
Non-standard thermal statistics with q -entropies
Gustavo R. Guerberoff,a) Pedro A. Pury, and Guido A. Raggiob)
Facultad de Matema´tica, Astronomı´ a y Fı́sica, Universidad Nacional de Co´rdoba,
Ciudad Universitaria, 5000 Co´rdoba, Argentina

~Received 20 April 1995; accepted for publication 17 November 1995!

We consider the quantum thermal statisticsà la Gibbs–Shannon–Szilard–Jaynes
based onq-entropiesSq@r#5(q21)21

„12tr (rq)… (0,q Þ 1) and the non-
standard ‘‘internal energy’’ functionalsUq@r#5tr (rqH) proposed by C. Tsallis@J.
Stat. Phys.52, 479–487~1988!#. © 1996 American Institute of Physics.@S0022-
2488~96!01403-1#

I. INTRODUCTION

For a discrete probability distributionr5(r1 ,r2 ,•••), with rn>0, and(nrn51, consider
the monoparametric family of entropies~theq-entropies!:

Sq@r#5~q21!21S 12(
n

rn
qD ,

whereq is a real number distinct from 0 and from 1. One sees easily thatSq is a concave function
on the convex set of probability distributions whenq.0; and that
limq→1Sq@r#52(nrn ln(rn), the well-known Boltzmann–Shannon entropy.

Tsallis1 proposed to build up a ‘‘thermostatistics’’ by maximizing theq-entropies at given
fixed internal energy given by(nrnen . To this end he introduces the function
Sq@r#1a(nrn2ab(q21)(nenrn and after a standard variation obtains the distributionrn
} „12b(q21)en…

1/(q21). Althoughb provides a convenient and explicit parametrization of the
distribution with maximalq-entropy, it is not the reciprocal temperature associated to the problem.
This reciprocal temperature is given byab(q21). Nevertheless, it is possible to perform the
analysis with the correct reciprocal temperature and obtain a ‘‘thermal’’ statistics usingSq@•#
instead of the Boltzmann–Shannon entropy.2 In subsequent papers, Tsallis and coworkers3,4 pro-
posed to build up a ‘‘thermostatistics’’ using theq-entropies but replacing the standard expression
for the internal energy by the functionalUq@r#5(nenrn

q with the sameq used for the entropy.
This functional is not affine forq Þ 1, i.e.,Uq@lr11(12l)r2# Þ lUq@r1#1(12l)Uq@r2# for
the mixture of distributionsr1 , r2 in proportionsl and (12l) respectively. The variational
calculation involving classical distributions only and using Lagrange multipliers was carried out in
Ref. 3, but the analysis is incomplete since the multiplier ranges are not determined or determined
ad hoc. In the last few years, a lot of researchers have explored the features of the formalism
proposed by Tsallis, and have developed applications to physics, astrophysics, biology, econom-
ics, statistical inference problems, etc. For a review see Ref. 4.

In this paper, we consider the ‘‘thermostatistics’’ associated with theq-entropies for 0,q
Þ 1 and the non-standard constraintUq@•#5 constant. We determine by a direct method~using
Hölder’s inequality as the key ingredient! the quantum mechanical state~s! rb minimizing the
functional:

r°bUq@r#2Sq@r#. ~1!
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We then proceed to establish all ‘‘thermostatistical’’ results analogous to those known for the case
q51 of Boltzmann–Gibbs statistics. We thus complete the program proposed in Ref. 3 as follows:
For each possible ‘‘internal energy’’u there is a unique statevu among those statesr with
Uq@r#5u which maximizesSq@•#; the q-entropy as a function of the ‘‘internal energy’’ is a
concave differentiable function; for eachb in a certain explicitly determined interval, the mini-
mizer rb is unique and it is equal tovu where u5Uq@rb#, moreoverb is the value of the
derivative ofSq with respect tou evaluated atu; the minimal value of the functional~1! is equal
to the Legendre transform~with respect tou) of Sq as a function ofu. However, despite all these
results we warn the reader that the parameterb, which we call ‘‘reciprocal temperature,’’ does not
satisfy the analogue of the 0th-law of Thermodynamics~See Sec. IV C!.

Sq@•# for discrete probability distributions was introduced, with a different prefactor, by Z.
Daróczy5 who obtained the basic properties and gave an axiomatic characterization. The quantum
mechanical version

Sq@r#5~q21!21
„12tr ~rq!…,

appears on page 247 of Wehrl’s review.6 These entropies are intimately related to the Renyi
entropies.6 We record here some of the basic properties of theq-entropies; the proofs are given in
Ref. 7. Sq@r#>0 with equality iff r is pure. In the finite dimensional case~dimensiond),
Sq@•# is strictly concave and one hasSq@r#<(q21)21(12d12q) with equality iff r is the
normalized trace. In the infinite dimensional case, ifq.1 Sq@•# is strictly concave and one has
Sq@r#,(q21)21; moreoverSq@•# is Lipschitz in the trace norm. If 0,q,1, in infinite dimen-
sion,Sq@•# is generically~on a set of second category! infinity but the set where it takes finite
values is convex andSq@•# is strictly concave on it.

We do not consider the caseq,0. In this case, the expressions forSq make sense in finite
dimensions when the distribution is not degenerate, or when zero is not an eigenvalue of the state.
In infinite dimension however,Sq is identically equal to infinity.

In Sec. II, we study the ‘‘internal energy’’ functionalsUq@•#. In Sec. III, we develop the basic
facts about the ‘‘thermostatistics’’ based on the pairUq@•#, Sq@•#. The variational problem asso-
ciated with the minimization of the functional~1! is worked out in Sec. IV; where some of the
main features of the formalism are established as direct consequences of the results. In Sec. V, we
consider as an illustration the non-standard ‘‘thermostatistics’’ for the harmonic oscillator. The
extension of the results to the multidimensional case, corresponding to fixing the values ofN
functionalsUq based onN Hamiltonians, is considered in Sec. VI. Section VII contains our final
comments. The general results about all the variational problems discussed in this paper are
proved in the Appendix.

In this paper we work with the extended real numbers and use the usual conventions for
addition; the equalities and inequalities appearing here are to be understood in this sense. ByR we
denote the usual real numbers without6`.

II. THE FUNCTIONAL Uq@–#

Assume given a selfadjoint operatorH whose spectrum consists entirely of eigenvalues
$en% which are enumerated according to their multiplicities. Accordingly, in the classical case,
$en% is a~possibly finite! sequence of real numbers. We writee1 ~resp.e2) for the maximal~resp.
minimal! energy:

e1:5sup
n

en ; e2:5 inf
n

en .

We assume the non-trivial casee2,e1 . For q.0, define the ‘‘internal energy’’ functionals
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Uq@r#5H (
n

enrn
q , in the discrete classical case

tr ~rqH !, in the quantum case.

~2!

In the infinite dimensional case and whenH is unbounded, we have to specify what the trace of
the operatorrqH means. We will make the following assumption:the spectrum ofH is purely
discrete; that is to say it consists entirely of isolated eigenvalues with finite multiplicity, alterna-
tively $en% has no accumulation points.Uq@•# can be defined under milder assumptions, but the
above condition will be necessary to insure existence of the minimizersrb of the functional~1!.
This spectral assumption insures that we have a sequence$Pm% of pairwise orthogonal finite-rank
projectionsPm such thatH5(mêmPm ( êm are the distinct eigenvalues ofH). Now, tr (rqPm) is
finite, even whenrq is not trace-class as can happen for 0,q,1. If the series(mêmtr (r

qPm) is
absolutely convergent, we define it astr (rqH); otherwise, the trace remains undefined. If the trace
is defined then, for any complete orthonormal basis$cn% of eigenvectorscn of H to the eigen-
valueen , one has

tr ~rqH !5(
n

en^cn ,r
qcn&.

