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We report results on the quantum thermal statisticsà la Gibbs–Shannon–Szilard–
Jaynes based onq-entropiesSq@r#5(q21)21

„12tr (rq)… (0,q Þ 1) and the in-
ternal energy functionalU@r#5tr (rH) proposed by C. Tsallis@J. Stat. Phys.52,
479–487~1988!#. © 1996 American Institute of Physics.
@S0022-2488~96!01303-5#

I. INTRODUCTION

For a discrete probability distributionr5(r1 ,r2 ,•••), with rn>0, and(nrn51, consider

Sq@r#5~q21!21S 12(
n

rn
qD ,

whereq is a positive real number distinct from 1.Sq@•# was introduced, with a different prefactor,
by Z. Daróczy1 who obtained the basic properties and gave an axiomatic characterization. One
sees easily that limq→1Sq@r#52(nrn ln(rn), the well-known Boltzmann–Shannon entropy. The
quantum mechanical version

Sq@r#5~q21!21
„12tr ~rq!…, ~1!

of theq-entropy appears on p. 247 of Wehrl’s review.2

The monoparametric family of entropiesSq@•# reappears in a paper by Tsallis,3 who proposed
a generalization of standard statistics obtained by maximizing theq-entropy at fixed internal
energy given by(nrnen . This formalism has been applied to self-gravitating systems,4 and leads
to a phase-space distribution with finite associated mass in contradistinction to the results obtained
using the standard statistico-mechanical formalism which lead to an infinite mass. ‘‘Specific heat’’
calculations for the harmonic oscillator using this scheme are given in Ref. 5.

In order to solve the basic problem of maximizingSq@•# at fixed internal energy, Tsallis3

introduced the function

Sq@r#1a(
n

rn2at~q21!(
n

enrn

and after a standard variation obtains the equation

rn
q215

q21

q
a@11t~12q!en#.

The left-hand side must be a non-negative number. If for a givent all the brackets on the
right-hand side are non-zero and have the same sign we get a solution, after determininga by the
normalization condition
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rn5F(
n
„11~12q!ten…

1/~q21!G21

„11~12q!ten)
1/~q21!.

The distribution will be non-degenerate:rn.0 for all n. When the brackets on the right-hand side
do not all have the same sign or some are zero, the distribution must be degenerate; it must lie in
a face of the simplex of probability distributions. One has to determine the appropriate range for
t. Although t provides a convenient and explicit parametrization of the distribution with minimal
free energy, it is not the reciprocal temperature associated to the problem. The reciprocal tempera-
ture is given byat(q21), which reads (H is the Hamiltonian operator with spectrum$en%):

b~ t !:5qt@ tr $„11~12q!tH…1/~q21!%#12q. ~2!

The results presented here determine the range of the reciprocal pseudo-temperaturet and the
connection with the reciprocal temperatureb; they also describe precisely the quantum mechani-
cal staterb minimizing the functional

r°btr ~rH !2Sq@r#. ~3!

All analogues of the familiar thermostatistical results known for the caseq51 are obtained. From
the point of view of Boltzmann–Gibbs statistics, we find qualitative changes only forq.1 where
‘‘temperatures’’ inside a certain interval containing 0 are inaccessible, a fact described in Refs. 3,
and 5. However, the 0th-law ~i.e., transitivity of thermal equilibrium! does not hold in this for-
malism.

We point out that Curado and Tsallis6 subsequently proposed another formalism where the
standard energy functionalU@r#5tr (rH) is replaced by the non-affine functional
Uq@r#5tr (rqH) while keepingSq@•# as the entropy. The corresponding non-standard ‘‘thermo-
statistics’’ is studied in Ref. 7 in the same spirit as the present paper. We include here a final
section where we compare both formalisms.

The basic observation for the proofs is an application of Ho¨lder’s classic inequalities to the
quantity(nrn(en2e2) wheree2 is the ground-state energy. WithN 5$n:en.e2%, one obtains

~12q!21 (
nPN

rn
q<~12q!21S (

nPN

rn~en2e2! D qS (
nPN

~en2e2!q/~q21!D 12q

and thus an upper bound onSq@r# in terms of the energy expectation value.
We record here some of the basic properties of theq-entropy. The proofs are written out in

Ref. 8, and are consequences of the fact thatSq@•# is a member of the family of entropy func-
tionals given byr°tr „ f (r)… where f is a concave function defined on the unit interval.9 Spe-
cifically

Sq@r#5tr „hq~r!…,

with hq(x)5(q21)21(x2xq). One hasSq@r#>0 with equality iff r is pure. In the finite dimen-
sional case~dimensiond), Sq@•# is strictly concave and one hasSq@r#<(q21)21(12d12q) with
equality iff r is the normalized trace. In the infinite dimensional case and forq.1, Sq@•# is
strictly concave and one hasSq@r#,(q21)21; moreoverSq@•# is Lipschitz in the trace norm. For
0,q,1 and in infinite dimension,Sq@•# is generically~on a set of second category! ` but the set
where it takes finite values is convex andSq@•# is strictly concave on it.

