—-q)t(e,—€-) for t>0. One has
a,(t)>(1—qg)t(e,— €_)=0. Forn sufficiently largea,(t)<2(1—q)t(e,— €_). These two facts
are used to prove everything except the uniform convergence and continuity statements. By
computing second derivatives, it is seen that the functiemna,,(t)¥@~1) andt—a,(t)¥@" Y are
convex. If either of the sum§l6) or (19) converge, they are convex and thus continuous in
t>0 as limits of convex functions; moreover, again by convexity, the convergence is uniform on
compact subsets of (@). This implies the continuity. O

The four results are minor variations on a single theme. We first give the proof of the claim
made in point 3. of each result. The key ingredient for this isdeids classic inequality.

Consider the case<0qg<1 of Propositions 1 and 3. For eatke (t,,*), the operator

At)=1+(1-q)t(H—€_) (23

is strictly positive; we writea,(t)=1+(1—q)t(e,—€_). Due to the Lemma, in the infinite
dimensional case conditiof18) implies (17), which implies thatr (A(t)Y9~Y) given by(16) is
finite. Thus(15) is well defined, strictly increasing and continuous. Moreovey ligB(t) =0, and

lim;_ .B(t)=0o.
As commented in the introduction, consideration of the “diagonal” sfateduces the varia-
tion in (6) to states which are diagonal. We have

¢q(B)=Be-—(q—1) '+ inf A[p] where A[p]:=ptr(p(H—€_))+(q—1) ‘tr(p%).

p=p

Let us rewrite the functionah in terms of the reciprocal pseudo-temperature(viaor (15):
Alp]=qt[tr (A()M I )] " %r (p(H—e_))—(1—q) 'tr(p9)

=q(1—q) '[tr(AMMYI ) ULtr (pA(t) — 1] = (1—q) ~'tr(p9).
Restricting to diagongb=p states and applying Haer’'s classic inequality we have

1/q (q—1)/q
tr(pA(t>)=§ pnan(t>>(§ pﬁ) )

2 a(t) ¥y
n

=tr(p%)Yatr (A(t)¥ (@~ Dya-D/q,
When the right-hand side of the inequality is finite, there is equality here if and only if
pd=ca,(t)¥@"D for all n with a positive constant. But tr (A(t)¥((4-1)) is precisely the sum
(19), which by the Lemma is finite whefi8) holds. Thus, under the latter condition, and with the
same condition for equality,
Alpl=q(1—q) 1[tr(A()MI™ )P tr (p®) Ytr (A(H) ¥ 9Py Dia—1]
—(1=q) " 'tr(p9).
With 7:=tr (A() Y@ D)tr (pN) 14, and & =tr (A(t) Y@~ 1) we rewrite this as
Alp]=(1—0q) 'tr(A()a- )~

X[(n=&)qéi™ + &= 79— (1-aq)&—qtr(A() )],
J. Math. Phys., Vol. 37, No. 4, April 1996
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The mapx—g(x)=x9 is strictly concave for 8.q<1 on the positive reals, and has derivative
g’ (xX)=qx9" L. Thus,

(7698 '=(n- 89" () =9g(n) —g(§)=n— &
with equality if and only if = ¢. From this we conclude that
Alp]=—(1—a) 'tr(AMM D)7 (1—a)tr (A YD)+ qtr(A(H) M),

Going through the conditions for equality, we conclude that this bound is attained precisely when
p:tr(A(t)1/(q71))7lA(t)l/(qfl)_

In the casey>1 corresponding to Propositions 2 and 4, we proceed analogously. The recip-
rocal “temperature”B(-) as a function of Tsallis’s reciprocal pseudo-temperatui® given by
(13) and (20). Again, we deal with positive operators. It is clear that in the infinite dimensional
case, our spectral assumption implies that the operl@®rcan have only a finite nhumber of
strictly positive eigenvalues fdrin the interval (O); in fact it has exactly one strictly positive
eigenvaluglnamely 1) for each=t,.