We denote the set of all statesr ~i.e., density operators in the quantum case or probability
distributions in the classical case! by V. It is immediate in finite dimensions that forq Þ 1,
Uq@•# is not affine on V. But if r is pure ~i.e., an extremal point ofV), then
Uq@r#5U1@r#5tr (rH). In infinite dimension, the setVq whereUq@•# is defined contains the
convex set ofr ’s whose matrix in an eigenbasis ofH has the block form

S D 0 •••

0 0 •••

A A
D

with D an arbitrary finite density matrix.
We write

Uq
1 :5 sup

rPVq

Uq@r#, Uq
2 :5 inf

rPVq

Uq@r#.

The variational problems posed byUq
6 are solved in the Propositions A.1 and A.2 of the Appen-

dix. If we denote byH1 (H2) the positive,~resp. negative! part of the operatorH; applying
Proposition A.1, we directly determineUq

6 for q.1. And from Proposition A.2 we immediately
obtainUq

6 for 0,q,1:

Uq
155 H e1, if e1>0

2$tr „~H2!1/~12q!
…%12q, if e1,0

for q.1

H $tr „~H1!1/~12q!
…%12q, if e1.0

e1, if e1<0
for 0,q,1

, ~3!
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Uq
255 H e2, if e2<0

$tr „~H1!1/~12q!
…%12q, if e2.0

for q.1

H 2$tr „~H2!1/~12q!
…%12q, if e2,0

e2, if e2>0
for 0,q,1

. ~4!

In this context, the traces in the infinite dimensional case are understood with respect to any
orthonormal basis of eigenvectors ofH, i.e., tr (H6

1/(12q))5(n8uenu
1/(12q) where the sum runs over

the positive~negative! eigenvalues ofH for H1 (H2).
The lack of affinity of the functionalUq@•# manifests itself again since we can have

Uq
1.e1 or Uq

2,e2. As we show in the Appendix, whenUq
65e6 and finite, the extremizers are

eigenstates ofH to the eigenvaluee6 ~pure eigenstates ife6 Þ 0). If Uq
6 Þ e6 and

tr „(H6)
1/(12q)

… is finite, the extremizer is unique and given by the Ho¨lder state:

r65
~H6!1/~12q!

tr ~~H6!1/~12q!
…

~5!

wherer1 (r2) is associated withH1 (H2) in the expressions forUq
6 .

III. BASIC THERMAL STATISTICS

In this section we resume the general program of the thermal statistics. The results quoted
below are independent of the specification of the ‘‘internal energy’’ and entropy functionals.

For any u in the interval @Uq
2 ,Uq

1#, we writeK q(u) for the set ofr ’s with Uq@r#5u
„K q(u),Vq…. We can now define entropy as a function of ‘‘internal energy’’ by

Sq~u!:5 sup
rPKq~u!

$Sq@r#%, uP@Uq
2 ,Uq

1#. ~6!

We are distinguishing the ‘‘thermodynamic’’ functionals, such asSq@•#, defined on the states
from the ‘‘thermodynamic’’ functions, such asSq , by using square brackets for the arguments of
the former.

We consider the Legendre–Fenchel transform ofSq given by

fq~b!:5 inf
uP~Uq

2 ,Uq
1

!

$bu2Sq~u!%, bPR. ~7!

The functionb°b21fq(b) is—in appropriate dimensionless variables—the ‘‘Helmholtz free-
energy’’ of the system whose ‘‘internal energy’’ functional isUq@•#. We first show thatfq is
equal to theinfimum over statesof the corresponding ‘‘free-energy’’ functional~1!, and remark
that the Legendre–Fenchel transform offq w.r.t. b ~the Legendre-Fenchel transform of the
Legendre–Fenchel transform ofSq) is the concave, uppersemicontinuous regularization ofSq :

Lemma 1:

fq~b!5 inf
rPVq

$bUq@r#2Sq@r#%, ~8!

Sq~u!< inf
bPR

$bu2fq~b!%5:~fq!* ~u!. ~9!

Proof : Both statements are general consequences of the definition~7!: ~9! is a general fact in the
theory of Legendre–Fenchel transforms~see e.g., Ref. 8!; moreover
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fq~b!5 infu$bu2suprPK ~u!Sq@r#%5 infuinfrPK ~u!$bu2Sq@r#%

5 infuinfrPK ~u!$bU@r#2Sq@r#%5 infrPVq
$bU@r#2Sq@r#%.

The restriction toVq guarantees that the functionalUq@•# is defined in infinite dimension. h

The problem of ‘‘equivalence of ensembles,’’ at this level, is the proof that one has equality
in ~9!. One has then thatSq is indeed concave~and upper semicontinuous! and a reasonable
entropy function.9 If, however,Sq is not concave, then the appropriate entropy function is in fact
(fq)* . The following simple result will be important here.

Lemma 2: If u is such that there existsb0 P R and ro P Vq satisfying Uq@ro#5u, and
fq(bo)5boUq@ro#2Sq@ro#, then Sq(u)5Sq@ro#5(fq)* (u), and Uq@r# is a subdifferential
(see Ref. 8) offq at bo : fq(b)<fq(bo)1(b2bo)Uq@ro# for all b.

Proof : By the definitions of (fq)* @l.h.s. of ~9!#, and of Sq , the assumptions give:
(fq)* (u)<bou2fq(bo)5bou2boUq@ro#1Sq@ro#<Sq(u). The first claim follows from~9!.
Alsofq(bo) 1 (b 2 bo)Uq@ro# 5 boUq@ro# 2 Sq@ro# 1 (b 2 bo)Uq@ro# 5 bUq@ro# 2 Sq@ro#
> fq(b). h

Lemma 2 tells us when the minimizer of the variational problem~8! is the maximizer of the
variational problem~6!. We will deal with the problem posed by~8!, since it is a variational
problem without constraints onr and thus easier to solve. Once this problem is solved we must
verify that for each possible valueu P (Uq

2 ,Uq
1) there isb satisfying the hypothesis of Lemma 2

to get the solution of the original problem~6!. The next question for any thermal statistics is to
know if one has a unique extremizer, or not. If so, the unique extremizerrb is the equilibrium
state at reciprocal temperatureb. Another natural question arises in connection with the varia-
tional problems. Suppose thatr is a maximizer in~6! or a minimizer in~8! both in the quantum
case; is it true thatr is diagonal?, that is to say, it is diagonalized by some orthonormal basis
which also diagonalizesH.

We now record some general properties of the functionfq :
Lemma 3:R { b°fq(b) is a concave, upper-semicontinuous function, which is continuous

on the interior of the convex (hence connected) subset dom(fq) of R where it takes finite values.
One hasfq(0)52suprPVSq@r#(,0), and bUq

2(1)1fq(0)<fq(b)<bUq
2(1) if b.0

~resp. b,0). Thus, if Uq
15` ~resp. Uq

252`), then fq(b)52` for all b,0 ~resp. all
b.0).