II. GENERAL REMARKS

Assume given a selfadjoint operatorH on a Hilbert space. In the infinite dimensional case, we
assume thatH is unbounded but its spectrum is purely discrete and consists entirely of eigenvalues
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of finite multiplicity. We enumerate these as$en% according to their multiplicities. We writee2

~resp.e1) for the minimal~resp. maximal! energy:e2 :5 infnen , e1 :5supnen ; and assume the
non-trivial casee2,e1 in the finite-dimensional case. The convex set of density operatorsV is
the state space. The~internal! energy functional isU@r#5tr (rH). In the unbounded case, the
trace is defined by taking any orthonormal basis$cn% of eigenvectors ofH when the correspond-
ing sum(nen^cn ,rcn& is absolutely convergent. With this definition, the setVo of statesr with
finite U@r# is convex.

For anyu in the intervalU5@e2 ,e1# ~but 6` excluded, in the infinite dimensional case!,
we consider the entropy as a function of energy given by

Sq~u!:5 sup
rPVo

$Sq@r#:U@r#5u%, uPU. ~4!

We will distinguish the ‘‘thermodynamic’’ functionals, such asSq@•#, defined on the states from
the ‘‘thermodynamic’’ functions, such asSq , by using square brackets for the arguments of the
former.

Since U@•# is affine, the set of statesr P Vo with U@r#5u is convex. If
u5lu11(12l)u2 where 0,l,1 andu1 ,u2 P U; then

Sq~u!>sup$Sq@lr11~12l!r2#:U@r j #5uj , j51,2%

>sup$lSq@r1#1~12l!Sq@r2#:U@r j #5uj , j51,2%5lSq~u1!1~12l!Sq~u2!,

so the entropy functionSq is concave. Ifv is a maximizing state, i.e.,Sq(u)5Sq@v#,`; then it
is unique becauseSq@•# is strictly concave, and we denote it byvu .

Consider the Legendre-Fenchel transform ofSq given by

fq~b!:5 inf
uPU

$bu2Sq~u!%, bPR. ~5!

The functionb°b21fq(b) is — in appropriate dimensionless variables — the analogue of the
Helmholtz free-energy of the system. We first remark thatfq is equal to theinfimum over states
of the corresponding free-energy functional~3!:

fq~b!5 inf
rPVo

$bU@r#2Sq@r#%. ~6!

Because the functional~3! is strictly convex where it is finite we conclude that ifr is a minimizer
of ~6! — i.e.,fq(b)5bU@r#2Sq@r#, for someb — then it is unique and we denote it byrb .

From ~5! it is clear thatfq is a concave function. From~6! and the positivity ofSq@•# one
concludes that the ‘‘free-energy’’ functionb°b21fq(b) is non-decreasing in the intervals
(2`,0) and (0,̀ ). The inequalitybe61fq(0)<fq(b)<be6 , where the1 sign~resp.2 sign!
applies for negative~resp. positive! b, is obtained directly from~6!, for e6 finite respectively.

If, in the infinite dimensional case,H is unbounded above~resp. below! we have
fq(b)52` for all negative~resp. positive! b. Thus, ifH is unbounded both above and below
thenfq[2` except atb50 whenq.1; the ‘‘thermostatistics’’ is empty.

The next question is if the unique minimizerrb ~resp. maximizervu) is diagonal in an
orthonormal basis diagonalizingH. Let $cn% be such a basis; and define

r̂5(
n

^cn ,rcn&ucn&^cnu.

Then r̂ is a state andU@r#5U@ r̂#. Moreover, one concludes thatSq@ r̂#>Sq@r#, since for any
unit vectorc in the Hilbert space one has^c,rqc&>^c,rc&q if q.1; and^c,rqc&<^c,rc&q if
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0,q,1. This then implies that the minimizer~resp. maximizer! is indeed diagonal. The reader
will notice that all the above results are quite general since they depend exclusively on the strict
concavity property of the entropy functional.10 The problem is now to findrb andvu explicitly for
the specific entropySq@•#. This problem will be solved completely in the following two sections.

III. THE FINITE DIMENSIONAL CASE

We distinguish the two cases depending on whetherq is below or above 1.

A. 0<q<1

Let to5(q21)21(e12e2)
21. For t in the interval (to ,`), let b(t) be defined by@compare

with ~2!#

b~ t !:5qt@ tr $„11~12q!t~H2e2!…1/~q21!%#12q. ~7!

Then, b(•) is a strictly increasing and continuous function, with limt→to
b(t)52` and

limt→`b(t)5`. Thusb(•) maps the interval (to ,`) one-to-one and ontoR. Tsallis’sreciprocal
pseudo-temperatureis given by the mapt:R→(to ,`) inverse tob(•).