We consider first positive's, and rewrite the variational problem in termsg(t) in the finite
and infinite dimensional cases. With

Alp]=Btr(p(H—€_))+(q—1)"tr(p9),

we haved,(B8)=pBe_—(q— 1)‘1+infp:ﬁ Al p]. Using(13) or (20) also beyond, for all posi-
tive t, we get

Alpl=a(1—a) tr(A Y )] 9tr (pA(t)—1]1—(1—q) tr(p9).

Let R.. be the orthogonal projections onto the subspaces of non-zero eigenvalaés pfand
A(t)g, respectively; these operators being the positive, respectively negative parts of
A(t)=A(t)3—A(t)s. Put R=1-R,.—R_. For p=p we have p=p,+p_+RpR, where
p+=R.pR. . Moreover p9=pd +p9+(RpR)9, andtr(pA(t))=tr(p A(t)s)—tr(p_A(t)s).

We can now write

Alpl=A"[p ]+ A [p-]+(a—1) " Hr(RpR)Y),
with
A[pi]=a(g—1) tr(AM ) L-tr(p A(t) o)1+ (g —1) " Mtr(pd);
A [p-1=a(a—1) "tr(AME T %r (p_A(t)o)+(ad—1) *tr(p?).

Now, A "[p_]=0 with equality if and only ifp_=0; and alsatr ((RpR)9)=0 with equality if
and only ifRp=pR=RpR=0. Thus,

inf A[p]= inf  A*[p].

p=p {p=pp=p4}

Letting K={n:a,(t)>0}, and applying Htwer's inequality withp=p, we get

nekK

(a—1)/q
2 an(t)q/(q—l))

1/q
tr(pA<t>@)=nEK pnanms(nEK pﬂ)

=tl’(pq)llqtr(A(t)g(q_l))(q_l)/q;
J. Math. Phys., Vol. 37, No. 4, April 1996
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there being equality if and only fd=ca,(t)¥(~ D for alln e K with a positive constarg. With
the same condition for equality, we then have fotp ,

Alp]=A*[p]=(q—1) " tr(pH+a(q—1) [tr(A()HI )]t
X[1—tr(p%)Yatr (A(t) Y@~ D)ya-Diay,
With 7:=tr (A(t) Y@ Dytr (p9 ¥, and & =tr (A(t)¥ @)Y we rewrite this as
Alpl=A"[p]=(a=1) Hr (AT )7
X[(E= Mt = €04 7+ (1= e+ atr(AE T )],

The mapx—h(x)=x% is strictly convex forq>1 on the positive reals, and has derivative
h'(x)=qgx3" . Thus,

(7= e =(n= ' (&)<h(n)—h(&)=nI- ¢

with equality if and only if = ¢&. From this we conclude that

Alp]=A"[p]
=(a= 1) HrAOF T TA-ar AOTT)+atrAn ).

Going through the conditions for equality, we conclude that this bound is attained precisely when
p=tr(A(t)YO ) =1a1)Y@"D Wwe notice that fot=t,, we getA(t), =P~ whereP~ is the
spectral projection o onto the eigensubspace to the ground state energyThus, fort=t, or
equivalentlyg=pg; , we havep,g=g:1P* whereg_=tr(P™) is the multiplicity ofe_ .

We now consider the case of negativ@in the finite dimensional case whep>1 (Proposi-
tion 2). With

Alp]=Btr(p(H—e€,))+(q—1)"tr(p9),

we havepq(B8)=pBe, —(q— 1) 1+ inf,—; A[p]. Using(13) also beyond, for all negativet, we
get

Alpl=a(1—q) tr(B(t)¥ )] tr (pB(1))—1]—(1—q) tr(pY),

whereB(t)=1+(1—q)t(H—€.). We can now repeat the argument of the previous case replac-
ing A(t) by B(t) to get that the infimum is attained precisely when
p=tr(B(t)Ya )~1g(t)¥@=1) Again, fort<t,, we haveB(t),=P* whereP" is the projec-
tion onto the eigenspace to the ceiling eneegyetc.