R { b°b21fq(b) is non-decreasing on(2`,0) and on(0,̀ ). In the finite dimensional
case, or in general for q.1, limb→1(2)`b21fq(b)5Uq

2(1) .
If for somebo.0 ~resp.bo,0), one hasfq(bo)5boUq

2(1) , then fq(b)5bUq
2(1) for

everyb>bo ~resp.b<bo).
Proof : The basic properties~concavity, upper semicontinuity, etc.! are well known conse-

quences~see e.g., Ref. 8! of the definition~7!. SinceVq contains all density operators whose
matrix in an eigenbasis ofH has finite rank, the supremum overVq of Sq@•# is equal to the
supremum over the whole state spaceV. The inequality forfq is obtained from~8! using the
inequality 0<Sq@r#<suprSq@r#. The increasing property ofb21fq(b) follows from ~8! using
the positivity ofSq@•# and the fact thatb°2b21 is increasing on the intervals (2`,0) and
(0,̀ ). Using thatSq@•# is finite in finite dimension or whenq.1, one can show the assertion of
the limit for b→6`. The last claim, concerning attainment of the bounds, follows from the
increasing property ofb21fq(b) and the inequality. h

The largest entropy can be computed easily, and from what was said in the Introduction, it
follows that:
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fq~0!5H ~12q!21~12d12q!, ;q in finite dimensiond

H ~12q!21 if q.1,

2` if 0,q,1,
in infinite dimension

.

The following symmetry property is immediate from~8!: fq
(H)(2b)5fq

(2H)(b), where the
superscript indicates the Hamiltonian used inUq@•#.

If, in the infinite dimensional case,H is unbounded both above and below thenfq[2`
except atb50 whenq.1. The ‘‘thermostatistics’’ is empty; and we rule out this case from
further consideration. We assume then that in the infinite dimensional caseH is semibounded.
Under this condition,fq is a proper concave function, that is to say: it does not take the value
` and it is not identically2`.

The inequality of the above lemma implies a familiar fact in Boltzmann–Gibbs thermody-
namics: ifUq

656` — as happens whene656`, that isH is not bounded above~resp. below!
— thenfq(b)52` for all negative~resp. positive! b. We will see in what follows that in the
present context the boundbUq

2(1) can be attained at a finite positive~resp. negative! b; this does
not occur in Boltzmann–Gibbs statistics. Thus, the present formalism presents the feature that
temperatures below~above! a certain positive~negative! value are unattainable. This unfamiliar
feature persists if the constraintUq@•# is replaced by the physical constraintU1@•#.2

IV. DETERMINATION OF fq AND THE MINIMIZERS

We now computefq by solving the variational problem~8!; this will also give us the corre-
sponding minimizers. Notice thatbUq@r#2Sq@r#5(12q)211tr $rq„bH1(q21)21I …%, so that

fq~b!5~12q!211 inf
r

tr $rqA~b,q!%, ~10!

where we have introduced the selfadjoint operatorA(b,q):5bH1(q21)21I . Thus, the problem
is solved by the results of the Appendix as soon as the lower bound
a2(b,q)5 infn$ben1(q21)21% of the spectrum ofA(b,q) is known. But

a2~b,q!5~q21!211b•H e2, if b>0

e1, if b<0
; ~11!

with the usual convention 0(6`)50. Since the solution of~10! is governed — via Propositions
A.1 and A.2 of the Appendix — by whethera2(b,q) is negative or not, there are two ‘‘critical’’
values ofb, the solutions of the equationa2(b,q)50. These numbers can be finite or6`.

We distinguish the two cases 0,q,1 andq.1. As before, all traces in the infinite dimen-
sional case are to be understood with respect to an arbitrary orthonormal basis diagonalizingH.

A. Case q>1

We define positive and negative critical reciprocal temperaturesbc
1(q) andbc

2(q) respec-
tively by

bc
1~q!5H `, if e2>0

1

~12q!e2, if e2,0
; bc

2~q!5H 2`, if e1<0

1

~12q!e1, if e1.0
. ~12!

Notice that ifH is not bounded above~resp. below! thenbc
250 ~resp.bc

150); at least one of
these critical reciprocal temperatures is finite; and if the spectrum has both negative and positive
elements, then both criticalb ’s are finite.

It is immediately verified that
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a2~b,q!5
<0 if b<bc

2~q!,0 with equality iffb5bc
2~q!

.0 if bc
2~q!,b<0

.0 if 0<b,bc
1~q!

<0 if 0,bc
1~q!<b with equality iff b5bc

1~q!

.

Furthermore,a2(b,q)52` if b,bc
250 or b.bc

150. With this, Proposition A.1 of the Ap-
pendix leads us to the solution of~10! as follows:

Theorem 1: Let q.1, and let positive and negative critical reciprocal temperatures be defined
by (12), then

fq~b!5~q21!21$@ tr †„b~q21!H1I …1/~12q!#‡12q21%, if bc
2~q!,b,bc

1~q!, ~13!

fq~b!5H be1, if b<bc
2~q!,0 or b,bc

2~q!50

be2, if b>bc
1~q!.0 or b.bc

1~q!50
. ~14!

Moreover
1. For bc

2(q),b,bc
1(q) there is a unique minimizerrb given by the Tsallis–Hölder state:

rb5
„b~q21!H1I …1/~12q!

tr @„b~q21!H1I …1/~12q!#
~15!

when tr@„b(q21)H1I …1/(12q)#,`; and no minimizer if this trace is̀ in which case
fq(b)5(12q)21 (infinite dimensional case).

2. For 0,e1,` andb5bc
2(q) [ resp.b,bc

2(q)] the minimizers are the eigenstates (resp.
pure eigenstates) of H to the eigenvaluee1.

3. For 2`,e2,0 and b5bc
1(q) @resp. b.bc

1(q)] the minimizers are the eigenstates
~resp. pure eigenstates) of H to the eigenvaluee2.

The unique equilibrium staterb given by~15! whenb P I[„bc
2(q),bc

1(q)… will be referred
to as Tsallis–Ho¨lder ~TH! state. As their name intends to convey, these states were introduced by
C. Tsallis ~in a remark at the bottom of page 483 of Ref. 1, and then in Ref. 3 and subsequent
papers!, and they saturate Ho¨lder’s inequality on the mathematical side. The first important ob-
servation to be made is that, whenever the TH state exists, it is theuniqueminimizer of the
‘‘free-energy’’ functional, and thustheequilibrium state.

Now, before clarifying further features, we give a sketchy description in words of the content
of Theorem 1. Forb P I , the operatorb(q21)H1I is strictly positive. Let

an~b!:5„b~q21!en11…1/~12q!.

The TH state has eigenvalues (rb)n5„(nan(b)…
21an(b) with eigenfunction cn , where

Hcn5encn . In particular, the state is non-degenerate: every eigenstate ofH is populated. Con-
sider the case whenH is bounded below but not above; there being an analogous argument for the
opposite case. Recall thatbc

2(q)50 here. As one increasesb away from 0, (rb)n decreases for
all n with en Þ e2, and increases forn with en5e2. Whenbc

1(q) is reached, assuming it is finite,
i.e.,2`,e2,0, rb5„tr (P2)…21P2 whereP2 is the orthogonal projection onto the eigenspace
to the eigenvaluee2, andtr (P2) gives the multiplicity of this eigenvalue. Atbc

1(q), our result
says that any eigenstate to the eigenvaluee2 minimizes fq„bc

1(q)…5bc
1(q)e25(12q)21.

Abovebc
1(q), only pure eigenstates toe2 are minimizers. Thus, there is a discontinuity here if

e2 is degenerate. However, this is of no relevance sinceb ’s abovebc
1(q) are not accessible:

fq is linear, and its second derivative related to the ‘‘specific heat’’ is zero. Ife2.0, we have
bc

1(q)5` and 0<Uq
2,e2. Here, we get another unusual feature which, for want of a better
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name, we refer to asstrong violation of the third law. Indeed, asb→`, i.e., T→0, the TH
equilibrium staterb tends to the Ho¨lder stater1 of ~5! ~recall thatH15H here! with ‘‘internal
energy’’ Uq

2 . This state is non-degenerate, i.e., all eigenstates are populated, and has non-zero
entropy~independently of the degeneracy of the ground-state energy!. The situation forb,0 in
the case whereH is bounded above is totally analogous.