Proposition 1: For0,q,1, with HÞc•1 and in finite dimension one has:
1. The mapsU{u°Sq(u) andR{b°fq(b) are strictly concave, differentiable and each

other’s Legendre transforms. One has

Sq~e6!5
1

q21
~12g6

12q!, ~8!

where g6 is the degeneracy of the eigenvaluee6 .
The derivativeR{b° (dfq)/(db) (b)5:U(b) of fq is strictly decreasing and the inverse

of the derivative of Sq . One haslimb→6`U(b)5e7 ; and limu→e6
(dSq)/(du) (u)57`.

2. For each uPU there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb
PR there exists a unique equilibrium staterb minimizingfq . One has

vU~b!5rb , vu5rb~u! ~9!

whereb(u) is determined uniquely by U„b(u)…5u. One has

U~b!5U@rb#. ~10!
3. For eachbPR, the unique equilibrium staterb is given by

rb5
„11~12q!t~b!~H2e2!…1/~q21!

tr @„11~12q!t~b!~H2e2!…1/~q21!#
. ~11!

From the point of view of Boltzmann–Gibbs thermodynamics there are no qualitative changes
whatsoever; these will appear in the other following case.

B. q>1

For q.1, we define criticalq-dependent reciprocal ‘‘temperatures’’ by

bc
15

qg2
12q

~q21!~e2* 2e2!
.0; bc

25
qg1

12q

~12q!~e12e1* !
,0; ~12!

wheree1* is the first energy below the ceiling energy, ande2* is the first excited state energy. Let
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t15
1

~12q!~e12e1* !
,0, t25

1

~q21!~e2* 2e2!
.0.

An index % denotes the positive part of the indexed operator. Define

b~ t !5qt•H @ tr $„11~12q!t~H2e1!…%

1/~q21!%#12q, for t1,t<0

@ tr $„11~12q!t~H2e2!…%

1/~q21!%#12q, for 0<t,t2
. ~13!

Then, b(•) is a strictly increasing and continuous function with limt→t1
b(t)5bc

2 and

limt→t2
b(t)5bc

1 . Thus b(•) maps the interval (t1 ,t2) one-to-one and ontoI[(bc
2 ,bc

1).
Tsallis’s reciprocal pseudo-temperatureis given by the mapt :I→(t1 ,t2) inverse tob(•).

Proposition 2: For q.1, with HÞc•1 and in finite dimension one has:
1. The mapU{u°Sq(u) is strictly concave and differentiable; (8) is satisfied. The mapR

{b°fq(b) is concave, and differentiable. Moreover

fq~b!5H be21
1

12q
~12g2

12q!, if b>bc
1

be11
1

12q
~12g1

12q!, if b<bc
2

;

andfq is strictly concave onI[(bc
2 ,bc

1). Sq andfq are each others Legendre transforms, but
Sq(u)5 infbPI $bu2fq(b)%. The derivative U(•) of fq is continuous; it satisfies

U~b!5H e2, if b>bc
1

e1, if b<bc
2;

and is strictly decreasing onI with inverse given by the derivative of Sq . One has
limu→e6

(dSq)/(du) (u)5bc
7 .

2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb
PR there exists a unique equilibrium staterb minimizingfq . One has

rb5H g2
21P2, if b>bc

1

g1
21P1, if b<bc

2,

where P6 is the orthogonal projection onto the eigenspace to the eigenvaluee6 . Moreover (9) is
satisfied withb(u) in the closure ofI determined uniquely by U„b(u)…5u. (10) is satisfied.

3. For eachbPI , the unique equilibrium staterb is given by

rb55
„11~12q!t~b!~H2e1!…%

1/~q21!

tr @„11~12q!t~b!~H2e1!…%

1/~q21!#
, for bc

2,b<0

„1~12q!t~b!~H2e2!…%

1/~q21!

tr @„11~12q!t~b!~H2e2!…%

1/~q21!#
, for 0<b,bc

1

. ~14!

SinceU(b) is constant outside the closure of the intervalI , we have that the analogue of the
specific heat is zero for all ‘‘temperatures’’T with @12q)g1

q21/q] ( e12e1* ),T,@(q
21)g2

q21/q] ( e2* 2e2). These ‘‘temperatures’’ are thus inaccessible. Notice also that the equi-
librium staterb will be degenerate as soon as the corresponding operator on the right-hand side of
~14! has a non-zero negative part. Atb50 the equilibrium state is the normalized trace. As we
increase b away from zero ~decrease positive ‘‘temperature’’! we reach a b1 where
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11(12q)t(b1)(e12e2)50; at thisb1 the ceiling state is depopulated and remains so if we
increaseb further. Proceeding, we reach ab2 such that 11(12q)t(b2)(e1* 2e2)50 and the
first de-excited state energye1* is depopulated. Continuing, one depopulates successively from
above the energiesen until bc

1 is reached where only the ground-state energy levele2 is popu-
lated. Decreasingb away from 0 ~increasing negative ‘‘temperatures’’! the energy levels are
depopulated successively from below until the ceiling energy levele1 is reached atbc

2 .
We mention here that forq>2 the ‘‘specific heat’’Cq connected to the second derivative of

fq by Cq52b2@(d2fq)/(db2)#(b) has discontinuities at eachb where a depopulation occurs.
This does not happen when 1,q,2.