The reader may have noticed that by invoking the non-commutative versions |dérfso
inequalities, one can avoid the introduction of the diagonal gtate

This completes the proof of the claims made in point 3 of each result. ForteaaB) in the
appropriate case-dependent domain, we have found the unique minpgizers ) .

We now turn to the differentiability and strict concavity ¢f,. We first remark that if
U[pﬁo] is finite, then it is a subdifferential fop, at 3, . Indeed,

d)q(ﬁo) + (B_IBO)U[pBO] = ﬂou[pﬁo] - Sq[pﬁo] + (B_IBO)U[pBO]

=BUqlpp 1= S4lpp,1= dq(B).

It follows that if 8,= 3, then
J. Math. Phys., Vol. 37, No. 4, April 1996
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(B2=B)Ulpp, 1= dq(B2) = bq(B1)=(B2— B1)ULpg,] (24

so the mapB—U[ pg] is non-increasing.

In the finite dimensional casd[ p,] is clearly finite. Wherg>1 in the infinite dimensional
case,pg is degenerate and has a finite number of non-zero eigenvalues, soHgaihis finite.
When 0<g< 1 and in infinite dimension, conditiof18) implies that

tr(AMMIVH) =X eqan ()M (25)

is also finite and a continuous function of>0. To see this, notice first that
tr (A YO DH)=tr (A(t) YO D(H—e_))+ e_tr (A(t) Y@ D). Now

tr(AMID(H=€ )= (e,— € )ay(t)Ha-D; (26)

buta,(t)>(1—q)t(e,—€_), so that €,— e_)a, (1) V< ((1—q)t)Y@D(e,— e_)¥@ D and
(18) implies that(26) is convergent, and as a limit of sums of convex functions it is convex and
thus continuous.

One can now verify that the ma@—U[ pz]=U(B) is continuous sinc@(-) is continuous.
This is immediate in the finite dimensional case or in the infinite dimensional case quh&n
sinceU is a finite sum of continuous functions. Fox@<1 we have just established the conti-
nuity of t—tr (A(t) Y@ DH),

From the continuity olJ and(24), one concludes thap, is differentiable and its derivative
isU.

Suppose thaB,> g, and U[pﬁl]=U[p50], so thatU is not strictly decreasing. It follows
from the non-increasing property dfi that U(8)=U[pgl=U[pg ] , and from (24), that
$q(B)= bq(Bo) +(B—Bo)Ulpg 1, for all B e [Bo,B1]. But thenBU[pg]—Sylpgl= ¢q(B)
=dq(Bo) + (B_ﬁo)u[pﬂo] :BOU[PBO] - Sq[P,BO] + (B_ﬁo)u[pﬂo] :BU[PEO] - Sq[Pﬁo]a and
unigueness of the minimizer implie,sﬁzpﬁo. This provides us with a criterion for the strict
decrease ob or equivalently the strict concavity ab,, which can be thus checked in terms of
the minimizers. This we use to prove the corresponding claims of point 1 in each result.

For eachu in the interior of 7/ there is a uniqueg € (B8~ ,8") such thatU(3)=u. When
€. is finite, it can be checked that(8*) = e~ . Thus for each possible finite energy valuéhere
is a uniqueB= B(u) with U(B)=u.

Consider the Legendre—Fenchel transfapfi(u) =infs_g{Bu— ¢q(B)} of ¢q; foru e %
this definition implies thaSq(u)s¢g(u). But for given finiteu € 7 there is a uniqued(u)
such that pgyy is a minimizer of (3) and U[pgyl=u; thus Sy pgu)l=Sy(u)
< ¢ (U) = B(U)u— bq(B(U))=B(UIU~ B(U)UL psuy]+ Sol Py ] = Sel pwy]- It Tollows that
% (U)=Sq(u) = S B(U)], andp (= wy.