In what follows we will consider the questions relating to the differentiability of the ‘‘ther-
modynamical’’ functions. Consider the functionUq ~‘‘internal energy’’ as a function of reciprocal
temperature! given byUq(b):5Uq@rb#, whenever the minimizerrb exists andUq@rb# is finite.
In the finite dimensional case, where everything is finite, it can be verified thatUq is continuous
and the derivative offq by direct differentiation in~13! and ~14!. The concavity offq implies
then thatb°Uq(b) is decreasing~recall the assumptione

2,e1) and strictly so forb P I . One
can also verify directly that

lim
b→bc

6
~q!

Uq~b!5Uq
7 .

This guarantees that for eachu P (Uq
2 ,Uq

1) there exists a uniqueb P I such thatUq(b)5u. This,
via Lemma 2 insures thatSq5(fq)* . As a consequence,

8 Sq is strictly concave and differentiable
with derivativeb(u) determined by the inverse of the mapb°Uq(b). One can also verify the
differentiability of Uq connected to the ‘‘specific heat’’Cq by

Cq~b!52b2
dUq

db
~b!. ~16!

Always in the finite dimensional case,Cq is finite and positive for allb P I .
The existence ofrb in the infinite dimensional case imposes conditions on the eigenvalue set.

For the harmonic oscillator spectrum,(nan(b)5` for all q>2. It is perhaps remarkable that
under our assumption on the spectrum ofH ~purely discrete!, the existence ofrb guarantees
differentiability of fq . fq is given, up to trivial summands and a power, by the ‘‘trace’’
(nan(b) of the positive operator„b(q21)H11…1/(12q). If this ‘‘trace’’ converges for some
bo , then rbo

exists and assumingUq(bo) is defined, we know from Lemma 2 that it is a
subdifferential offq at bo .

The following two Lemmas summarize our results about differentiability in the infinite di-
mensional case:

Lemma 4: LetD be the interior of the domain offq . The following conditions
1. fq is differentiable inD ,
2. Uq is continuous inD , are equivalent,
and they imply that Uq is the derivative offq .

Proof : We have remarked, in Lemma 2, thatU is a subgradient forf ~we omit the index
q). If the latter function is differentiable, the subgradient is unique and equal to the derivative.

Consider the left- and right-derivativesf28 andf18 respectively off which exist by concavity
and satisfy:

f~b1!2f~b2!

b12b2
>f28 ~b2!>f18 ~b2!>

f~b3!2f~b2!

b32b2

wheneverb1,b2,b3 . Using the definition off and the minimizing property ofrb we estimate

f~b2!2f~b1!

b22b1
<

b2U~b1!2S@rb1
#2f~b1!

b22b1
5U~b1!;
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f~b3!2f~b2!

b32b2
>

f~b3!2b2U~b3!1S@rb3
#

b32b2
5U~b3!.

Thus,U(b1)>f28 (b2)>f18 (b2)>U(b3) under the same condition for theb ’s. Thus, if U is
continuous,f is differentiable andU its derivative. h

Lemma 5: Suppose H is bounded below but not above [implyingbc
2(q)50]. If

tr@„b(q21)H11…1/(12q)# is finite for someb P I , then it is finite for allb P I . In this case,
rb exists for allb P I andfq is twice differentiable with derivative Uq and second derivative
2b22Cq(b) on I .

Proof :We first notice that~the prime denotes derivation with respect tob)

an8~b!52en„b~q21!en11…q/~12q!, an9~b!5qen
2
„b~q21!en11…~2q21!/~12q!;

so thatan is convex onI . Let us number the eigenvalues ofH as e25eo<e1<e2<•••. It
follows that sn(b):5(k50

n ak(b) is convex onI , and thus if the sequence converges on some
bounded subinterval ofI , the convergence is uniform. Suppose now that the sequence converges
for some bo P I ; then, due to our assumptione15`, for all n sufficiently large
bo(q21)en>1 so that

an~bo!>„2bo~q21!…1/~12q!en
1/~12q! .

It follows from this and the assumption that the spectrum ofH is purely discrete, that the infinite
series(nen

1/(12q) is absolutely convergent. But since, for everyb P I we have

an~b!,„b~q21!en…
1/~12q!

as soon asn is sufficiently large~i.e., as soon asen>0), we conclude thatsn converges uniformly
on any compact subset ofI . We also notice that as soon asen>0, we have

uan8~b!u,„b~q21!…21an~b!, an9~b!,S b
q21

q D 21

uan8~b!u.

This implies that both sequencessn8(b) andsn9(b) converge absolutely for allb P I . From this
one can deduce the existence ofUq and Cq , and then the continuity and differentiability of
Uq , which leads to the differentiability offq in I . The argument continued proves thatfq is
C`. h

B. Case 0 <q<1

The path to be followed is as in the former case, but the results are more involved. There are
two sets of critical temperatures. The supercritical reciprocal temperatures are given by:

bc
1~q!5H 0, if e252`

`, if 2`,e2<0

1

~12q!e2, if e2.0

bc
2~q!5H 0, if e15`

2`, if 0<e1,`

1

~12q!e1, if e1,0

.

~17!

The other set involves the first excited-state energy abovee2, and the first de-excited-state energy
below e1. We define:

e
*
2 :5 inf$en :en.e2%; e

*
1 :5sup$en :en,e1%.
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Notice that in the finite dimensional casee
*
1,e1 ande

*
2.e2; and also that ifH is unbounded

above~resp. below! e
*
15e15` ~resp.e

*
25e252`). The critical reciprocal temperatures are

given by

b
*
1~q!55

0, if e
*
252`

`, if 2`,e
*
2<0

1

~12q!e
*
2, if e

*
2.0

b
*
2~q!55

0, if e
*
15`

2`, if 0<e
*
1,`

1

~12q!e
*
1, if e

*
1,0

.

~18!

One always hasbc
1(q)>b

*
1(q)>0 andbc

2(q)<b
*
2(q)<0. In Table I we show all possibilities

for the critical and supercritical reciprocal temperatures in the semibounded case. We can again
determinea2(b,q) as a function ofb:

a2~b,q!5
>0 if b<bc

2~q!,0 with equality iffb5bc
2~q!

,0 if bc
2~q!,b<0

,0 if 0<b,bc
1~q!

>0 if 0,bc
1~q!<b with equality iff b5bc

1~q!

.

Furthermore,a2(b,q)52` if b,bc
250 or b.bc

150.
Forb ’s inside the interval„bc

2(q),bc
1(q)…, the minimizer is unique and given by the negative

part of the operatorA(b,q). But, in this interval,A(b,q)2 has finite rank. Moreover, forb in the
interval (bc

2(q),b
*
2(q)# ~resp.@b

*
1(q),bc

1(q))), A(b,q)2 has exactly one non-zero eigenvalue,
and the minimizer is the equidistribution of ceiling states~resp. ground states!. This, and Propo-
sition A.2 of the Appendix leads to

Theorem 2: Let0,q,1, and let positive and negative supercritical and critical reciprocal
temperatures be defined by (17) and (18) respectively, then

1. If b,bc
2(q),0 (2`,e1,0) then

fq~b!5be1

and the minimizers are the pure eigenstates to the eigenvaluee1.

fq„bc
2~q!…5H ~12q!21, if 2`,bc

2~q!,0

2`, if bc
2~q!50,which occurs only in infinite dimension.