C. Peierls–Bogoljubov Inequality

In both cases, the equilibrium staterb depends continuously onb and on the Hamiltonian
H specifyingU@•#. From this and the concavity of the mapl°fq

„lH11(12l)H2…(b) on the unit
interval for eachb, one obtains the inequality

fq
~H1!

~b!<fq
~H2!

~b!1btr „rb
~H2!

~H12H2!…;

which in terms of the free-energyf q
(H)(b)5b21fq

(H)(b) is the familiar Peierls–Bogoljubov in-
equality

f q
~H1!

~b!< f q
~H2!

~b!1tr „rb
~H2!

~H12H2!…, b.0;

f q
~H1!

~b!> f q
~H2!

~b!1tr „rb
~H2!

~H12H2!…, b,0.

D. Equilibrium ?

We have referred to the unique minimizerrb of the variational problem~6! as the equilibrium
state. This is pushing the analogy with statistical mechanics too far because the analogue of the
0th-Law of Thermodynamics is not satisfied at all! Indeed, if one considers two non-interacting
systems with HamiltoniansH1 andH2 respectively, then the composite is described by the Hamil-
tonianH5H1^ I1I^H2 on the Hilbert spaceH1^H2 . It is clear from Propositions 1 and 2,
that the unique minimizerrb

(H) associated withH is not a product-state, i.e.,

rb
~H !Þ~rb

~H !!1^ ~rb
~H !!2 ,

where (•••) j denotes the restriction of the state to thej -th subsystem (j51,2) obtained by taking

the partial trace over the other subsystem. Moreover, (rb
(H)) j Þ r

b8

(Hj ) for all possibleb8. Thus it is
impossible to assign a ‘‘temperature’’ to the subsystems; and it follows that ‘‘equilibrium’’ defined
via b is not transitive.

The reason behind this feature is the fact that although the internal energy functional is
additive

U ~H !@r ^ w#5U ~H1!@r#1U ~H2!@w#;

theq-entropy is not

Sq@r ^ w#5Sq@r#1Sq@w#1~12q!Sq@r#Sq@w#.

The variational problem~6! for the composite non-interacting system does not ‘‘factorize.’’
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IV. THE INFINITE DIMENSIONAL CASE

We have already commented on the unbounded case. The relationfq
(H)(2b)5fq

(2H)(b),
obtained directly from~6!, shows that it suffices to study the case whereH is bounded below but
not above. We assume this, and recall our standing assumption that the spectrum ofH is purely
discrete — that is it consists entirely of eigenvalues of finite multiplicities. Thene2 is an eigen-
value, andU5@e2 ,`). We have remarked before thatfq(b)52` for all b,0.

A. 0<q<1

Looking at the corresponding finite dimensional case, the parameterto which gives us the
minimal reciprocal pseudo-temperature is 0. The transformation

b~ t !:5qt@ tr $„11~12q!t~H2e2!…1/~q21!%#12q, t. 0 ~15!

is well defined if the trace

(
n
„11~12q!t~en2e2!…1/~q21! ~16!

is finite. This imposes a condition on the spectrum~notice that 1/(q 2 1),0). An illustrative
example is the spectrumen5nr . If r>1, then~16! is finite for allq P (0,1); if 0,r,1, then~16!
is infinite for allq P (0,12r # and finite for allq P (12r ,1).

The following result isolates the pertinent spectral conditions and describes their interrela-
tions.

Lemma: Let0,q,1, and H be bounded below with purely discrete spectrum.
One has

(
$n:enÞe2%

~en2e2!1/~q21!,` ~17!

if and only if (16) is finite for some t.0; in which case it is finite and continuous for all t.0, the
sum converging uniformly in t for any compact subset of(0,̀ ).

One has

(
$n:enÞe2%

~en2e2!q/~q21!,` ~18!

if and only if

(
n
„11~12q!t~en2e2!…q/~q21! ~19!

is finite for some t.0; in which case it is finite and continuous for all t.0, the sum converging
uniformly in t for any compact subset of(0,̀ ).

Moreover, (18) implies (17).

Remark that whenen5n, ~17! is true, but~18! is true if and only if 12,q,1.
Proposition 3: Let0,q,1, and H be bounded below with purely discrete spectrum. If (18)

holds thenb(•) is well defined by (15), is strictly increasing and continuous, and maps(0,̀ )
one-to-one and onto itself. One has

1. The maps Sq andfq onU5@e2 ,`) and (0,̀ ), respectively, are strictly concave, differ-
entiable and each other’s Legendre transforms. One has Sq(e2)5@1/(q21)# (12g2

12q).
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The derivative U(•) of fq is continuous, strictly decreasing and the inverse of the deriva-
tive of Sq . One haslimb→`U(b)5e2 , and limu→e2

(dSq /du) (u)5`.
2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb

P (0,̀ ) there exists a unique equilibrium staterb minimizingfq . One hasvU(b)5rb ,
and vu5rb(u) , where b(u) is determined uniquely by U„b(u)…5u. One has
U(b)5U@rb#.