Once we know thatp, is differentiable and strictly concave oB{,3") — with the appro-
priate 5~ — we get the rest of the claims of points 1 and 2 from general results on the theory of
convex/concave functions as developed in sections 12, 25 and 26 of Ref. 11; or from straightfor-
ward computations.

What remains, is the proof of the claims of the second part of Proposition 3. Assuming that
(18) fails, that is S - j(en—e )V D=cc, we first show that ife_<u<e* then
S,(u) =c0. To do this we construct for a given arbitrary positive rBala diagonal statg such
thattr(pH)=u andSy[p]=R. Letg=g_ be the multiplicity of the ground-state energy and
enumerate theey’s such thate=e_ for j=1,2,...,g. For any integerN=g+1, let
B(N)=20_g:1(€n— €)@ 1); and

J. Math. Phys., Vol. 37, No. 4, April 1996
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(1-A(N))g, if 1<n<g
M= (u—e_)B(N) Ye,—e)Ma7D if g+l<n<N’

where A(N)=(u—e_)B(N) 'S, ;(en—e_)"97Y. From the inequalityu—e_<(e,—€_)

for eachn=g+1, we conclude that\ (N)<1. Thus\,(N) lies in (0,1), andEr’}'zl)\n(N)=1.

Moreover,ELl)\n(N)(en— €_)=u—e_. Thus the degenerate diagonal statBl) with non-zero
eigenvalues\ ,(N), satisfiestr (p(N)H)=u. But

g N
Sip(N)1=(q—1) " *+(1-q) ¢ gl mm%éﬂ An(N)S

N
>(o|—1)—1+(1—0|>—1n:§+1 An(N)®

=(q—1)""+(1—q) Hu—e)IB(N)* 9.

Since limy_,..B(N)=c we can choosé\ sufficiently large so thag;[p(N)] is as large as we
want, proving the claim. If nowi=€* then there exists; € (e_,e*) andt € (0,1) such that
u=tu;+(1-t)u,. By concavity ofS; we then haveS,(u)=tSy(u;)+(1—t)Sy(uy) so that
Sy(u) =0 since Sy(u;) ==. It then follows directly from(5) that ¢4(8)=— for all 8 € R.
Finally, by the variational principldJ[p]=€_ if and only if pP~ = p whereP ™ is the projection
onto the eigenspace of the ground-state energy. It is then clear that the stdatepP ™ =p and
maximal entropy is the equipartitiong_'P~ of pure ground states withg-entropy

(q—1)"Y(1-g~ 9.
VI. COMPARISON WITH THE NON-STANDARD FORMALISM

If the reader allows us to refer to the formalism studied here as the standard one, by the
non-standard formalism we mean the one based on the energy-functional

Uglpl=tr(p%H)

and the entropys,[ - |, as proposed in Ref. 6. Notice thdt| - | is not affine. Moreover, adding a
constantc to the HamiltonianUE”(p):Ug(p)+ctr(pq). The thermostatistics obtained will
depend on the choice of the zero of energy. Despite these unusual features, the entropy function
S, — defined by(4) with U[ -] replaced byU [ -] — is concave inu, and one can recover a
complete “thermostatistics’{without 0'"-law). The detailed analysis is given in Ref. 7. In the
standard formalism the parametrizationggf in terms of 3 is not explicit since one has to invert

the mapt— B(t) to find the reciprocal pseudo-temperatureas a function of3. In the non-
standard version, the “equilibrium” state is parametrized directly and explicitly3byrhe for-

mula for the non-standargl, is obtained(formally) by replacing (+q)7(8) by (q—1)8 in the
standard formula. The basic features of the non-standard thermostatics are qualitatively the same
as those described here, after interchanging-1" with “ q<<1". For q<1, there are inacces-

sible temperatures and the depopulation mechanism operates to produce a deggnerate
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