TABLE I. Critical and supercritical reciprocal temperatures whenH is semibounded in the 0,q,1 case.

e2 e
*
2 bc

1(q) b
*
1(q)

2` 2` 0 0
finite, ,0 finite,<0 ` `
finite, <0 finite,.0 ` „(12q)e

*
2
…

21

finite, .0 finite,.0 „(12q)e2
…

21
„(12q)e

*
2
…

21

e1 e
*
1 bc

2(q) b
*
2(q)

` ` 0 0
finite, .0 finite,>0 2` 2`
finite, >0 finite,,0 2` „(12q)e

*
1
…

21

finite, ,0 finite,,0 „(12q)e1
…

21
„(12q)e

*
1
…

21
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2. Whenbc
2(q)50 the minimizers are not unique. In the other case, the minimizers are all the

eigenstates to the eigenvaluee1.
3. If bc

2(q)<b<b
*
2(q),0 then

fq~b!5bg1
12qe12

g1
12q21

12q

and there is a unique minimizer given by the equidistribution of ceiling states g1
21P1, where

P1 is the orthogonal projection onto the eigenspace to the eigenvaluee1, and g15tr (P1) is the
multiplicity of this eigenvalue.

4. If b
*
2(q),b,b

*
1(q) then the operator„b(q21)H1I …1 , the positive part of the operator

b(q21)H1I (see Sec. II), has finite rank,

fq~b!5~12q!21$12†tr @„b~q21!H1I …1
1/~12q!#‡12q%,

and there is a unique minimizer given by

rb5
„b~q21!H1I …1

1/~12q!

tr @„b~q21!H1I …1
1/~12q!#

. ~19!

5. If 0,b
*
1(q)<b<bc

1(q) then

fq~b!5bg2
12qe22

g2
12q21

12q

and there is a unique minimizer given by the equidistribution of ground states g2
21P2, where

P2 is the orthogonal projection onto the eigenspace to the eigenvaluee2, and g25tr (P2) is the
multiplicity of this eigenvalue.

fq„bc
1~q!…5H ~12q!21, if 0,bc

1~q!,`

2`, if bc
1~q!50 which occurs only in infinite dimension.

6. Whenbc
1(q)50 the minimizers are not unique. In the other case, the minimizers are all the

eigenstates to the eigenvaluee2.
7. If 0,bc

1(q)<b (0,e2,`) then

fq~b!5be2

and the minimizers are the pure eigenstates to the eigenvaluee2.
The TH state is based on the positive part of the operatorb(q21)H1I which has finite rank.

Using the notationDn(b)512b(12q)en the eigenvalues are given by

~rb!n5H S (
k

Dk~b!1/~12q!D 21

Dn~b!1/~12q!, n such thatDn~b!.0

0, n such thatDn~b!<0
,

where the sum runs overk such thatDk(b).0. Not every eigenstate ofH is populated as soon as
b(q21)H1I has non-zero negative part. This is impossible in the exponential Gibbs–Boltzmann
distribution. Now, we discuss the typical features.

In the finite dimensional case, if the spectrum has more than one positive eigenvalue and more
than one negative eigenvalue, both criticalb ’s are not finite. Atb50 the TH state is the normal-
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ized trace. As we increaseb away from 0, all energy eigenstates are populated until we reach
b5„(12q)e1

…

21. At this point, all eigenstates to this highest eigenvalue are depopulated and all
other eigenstates remain populated. As we continue increasingb nothing interesting happens until
we reachb5„(12q)e

*
1
…

21, recall e
*
1.0 here. At this point, the eigenstates corresponding to

e
*
1 are also depopulated. As we continue increasingb we depopulate successively downwards the
positive energy eigenstates until there are none left. From then onwards, only the non-positive
eigenstates are populated. As we continue increasingb we approach asymptotically the Ho¨lder
stater2 of ~5!. Forb,0 we have the same features, but now the negative energy eigenstates are
depopulated successively upwards until only the non-negative energy eigenstates remain popu-
lated, and the Ho¨lder stater1 of ~5! is approached asymptotically asb→2`. There is thus
strong violation of the third law atT506.

If the spectrum is strictly positive,b
*
1(q) is finite andb

*
2(q)52`. As we increaseb away

from 0 the eigenstates are successively depopulated downwards, until there is just ground-states
left; this happens precisely atb

*
1(q); we then haveg2

21P2, the equidistribution of ground states.
As we further increaseb nothing changes until we reachbc

1(q). Our result claims that any
ground-state is a minimizer atbc

1(q) ; and any pure ground-state is a minimizer abovebc
1(q).

But, as before, theb ’s aboveb
*
1(q) are inaccessible. Decreasingb away from 0, all eigenstates

are always populated@sinceb(q21)en11.0] and the Ho¨lder stater1 of ~5! is reached asymp-
totically for b→2`. The features of the strictly negative spectrum case, are analogous to those
of the strictly positive spectrum case reversing signs and directions, and replacing ground- by
ceiling-states and so on.

WhenH is bounded below but not above, we havefq(b)52` for everyb<0. The features
for b.0 are exactly the same as those of the corresponding finite-dimensional case.

The successive depopulation of eigenstates has a drastic effect which cannot be seen at first
glance infq which is a nice concave~in fact differentiable! function. This feature is detected, as
we will discuss below, in the functionUq(b):5Uq@rb# whose graph is a staircase: the derivative
of Uq w.r.t. b, does not exist for eachb ~negative or positive! where a depopulation occurs. More
precisely, the derivative has different limits as we approach theseb ’s from left or right. Since
tr is always a finite sum, we can analyze the differentiability offq term by term. One checks that
Uq(b) is the derivative offq for all b P (b

*
2 ,b

*
1)[I * .

The general expression for the ‘‘specific heat’’Cq can be derived from~16!:

Cq~b!5qb2Z~b!2~11q!
„Z~b!A2~b!2A1~b!2…,

where

Z~b!5(
n

Dn~b!1/~12q!, A1~b!5(
n

Dn~b!q/~12q!en , A2~b!5(
n

Dn~b!~2q21!/~12q!en
2 .

The summations run overn such thatDn.0. From this we can see also thatCq>0. The differ-
entiability of Uq is guaranteed except at all pointsbn5 1/(12q)en lying inside I * . Taking
b5bn7d ~according to whetherbn,

.0! and if we denote:

F1~bn!:5 lim
d→01

F~bn7d!; F2~bn!:5 lim
d→02

F~bn7d!,

andg5(12q)uenud we can prove that:

Z1~bn!5Z2~bn!1 lim
d→01

g1/~12q!,

A1
1~bn!5A1

2~bn!1en lim
d→01

gq/~12q!,
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A2
1~bn!5A2

2~bn!1en
2 lim

d→01

g~2q21!/~12q!,

where Z2(bn), A1
2(bn), and A2

2(bn) are finite quantities. For12,q,1, Z, A1 , and A2 are
continuous atbn , henceCq is continuous for allb P I * . Forq5 1

2, Z andA1 are continuous but
A2

15A2
21en

2 , therefore the ‘‘specific heat’’ presents finite discontinuities atbn . For 0,q, 1
2,

A2
1 diverges (Z andA1 are still continuous! and in consequenceCq

1 diverges:

Cq~b!→H ` if b↑bn.0 or b↓bn,0

finite if b↓bn.0 or b↑bn,0
.

In theq→0 limit, Cq vanishes everywhere except atbn where the lateral divergences survive.
Let us look closely at the case 0,e2,e

*
2 . fq is a straight line in the interval

@b
*
1(q),bc

1(q)) with slopeg2
12qe2 andCq(b)50. At bc

1(q) this line connects to the straight
line be2 which gives the value offq for b>bc

1(q). When the ground state is degenerate, i.e.,
g2>2, these lines have different slope andfq is not differentiable atbc

1(q). There is a discon-
tinuity in Uq at bc

1(q):

lim
b↑bc

1
~q!