3.For eachb P (0,̀ ), the unique equilibrium staterb is given by (11) wheret is the inverse
of the map (15).

If (18) fails to hold, thenfq(b)52` for all b>0; and

Sq~u!5H ~q21!21~12g2
12q!, if u5e2

`, if u.e2

.

One hasve2
5g2

21P2.

B. q>1

Looking at the corresponding finite dimensional case, we need only the positive branch~i.e.,
t>0) of the map t°b(t). The relevant maximal reciprocal pseudo-temperature is
t25(q21)21(e2* 2e2)

21, and the critical reciprocal ‘‘temperature’’ isbc
15qg2

12qt2 . The trans-
formation

b~ t !:5qt@ tr $„11~12q!t~H2e2!…%

1/~q21!%#12q, 0,t<t2 ~20!

is always well defined because the operator

„11~12q!t~H2e2!…% ~21!

has finite rank for everyt P (0,t2#. The trace in~20! is always a finite sum. One has
limt→0b(t)505:b(0), andb(t2)5bc

1 . Here, thereciprocal pseudo-temperaturet is given by
the map on@0,bc

1# inverse to the strictly increasing continuous mapb(•).
Proposition 4: For q.1, and H bounded below with purely discrete spectrum, the operator

(21) has finite rank for each tP(0,t2#. One has
1. The map Sq on U5@e2 ,`) is strictly concave and differentiable;

Sq(e2)5 @1/(q21)# (12g2
12q). The mapfq on (0,̀ ) is concave, and differentiable.

Moreoverfq(b)5be21 @1/(12q)# (12g2
12q) for all b>bc

1 andfq is strictly concave
on (0,bc

1). Sq and fq are each other’s Legendre transforms, with Sq(u)5 infbP(0,b
c
1)

3$bu2fq(b)%. The derivative U(•) of fq is continuous and given by U(b)5e2 for all
b>bc

1 ; it is strictly decreasing on(0,bc
1# with inverse given by the derivative of Sq . One

has limu→e2
(dSq /du) (u)5bc

1 .
2. For each uP U there exists a unique maximizervu with Sq(u)5Sq@vu#. For eachb

P (0,̀ ) there exists a unique equilibrium staterb minimizingfq . One hasrb5g2
21P2 for

all b>bc
1 . Moreover vu5rb(u) , where b(u) is determined uniquely in(0,bc

1# by
U„b(u)…5u. One has U@rb#5U(b).

3. For eachb P (0,bc
1), the unique equilibrium staterb is given by

rb5
„11~12q!t~b!~H2e2!…%

1/~q21!

tr @„11~12q!t~b!~H2e2!…%

1/~q21!#
~22!

wheret is the inverse of the map (20).
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V. PROOFS

Proof of the Lemma: Let an(t)511(12q)t(en2e2) for t.0. One has
an(t).(12q)t(en2e2)>0. Forn sufficiently large,an(t)<2(12q)t(en2e2). These two facts
are used to prove everything except the uniform convergence and continuity statements. By
computing second derivatives, it is seen that the functionst°an(t)

1/(q21) andt°an(t)
q/(q21) are

convex. If either of the sums~16! or ~19! converge, they are convex and thus continuous in
t.0 as limits of convex functions; moreover, again by convexity, the convergence is uniform on
compact subsets of (0,`). This implies the continuity. h

The four results are minor variations on a single theme. We first give the proof of the claim
made in point 3. of each result. The key ingredient for this is Ho¨lder’s classic inequality.

Consider the case 0,q,1 of Propositions 1 and 3. For eacht P (to ,`), the operator

A~ t !511~12q!t~H2e2! ~23!

is strictly positive; we writean(t)511(12q)t(en2e2). Due to the Lemma, in the infinite
dimensional case condition~18! implies ~17!, which implies thattr (A(t)1/(q21)) given by~16! is
finite. Thus~15! is well defined, strictly increasing and continuous. Moreover limt→0b(t)50, and
limt→`b(t)5`.

As commented in the introduction, consideration of the ‘‘diagonal’’ stater̂ reduces the varia-
tion in ~6! to states which are diagonal. We have

fq~b!5be22~q21!211 inf
r5 r̂

L@r# where L@r#:5btr „r~H2e2!…1~q21!21tr ~rq!.

Let us rewrite the functionalL in terms of the reciprocal pseudo-temperature via~7! or ~15!:

L@r#5qt@ tr „A~ t !1/~q21!
…#12qtr „r~H2e2!…2~12q!21tr ~rq!

5q~12q!21@ tr „A~ t !1/~q21!
…#12q@ tr „rA~ t !…21#2~12q!21tr ~rq!.

Restricting to diagonalr5 r̂ states and applying Ho¨lder’s classic inequality we have

tr „rA~ t !…5(
n

rnan~ t !>S (
n

rn
qD 1/qS (

n
an~ t !

q/~q21!D ~q21!/q

5tr ~rq!1/qtr „A~ t !q/~q21!
…

~q21!/q.

When the right-hand side of the inequality is finite, there is equality here if and only if
rn
q5can(t)

q/(q21) for all n with a positive constantc. But tr „A(t)q/((q21)
… is precisely the sum

~19!, which by the Lemma is finite when~18! holds. Thus, under the latter condition, and with the
same condition for equality,

L@r#>q~12q!21@ tr „A~ t !1/~q21!
…#12q@ tr ~rq!1/qtr „A~ t !q/~q21!

…

~q21!/q21#

2~12q!21tr ~rq!.

With h:5tr „A(t)1/(q21)
…tr (rq)1/q, andj:5tr „A(t)q/(q21)

…

1/q we rewrite this as

L@r#>~12q!21tr „A~ t !1/~q21!
…

2q

3@~h2j!qjq211jq2hq2~12q!jq2qtr„A~ t !1/~q21!
…#.

1784 G. R. Guerberoff and G. A. Raggio: Standard q-statistics

J. Math. Phys., Vol. 37, No. 4, April 1996

Downloaded¬30¬Aug¬2004¬to¬192.107.75.159.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



The mapx°g(x)5xq is strictly concave for 0,q,1 on the positive reals, and has derivative
g8(x)5qxq21. Thus,

~h2j!qjq215~h2j!g8~j!>g~h!2g~j!5hq2jq

with equality if and only ifh5j. From this we conclude that

L@r#>2~12q!21tr „A~ t !1/~q21!
…

2q@~12q!tr „A~ t !q/~q21!
…1qtr„A~ t !1/~q21!

…#.

Going through the conditions for equality, we conclude that this bound is attained precisely when
r5tr „A(t)1/(q21)

…

21A(t)1/(q21).
In the caseq.1 corresponding to Propositions 2 and 4, we proceed analogously. The recip-

rocal ‘‘temperature’’b(•) as a function of Tsallis’s reciprocal pseudo-temperaturet is given by
~13! and ~20!. Again, we deal with positive operators. It is clear that in the infinite dimensional
case, our spectral assumption implies that the operator~23! can have only a finite number of
strictly positive eigenvalues fort in the interval (0,̀ ); in fact it has exactly one strictly positive
eigenvalue~namely 1) for eacht>t2 .

We consider first positivet ’s, and rewrite the variational problem in terms ofb(t) in the finite
and infinite dimensional cases. With

L@r#5btr „r~H2e2!…1~q21!21tr ~rq!,

we havefq(b)5be22(q21)211 infr5 r̂ L@r#. Using ~13! or ~20! also beyondt2 for all posi-
tive t, we get

L@r#5q~12q!21@ tr „A~ t ! %

1/~q21!
…#12q@ tr „rA~ t !…21#2~12q!21tr ~rq!.

Let R6 be the orthogonal projections onto the subspaces of non-zero eigenvalues ofA(t)% and
A(t)* , respectively; these operators being the positive, respectively negative parts of
A(t)5A(t)% 2A(t)* . Put R512R12R2 . For r5 r̂ we have r5r11r21RrR, where
r65R6rR6 . Moreover rq5r1

q 1r2
q 1(RrR)q, and tr „rA(t)…5tr „r1A(t)%…2tr „r2A(t)*….

We can now write

L@r#5L1@r1#1L2@r2#1~q21!21tr „~RrR!q…,

with

L1@r1#5q~q21!21tr „A~ t ! %

1/~q21!
…

12q@12tr „r1A~ t ! %…#1~q21!21tr ~r1
q !;

L2@r2#5q~q21!21tr „A~ t ! %

1/~q21!
…

12qtr „r2A~ t !*…1~q21!21tr ~r2
q !.

Now, L2@r2#>0 with equality if and only ifr250; and alsotr „(RrR)q…>0 with equality if
and only ifRr5rR5RrR50. Thus,

inf
r5 r̂

L@r#5 inf
$r5 r̂:r5r1%

L1@r#.

Letting K5$n:an(t).0%, and applying Ho¨lder’s inequality withr5 r̂, we get

tr „rA~ t ! %…5 (
nPK

rnan~ t !<S (
nPK

rn
qD 1/qS (

nPK
an~ t !

q/~q21!D ~q21!/q

5tr ~rq!1/qtr „A~ t ! %

q/~q21!
…

~q21!/q;
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there being equality if and only ifrn
q5can(t)

q/(q21) for all n P K with a positive constantc. With
the same condition for equality, we then have forr5r1

L@r#5L1@r#>~q21!21tr ~rq!1q~q21!21@ tr „A~ t ! %

1/~q21!
…#12q

3@12tr ~rq!1/qtr „A~ t ! %

q/~q21!
…

~q21!/q#.