Uq~b!5g2
12qe2.Uq

25e25 lim
b↓bc

1
~q!

Uq~b!.

This happens also atbc
2(q) when the ceiling state is degenerate, i.e.,g1>2, ande

*
1,e1,0. The

range of the functionb°Uq(b) is not @Uq
2 ,Uq

1# when there are degeneracies in the ground or
ceiling states and these states have non-zero finite energy. There are then energiesu for which
there is no reciprocal temperature.

When g2.1, we can computefq* , defined in~9!, as follows. To eachu>g2
12qe2, there

corresponds a uniqueb(u) P (2`,b
*
1(q)# and the corresponding minimizers lead us, using

Lemma 2, toSq(u)5fq* (u)5Sq@rb(u)#. For u in the non-thermal interval (e2,g2
12qe2) there is

no b such thatUq@rb#5u. But we can compute the Legendre–Fenchel transform offq directly
for this interval. The result is:

fq* ~u!5bc
1~u2e2!5

1

~12q!e2 u1
1

q21
, for uP@e2,g2

12qe2#.

Thus fq* is a straight line on the non-thermalu-interval. We know by Lemma 1, that
Sq(u)<fq* (u). We also know thatSq(g2

12qe2)5fq* (g2
12qe2) because at this point there is a

minimizerrb
*
1(q) . We can compute the value ofSq at e

2 directly from the definition~6!. Indeed,

the only statesr such thatUq@r#5e2 are the pure eigenstates to that eigenvalue; thus
Sq(e

2)505fq(e
2). Since in the non-thermal intervalSq lies belowfq* and coincides with

fq* at the end-points we conclude that ifSq(u),fq* (u) for someu inside this interval, thenSq is
not concave, and the correct entropy function is~the straight line! fq* on this interval. This strange
effect of degeneracy is rather drastic. In the finite dimensional case, wheng2 is so large that
g2
12qe2.e1, the whole spectrum$en% lies inside the non-thermal interval. The non-thermal
interval disappears as soon ase2<0 even whene

*
2.0 andg2>2. Indeed, herebc

1(q)5` and
the least energyUq

25g2
12qe2 is reached atb

*
1(q) where the minimizer isg2

21P2 and coincides
with the Hölder stater2 of ~5!.

C. A remark about equilibrium

We have been referring to the TH staterb , which is the unique minimizer of the variational
problem~8!, as the equilibrium state at reciprocal temperatureb. In fact, this is a gross abuse of
the analogy with the connection between Boltzmann–Gibbs statistical mechanics and Thermody-
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namics. We should first analyze if this notion of equilibrium entails its transitivity; that is, if the
familiar 0th-law of thermodynamics holds in this formalism.It does not. Suppose one has two
systems with HamiltoniansHj described on the Hilbert spacesH j such thatHj is not a multiple
of the identity (j51,2). The composite noninteracting system is described by the Hamiltonian
H5H1^ I1I ^H2 on the Hilbert spaceH5H1^H2 . The TH staterb at reciprocal temperature
b in I , which is the unique minimizer of~8! with Uq

(H)@r#5trH(r
qH), is not a product-state:

rbÞ~rb!1^ ~rb!2 ,

where (rb) j is the restriction ofrb to a state of thej -th subsystem. Moreover, (rb) j is not a TH
state of the systemj in the sense that it does not minimize~8! with Uq

(Hj )@v#5trH j
(vqH j ) for

any b. Thus, it is impossible to assign a reciprocal temperature to the subsystems when the
composite non-interacting system is in the staterb . It follows that this notion of equilibrium is not
transitive and the analogue of the 0th-law is not true. Thus, a possible connection between this
‘‘thermostatistics’’ and some thermometrical notion cannot be established with the parameterb.

The reason behind this unwanted feature is to be seen in the non-additivity property of the
q-entropy

Sq@r ^ v#5Sq@r#1Sq@v#1~12q!Sq@r#Sq@v#;

and of the functionalUq@•#

Uq
~H !@r ^ v#5Uq

~H1!
@r#1Uq

~H2!
@v#1~12q!~Uq

~H1!
@r#Sq@v#1Uq

~H2!
@v#Sq@r#!.

These properties can be easily checked.
For 0,q,1, Tsallis4 introduced the notion ‘‘thermally forbidden region’’ for the intervals

b<bc
2 and b>bc

1 , and ‘‘thermally frozen region’’ for the intervalsbc
2,b<b

*
2 and

b
*
1<b,bc

1 . For theq.1 case, the intervalsb<bc
2 andb>bc

1 were called ‘‘thermally frozen
region.’’ For us, all these regions are thermally inaccessible, without further discrimination, be-
cause the ‘‘free-energy’’ functionfq , which is well defined, is linear therein. In consequence the
‘‘specific heat’’ in these regions is identically zero. It is worthwhile to stress that the variational
problem posed by~8! only gives a unique minimizer state, the TH equilibrium state, for
bc

2,b,bc
1 .

V. ILLUSTRATION

At present, ‘‘specific heat’’ calculations for non-standard thermal statistics based on
q-entropies~as was worked out in Ref. 3!, are available for the two-level system, a free particle,10

and the Ising chain.11

In this Section we present as an application of the non-standard formalism developed above,
the ‘‘free-energy’’ functionfq and the ‘‘specific heat’’ of the harmonic oscillator characterized by
the spectrum:

en5n2a, n50,1,2,••• ,

wherea P R. Immediately we havee15e
*
15` ande252a, e

*
2512a. The influence ofa is

relevant forq Þ 1. For conventional use, we will present the results of this section as functions of
the temperatureT instead ofb5 1/T . The ‘‘Helmholtz free-energy’’ isTfq(T). Here,H is
bounded below but not above, in consequenceTc

25T
*
252` and the thermally relevant region is

T.Tc
1 for q.1 andT.T

*
1 for 0,q,1.

Case q.1:
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Tc
15H 0, a<0

~q21!a, a.0
,

fq~T!55
2`, T<0

2
a

T
, 0,T<Tc

1

1

12q H F (
n>0

S ~q21!~n2a!

T
11D 1/~12q!G12q

21J , T.Tc
1

.

The convergence of the series is obtained only forq,2. For q>2, formally we obtain
f(T)5(1/12q) for T.Tc

1 , thenCq(T)50.
Figure 1 illustrates the thermal dependence of the ‘‘specific heat’’ for typical values of

q.1 anda. ForT→` the contribution to the series are from the terms withn..a. Then for a
givenq.1, the ‘‘specific heat’’ curves for different values ofa coalesce asymptotically.

Case0,q,1:

Tc
15H 0, a>0

2~12q!a, a,0
;T
*
15H 0, a>1

~12q!~12a!, a,1

FIG. 1. Thermal dependence ofCq in the harmonic oscillator for typical values ofq.1. Fora<0, Tc50. In the case
q51.2, fora55, Tc

151. The caseq51 is also shown for a comparison with the Boltzmann–Gibbs curve.
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fq~T!55
2`, T<0

2
a

T
, 0,T<T

*
1

1

12q H S ( 8
n

S 12
~12q!~n2a!

T D 1/~12q!D 12q

21J , T.T
*
1,

where(8 runs overn,T/(12q)1a.
Figure 2 shows the thermal dependence ofCq for typical values ofq in the interval (

1
2,1). We

observe strong oscillations in the ‘‘specific heat’’ but it is continuous everywhere. Forq< 1
2 the

functionUq(T) is not differentiable in the pointsTn5(12q)(n2a).0. These points are equally
spaced for the harmonic oscillator. The caseq5 1

2 is presented in Figure 3, where we can observe
the finite discontinuities inCq at Tn . The lateral divergences inCq at Tn for a typicalq, 1

2 are
shown in Figure 4. The ‘‘specific heat’’ was numerically evaluated in all presented pictures.