With h:5tr „A(t)%

1/(q21)
…tr (rq)1/q, andj:5tr „A(t)q/(q21)

…

1/q we rewrite this as

L@r#5L1@r#>~q21!21tr „A~ t ! %

1/~q21!
…

2q

3@~j2h!qjq212jq1hq1~12q!jq1qtr„A~ t ! %

1/~q21!
…#.

The mapx°h(x)5xq is strictly convex forq.1 on the positive reals, and has derivative
h8(x)5qxq21. Thus,

~h2j!qjq215~h2j!h8~j!<h~h!2h~j!5hq2jq

with equality if and only ifh5j. From this we conclude that

L@r#5L1@r#

>~q21!21tr „A~ t ! %

1/~q21!
…

2q@~12q!tr „A~ t ! %

q/~q21!
…1qtr„A~ t ! %

1/~q21!
…#.

Going through the conditions for equality, we conclude that this bound is attained precisely when
r5tr „A(t)%

1/(q21)
…

21A(t)%

1/(q21) . We notice that fort>t2 , we getA(t)% 5P2 whereP2 is the
spectral projection ofH onto the eigensubspace to the ground state energye2 . Thus, fort>t2 or
equivalentlyb>bc

1 , we haverb5g2
21P2 whereg25tr (P2) is the multiplicity of e2 .

We now consider the case of negativet ’s in the finite dimensional case whenq.1 ~Proposi-
tion 2!. With

L@r#5btr „r~H2e1!…1~q21!21tr ~rq!,

we havefq(b)5be12(q21)211 infr5 r̂ L@r#. Using~13! also beyondt1 for all negativet, we
get

L@r#5q~12q!21@ tr „B~ t ! %

1/~q21!
…#12q@ tr „rB~ t !…21#2~12q!21tr ~rq!,

whereB(t)511(12q)t(H2e1). We can now repeat the argument of the previous case replac-
ing A(t) by B(t) to get that the infimum is attained precisely when
r5tr „B(t)%

1/(q21)
…

21B(t)%

1/(q21) . Again, for t<t1 , we haveB(t)% 5P1 whereP1 is the projec-
tion onto the eigenspace to the ceiling energye1 etc.

The reader may have noticed that by invoking the non-commutative versions of Ho¨lder’s
inequalities, one can avoid the introduction of the diagonal stater̂.

This completes the proof of the claims made in point 3 of each result. For eacht5t(b) in the
appropriate case-dependent domain, we have found the unique minimizerrb5rb(t) .

We now turn to the differentiability and strict concavity offq . We first remark that if
U@rbo

# is finite, then it is a subdifferential forfq at bo . Indeed,

fq~bo!1~b2bo!U@rbo
#5boU@rbo

#2Sq@rbo
#1~b2bo!U@rbo

#

5bUq@rbo
#2Sq@rbo

#>fq~b!.

It follows that if b2>b1 , then
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~b22b1!U@rb1
#>fq~b2!2fq~b1!>~b22b1!U@rb2

# ~24!

so the mapb°U@rb# is non-increasing.
In the finite dimensional caseU@rb# is clearly finite. Whenq.1 in the infinite dimensional

case,rb is degenerate and has a finite number of non-zero eigenvalues, so againU@rb# is finite.
When 0,q, 1 and in infinite dimension, condition~18! implies that

tr „A~ t !1/~q21!H…5(
n

enan~ t !
1/~q21! ~25!

is also finite and a continuous function oft.0. To see this, notice first that
tr „A(t)1/(q21)H…5tr „A(t)1/(q21)(H2e2)…1e2tr „A(t)

1/(q21)
…. Now

tr „A~ t !1/~q21!~H2e2!…5(
n

~en2e2!an~ t !
1/~q21!; ~26!

but an(t).(12q)t(en2e2), so that (en2e2)an(t)
1/(q21)<„(12q)t…1/(q21)(en2e2)

q/(q21) and
~18! implies that~26! is convergent, and as a limit of sums of convex functions it is convex and
thus continuous.

One can now verify that the mapb°U@rb#[U(b) is continuous sinceb(•) is continuous.
This is immediate in the finite dimensional case or in the infinite dimensional case whenq.1
sinceU is a finite sum of continuous functions. For 0,q,1 we have just established the conti-
nuity of t°tr „A(t)1/(q21)H….

From the continuity ofU and ~24!, one concludes thatfq is differentiable and its derivative
is U.

Suppose thatb1.bo andU@rb1
#5U@rbo

#, so thatU is not strictly decreasing. It follows
from the non-increasing property ofU that U(b)5U@rb#5U@rbo

# , and from ~24!, that
fq(b)5fq(bo)1(b2bo)U@rbo

#, for all b P @bo ,b1#. But thenbU@rb#2Sq@rb#5fq(b)
5fq(bo)1(b2bo)U@rbo

#5boU@rbo
#2Sq@rbo

#1(b2bo)U@rbo
#5bU@rbo

#2Sq@rbo
#, and

uniqueness of the minimizer impliesrb5rbo
. This provides us with a criterion for the strict

decrease ofU or equivalently the strict concavity offq , which can be thus checked in terms of
the minimizers. This we use to prove the corresponding claims of point 1 in each result.