VI. RESULTS ON THE MULTIDIMENSIONAL CASE

The results of the Appendix apply immediately to the case where one imposesN constraints
via N HamiltoniansH1 ,H2 ,•••,HN .

12 Let

Sq~u1 ,u2 ,•••,uN!5supr$Sq@r#:Uq
~ j !@r#:5tr ~rqH j !5uj , j51,2,•••,N%;

then one has

fq~bW !:5 inf
uW

$bW •uW 2Sq~uW !%5 inf
r
H (
j51

N

b jUq
~ j !@r#2Sq@r#J

FIG. 2. Thermal dependence ofCq in the harmonic oscillator for two values ofq in the region
1
2,q,1 anda50.
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for the Legendre–Fenchel transform ofSq at the pointbW 5(b1 ,b2 ,•••,bN) P RN. The solution of
this variational problem is controlled, via Propositions A.1 and A.2 of the Appendix, by the sign
of the least eigenvalue of the operatorA(bW ,q):5( j51

N b jH j1(q21)21I .
In the infinite dimensional case there are domain problems to be taken into account and one

has to establish conditions such that the operator has purely discrete spectrum. To avoid all this we
consider in what follows only the finite dimensional case.

For q.1, let I q :5$bW :a2(bW ,q).0%. Since the function RN { bW °a2(bW ,q):
5 inf$spec„A(bW ,q)…% is concave,I q is a convex subset ofRN. The boundary ofI q defines the

FIG. 3. Thermal dependence ofCq in the harmonic oscillator forq5
1
2 and typical values ofa, showing discontinuities.

FIG. 4. Thermal dependence ofCq in the harmonic oscillator forq50.3 anda50.
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hypersurface of criticalbW ’s; this hypersurface is difficult to describe explicitly and globally when
the Hamiltonians do not commute with each other. There is a unique minimizer whenbW P I q

given by the Tsallis–Ho¨lder state

rbW 5tr „A~bW ,q!1/~12q!
…

21A~bW ,q!1/~12q!.

On the critical hypersurface, the minimizers are ground- or ceiling-states ofA(bW ,q). Outside the
closure ofI q , the minimizers are pure ground- or ceiling- states ofA(bW ,q).

For 0,q,1, the relevant regions areI q :5$bW :a2(bW ,q),0%, and a second regionI q* de-
fined as the complement inRN of the bW ’s with either a2(bW ,q)>0 or such that the operator
A(bW ,q)2 has exactly one non-zero eigenvalue; alternativelyI q* :5$bW :a2(bW ,q),0,
and A(bW ,q)2 has more than one non-zero eigenvalue%. Neither of these sets is convex in general.
ForbW P I q* , the minimizer is unique and given by the Tsallis–Ho¨lder state

rbW 5tr „A~bW ,q!2
1/~12q!)21A~bW ,q…2

1/~12q! .

ForbW P I q /I q* , the minimizer is the equidistribution of ground- or ceiling-states ofA(bW ,q). On
the boundary or outside ofI q the situation is as in the caseq.1.

Clearly, the multidimensional case reduces to the case of only one constraint. Taking an
arbitrary unit vector~i.e., direction! eW in RN, and lettingH(eW )5( j51

N ejH j , the problem is re-
duced to that which we have solved explicitly:

fq
~eW !~b!:5fq~beW !5 inf

r
$bUq

„H~eW !…@r#2Sq@r#%.

Thus the intersections of the setsI q andI q* with the rays inR
N are described explicitly in terms

of direction dependentbc
6(eW ,q)’s and, for 0,q,1, b

*
6(eW ,q)’s.

VII. CONCLUDING REMARKS

We have solved rigorously the variational problem associated with theq-entropies under the
non-affine constraintUq@•#5 constant. We have determined by use of the Ho¨lder inequality the
corresponding quantum states minimizing the functionalbUq@•#2Sq@•#. Then we have estab-
lished all the ‘‘thermostatistical’’ consequences. In particular, the analogue of the 0th-law of
Thermodynamics does not hold in terms ofb.

For q.1 the bizarre feature as perceived from familiar Boltzmann–Gibbs statistics, apart
from the manifest dependence on the energy-zero, is the unattainability of temperatures in the
interval @1/„bc

2(q)… , 1/„bc
1(q)…#, and what we have called strong violation of the third law.

The case 0,q,1 is much richer. Generally speaking the case 0,q,1, presents the same
features as the caseq.1: strong violation of the third law, and unattainability of low temperatures
~but not always!. But the depopulation phenomenon of levels, has a drastic effect in the ‘‘specific
heat,’’ which may present oscillations, discontinuities and lateral divergences.

Note added in proof:We complete a point left open in the case 0,q,1, and show thatSq is
concave. In the last two paragraphs of part B in Sec. IV, we had seen that if the ground-state
energy is degenerate, i.e.,g2>2 ~alternatively the ceiling-state is degenerate,g1>2), then there
are energiesu for which there are no reciprocal temperatures whene2.0. The corresponding
energy interval (e2,g2

12qe2) was referred to as the non-thermal interval. We computed the
Legendre–Fenchel transformfq* of fq for this interval obtaining fq* (u)5bc

1(u2e2)
5 (q21)21(12u/e2). We then said that, due to the general inequalitySq<fq* , and the fact that
Sq5fq* at the end-points of the non-thermal interval, we could conclude thatSq is not concave if
for some non-thermalu we hadSq(u),fq* (u). Here we show thatSq5fq* on the whole non-
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thermal interval, so thatSq is indeed always concave. Take a stater such thatrP25r @recall that
e2.0 is degenerate, i.e.,g25tr (P2)>2]. Then tr (rqH)5e2tr (r

q), so that Sq@r#
5 (q21)21(12Uq@r#/e2). Since 1<tr (rq)5tr (rqP2)<g2

12q , givenu in the non-thermal in-
terval, we can choose ar satisfying the conditions withUq@r#5u and thusSq@r#5fq* (u). On
the other hand, for any stater with Uq@r#5u, we haveSq@r#<Sq(u)<fq* (u). We conclude that
Sq(u)5fq* (u) on the non-thermal interval. The same argument applies to the case of degenerate
ceiling-energy.
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APPENDIX: THE BASIC VARIATIONAL PROBLEM

Here we solve the two variational problems infr tr (r
qA) and supr tr (r

qA) for 0,q Þ 1,
whereA is selfadjoint and its spectrum consists entirely of isolated eigenvalues of finite multi-
plicity. These we number as$an% according to their multiplicities:

A5(
n

anucn&^cnu,

where $cn% is a complete orthonormal basis of eigenvectors forA. We let a1:5supnan ,
a2:5 infnan , and remark that if either of these two numbers is finite, then it is an eigenvalue of
A. The traces in question are always understood as

tr ~rqA!5(
n

an^cn ,r
qcn& ~A.1!

when the series on the right-hand side is absolutely convergent.
The solution requires use of the classic Ho¨lder inequality which we quote from Ref. 13 for the

readers convenience:
Hölder Inequalities: Let k be a real number distinct from0 and from 1, and put

k85k/(k21). Let $an% and $bn% be sequences of non-negative real numbers, then:

(
n

anbn<S (
n

an
kD 1/kS (

n
bn
k8D 1/k8 for k.1, ~A.2!

with equality iff either an
k5cbn

k8 or can
k5bn

k8 for every n with a non-negative real c;

(
n

anbn>S (
n

an
kD 1/kS (

n
bn
k8D 1/k8 for k,1, ~A.3!

with equality iff either anbn50, or an
k5cbn

k8 for every n, with a positive real c.
We will also use the following well known result:
Lemma A.1:For any unit vectorc,

^c,rqc&>^c,rc&q, for q.1

^c,rqc&<^c,rc&q, for 0,q,1
.
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In both inequalities there is equality if and only ifrc5^c,rc&c, i.e., if c is an eigenvector of
r.