For eachu in the interior ofU there is a uniqueb P (b2,b1) such thatU(b)5u. When
e6 is finite, it can be checked thatU(b6)5e7 . Thus for each possible finite energy valueu there
is a uniqueb5b(u) with U(b)5u.

Consider the Legendre–Fenchel transformfq* (u)5 infbPR$bu2fq(b)% of fq ; for u P U

this definition implies thatSq(u)<fq* (u). But for given finiteu P U there is a uniqueb(u)
such that rb(u) is a minimizer of ~3! and U@rb(u)#5u; thus Sq@rb(u)#<Sq(u)
<fq* (u)<b(u)u2fq„b(u)…5b(u)u2b(u)U@rb(u)#1Sq@rb(u)#5Sq@rb(u)#. It follows that
fq* (u)5Sq(u)5Sq@b(u)#, andrb(u)5vu .

Once we know thatfq is differentiable and strictly concave on (b2,b1) — with the appro-
priateb6 — we get the rest of the claims of points 1 and 2 from general results on the theory of
convex/concave functions as developed in sections 12, 25 and 26 of Ref. 11; or from straightfor-
ward computations.

What remains, is the proof of the claims of the second part of Proposition 3. Assuming that
~18! fails, that is ($n:en.e2%(en2e2)

q/(q21)5`, we first show that if e2,u,e2* then
Sq(u)5`. To do this we construct for a given arbitrary positive realR, a diagonal stater such
that tr (rH)5u andSq@r#>R. Let g5g2 be the multiplicity of the ground-state energye2 and
enumerate theen’s such that e j5e2 for j51,2,•••,g. For any integerN>g11, let
B(N)5(n5g11

N (en2e2)
q/(q21); and
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ln~N!5H „12L~N!…/g, if 1<n<g

~u2e2!B~N!21~en2e2!1/~q21!, if g11<n<N
,

whereL(N)5(u2e2)B(N)
21(n5g11

N (en2e2)
1/(q21). From the inequalityu2e2,(en2e2)

for eachn>g11, we conclude thatL(N),1. Thusln(N) lies in (0,1), and(n51
N ln(N)51.

Moreover,(n51
N ln(N)(en2e2)5u2e2 . Thus the degenerate diagonal stater(N) with non-zero

eigenvaluesln(N), satisfiestr „r(N)H…5u. But

Sq@r~N!#5~q21!211~12q!21S (
n51

g

ln~N!q1 (
n5g11

N

ln~N!qD
>~q21!211~12q!21 (

n5g11

N

ln~N!q

5~q21!211~12q!21~u2e2!qB~N!12q.

Since limN→`B(N)5` we can chooseN sufficiently large so thatSq@r(N)# is as large as we
want, proving the claim. If nowu>e2* then there existsu1 P (e2 ,e2* ) and t P (0,1) such that
u5tu11(12t)u2 . By concavity ofSq we then haveSq(u)>tSq(u1)1(12t)Sq(u2) so that
Sq(u)5` sinceSq(u1)5`. It then follows directly from~5! that fq(b)52` for all b P R.
Finally, by the variational principle,U@r#5e2 if and only if rP25r whereP2 is the projection
onto the eigenspace of the ground-state energy. It is then clear that the stater with rP25r and
maximal entropy is the equipartitiong2

21P2 of pure ground states withq-entropy
(q21)21(12g2

12q).

VI. COMPARISON WITH THE NON-STANDARD FORMALISM

If the reader allows us to refer to the formalism studied here as the standard one, by the
non-standard formalism we mean the one based on the energy-functional

Uq@r#5tr ~rqH !

and the entropySq@•#, as proposed in Ref. 6. Notice thatUq@•# is not affine. Moreover, adding a
constantc to the HamiltonianUq

H1c(r)5Uq
H(r)1ctr(rq). The thermostatistics obtained will

depend on the choice of the zero of energy. Despite these unusual features, the entropy function
Sq — defined by~4! with U@•# replaced byUq@•# — is concave inu, and one can recover a
complete ‘‘thermostatistics’’~without 0th-law!. The detailed analysis is given in Ref. 7. In the
standard formalism the parametrization ofrb in terms ofb is not explicit since one has to invert
the mapt→b(t) to find the reciprocal pseudo-temperaturet as a function ofb. In the non-
standard version, the ‘‘equilibrium’’ state is parametrized directly and explicitly byb: The for-
mula for the non-standardrb is obtained~formally! by replacing (12q)t(b) by (q21)b in the
standard formula. The basic features of the non-standard thermostatics are qualitatively the same
as those described here, after interchanging ‘‘q.1’’ with ‘‘ q,1’’. For q,1, there are inacces-
sible temperatures and the depopulation mechanism operates to produce a degeneraterb .
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