Proof : Let $Pm% be a family of orthogonal projections with(mPm5I , and rPm5rmPm ,
where$rm% are the distinct eigenvalues ofr. Then,tr (Pm) is the multiplicity of the eigenvalue
rm , and(m^c,Pmc&51. The mapx°xq is strictly convex~resp. strictly concave! on the unit
interval forq.1 ~resp. 0,q,1); thus

^c,rqc&5(
m

rm
q ^c,Pmc&

>

~<!S (m rm^c,Pmc& D q5^c,rc&q.

In both cases we have equality if and only if either allrm are equal~as happens ifr is the
normalized trace in finite dimensions! or else^c,Pmc&5dm,mo

for somemo . In both cases, it
follows thatrc5rmo

c5^c,rc&c. h

A useful and immediate consequence of the equality condition of this result is that, since the
eigenvalues ofr lie in @0,1#: tr (rq)<( resp.>)tr (r)51 for q.1 ~resp. 0,q,1); with equality
iff r is a pure state (⇔rq5r).

Lemma A.2:Supposea2 > 0. For every stater, one has:
1. For q.1,

a1>tr ~rqA!>H $tr ~A1/~12q!!%12q, if a2.0

0, if a250
. ~A.4!

When0,a1,`, there is equality on the l.h.s. iffr is a pure eigenstate of A to the eigenvalue
a1. Whena2.0, and tr(A1/(12q)) is finite, there is equality in the r.h.s. iff

r5
A1/~12q!

tr ~A1/~12q!!
. ~A.5!

Whena250, there is equality on the r.h.s. iffr is an eigenstate of A to the eigenvalue0.
2. If 0,q,1,

a2<tr ~rqA!<$tr ~A1/~12q!!%12q. ~A.6!

Whentr(A1/(12q)) is finite, there is equality in the r.h.s. iffr is given by (A.5). Whena250 ~resp.
a2.0) there is equality on the l.h.s. iffr is an eigenstate (resp. pure eigenstate) to the eigenvalue
a2.

We call the states such as~A.5! Hölder states because they saturate Ho¨lder’s inequality.
Proof :
1. Caseq.1. Suppose thata1,`. We havetr (rqA)<a1tr (rq)<a1. If a1.0, there is

equality in the second inequality iffr is a pure state. But then there is also equality in the first
inequality if r is a pure eigenstate to the eigenvaluea1. If a15` there is nothing to prove.

Supposea250; then, sincean>0, obviouslytr (rqA)>0 with equality iff ^cn ,r
qcn&50 for

everyn with an.0. The latter condition is equivalent tôcn ,rcn&50 for everyn with an.0.
This is equivalent totr (rA)50 which, with the variational characterization of the bottom of the
spectrum, is equivalent tor being an eigenstate ofA to the eigenvalue 0.

Supposea2.0; then Lemma A.1 and Ho¨lder’s inequality~A.3! with k51/q together with
an.0, produces

tr ~rqA!>(
n

an^cn ,rcn&
q>S (

n
^cn ,rcn& D qS (

n
an
1/~12q!D 12q

.
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There is equality in the last inequality iff^cn ,rcn&5can
1/(12q) for everyn with c.0. But then,

there is equality in the first inequality iffr is diagonal in the $cn% basis, that is
^cn ,rcn&5rn5can

1/(12q) .
If (nan

1/(12q) is finite, then one can determinec by normalization to be ((nan
1/(12q))21 and

obtain the assertions. If the sum is̀, the r.h.s. of~A.4! which is 0 is not attained.
2. Case 0,q,1. We havetr (rqA)>a2tr (rq)>a2. Whena2.0, there is equality in the

last inequality iffr is a pure state; and also in the first inequality iffr is a pure eigenstate ofA to
the eigenvaluea2. Whena250, there is equality in the first inequality iffr is an eigenstate of
A to the eigenvalue 0.

Applying Lemma A.1, and Ho¨lder’s inequality~A.2! with k51/q.1, together with the as-
sumption thatan>0, we get

tr ~rqA!<(
n

an^cn ,rcn&
q<S (

n
^cn ,rcn& D qS (

n
an
1/~12q!D 12q

.

The rest of the claim can be got as in the caseq.1. If (nan
1/(12q) is `, then the r.h.s. of~A.6!

which is` is not attained. h

It is instructive to consider the case whereA is the Hamiltonian of the harmonic oscillator
with eigenvaluesan } n. Here(nan

1/(12q)5` if 0 ,q,1 or q>2; so the r.h.s. of~A.4! which is
0, and the r.h.s of~A.6! which is`, are not attained in these cases.

Having solved the case of a strictly positiveA it is now easy to solve the general case as
follows.

Proposition A.1:For q.1

inf
r

tr ~rqA!5H $tr ~A1/~12q!!%12q, if a2.0

a2, if a2<0
.

If a2.0 and tr(A1/(12q)) is finite there is a unique minimizer, the Ho¨lder state given by (A.5). If
a250 ~resp.2`,a2,0), then the minimizers are the eigenstates (resp. pure eigenstates) of
A to the eigenvaluea2.

sup
r

tr ~rqA!5H 2$tr „~2A!1/~12q!
…%12q, if a1,0

a1, if a1>0
.

If a1,0 and tr„(2A)1/(12q)
… is finite, there is a unique maximizer, the Ho¨lder state given by

(A.5) with the positive operator2A. If a150 ~resp. 0,a1,`), then the maximizers are the
eigenstates (resp. pure eigenstates) of A to the eigenvaluea1.

We recall the definitions of the positiveA1 and negativeA2 parts of the operatorA:
A65(n@(uanu6an)/2#ucn&^cnu. One has that bothA1 and A2 are non-negative, and
A5A12A2 .

Proposition A.2:For 0,q,1,

inf
r

trrqA)5H 2$tr „~A2!1/~12q!
…%12q, if a2,0

a2, if a2>0
.

If a2,0 and tr((A2)
1/(12q)) is finite, then there is a unique minimizer, the Ho¨lder state given by

(A.5) with A2 . If a250 ~resp.a2.0), the minimizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvaluea2.
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sup
r

tr ~rqA!5H $tr „~A1!1/~12q!
…%12q, if a1.0

a1, if a1<0
.

If a1.0 and tr„(A1)
1/(12q)

… is finite, then there is a unique maximizer, the Ho¨lder state given by
(A.5) with A1 . If a150 ~resp.a1,0) the maximizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvaluea1.

Proof of the Propositions:Since supr tr (r
qA)52 infr tr „r

q(2A)…, it suffices to prove the
assertions for the infimum. In view of Lemma A.2, it remains only to consider the casea2,0.
But then, lettingA2 ~resp.A1) be the negative~resp. positive! part of the operatorA, we have

inf
r

tr ~rqA!5 inf
$r:tr ~rqA1!50%

tr „rq~2A2!…52 inf
$r:tr ~rqA1!50%

tr ~rqA2!,

so that Lemma A.2, proves the statements after a careful and detailed analysis of the condition
tr (rqA1)50. h

We want to remark that in this variational problem we can have supr tr (r
qA).e1 or

infr tr (r
qA),e2 because of the lack of affinity of the functionaltr (rqA).
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