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We consider the quantum thermal statistict Gibbs—Shannon—Szilard—Jaynes
based onq—entropiessq[p]=(q—l)*l(l—tr(pq)) (0<g # 1) and the non-
standard “internal energy” functionald [ p]=tr(p%H) proposed by C. Tsallig).
Stat. Phys52, 479-487(1988]. © 1996 American Institute of Physid$0022-
248896)01403-1

I. INTRODUCTION

For a discrete probability distributiop=(p,p5,---), with p,=0, andZ,p,=1, consider
the monoparametric family of entropi¢the g-entropies:

sq[p]=(q—1>1(1—; pﬂ),

whereq is a real number distinct from 0 and from 1. One sees easilyShata concave function
on the convex set of probability distributions wheng>0; and that
limg_.1Sy[p]=—Znpn In(pyn), the well-known Boltzmann—Shannon entropy.

Tsallis' proposed to build up a “thermostatistics” by maximizing theentropies at given
fixed internal energy given byX,p,e,. To this end he introduces the function
Sylplt+aZ,pn—aB(q—1)Z,€,p, and after a standard variation obtains the distributign
« (1-B(q—1)e,)¥ @1, Although B provides a convenient and explicit parametrization of the
distribution with maximabj-entropy, it is not the reciprocal temperature associated to the problem.
This reciprocal temperature is given lyB(q—1). Nevertheless, it is possible to perform the
analysis with the correct reciprocal temperature and obtain a “thermal” statistics Gging
instead of the Boltzmann—Shannon entrépyg. subsequent papers, Tsallis and coworkégso-
posed to build up a “thermostatistics” using theentropies but replacing the standard expression
for the internal energy by the functionallq[p]ZEnenpﬁ with the sameq used for the entropy.
This functional is not affine fog # 1,i.e.,Ug[Ap1+(1—N)p2] # NUg[p1]+(1—N)Uq[p,] for
the mixture of distributiong,, p, in proportionsh and (1-\) respectively. The variational
calculation involving classical distributions only and using Lagrange multipliers was carried out in
Ref. 3, but the analysis is incomplete since the multiplier ranges are not determined or determined
ad hoc. In the last few years, a lot of researchers have explored the features of the formalism
proposed by Tsallis, and have developed applications to physics, astrophysics, biology, econom-
ics, statistical inference problems, etc. For a review see Ref. 4.

In this paper, we consider the “thermostatistics” associated withcHemtropies for 6<q
# 1 and the non-standard constraif[ - ]|= constant. We determine by a direct meth{oding
Holder's inequality as the key ingredignthe quantum mechanical stédepg minimizing the
functional:

p—>BUqlp]—Sp]. 1)
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We then proceed to establish all “thermostatistical” results analogous to those known for the case
g=1 of Boltzmann—Gibbs statistics. We thus complete the program proposed in Ref. 3 as follows:
For each possible “internal energyl there is a unique state, among those states with
Uglp]l=u which maximizesSy[ - |; the g-entropy as a function of the “internal energy” is a
concave differentiable function; for eaghin a certain explicitly determined interval, the mini-
mizer p; is unique and it is equal te, whereu=Ug[pg], moreoverg is the value of the
derivative ofS; with respect tau evaluated ati; the minimal value of the functiondl) is equal
to the Legendre transforifwith respect tau) of S, as a function ofi. However, despite all these
results we warn the reader that the paramgtewhich we call “reciprocal temperature,” does not
satisfy the analogue of thé®law of Thermodynamic$See Sec. IV @

Syl - ] for discrete probability distributions was introduced, with a different prefactor, by Z.
Darcczy® who obtained the basic properties and gave an axiomatic characterization. The quantum
mechanical version

Si{pl=(a—1)" (A ~tr(p%),

appears on page 247 of Wehrl's reviéWhese entropies are intimately related to the Renyi
entropie$ We record here some of the basic properties ofgffetropies; the proofs are given in
Ref. 7. S[p]=0 with equality iff p is pure. In the finite dimensional cagdimensiond),

Sy -1 is strictly concave and one h&[p]<(q—1) *(1—d'~% with equality iff p is the
normalized trace. In the infinite dimensional caseqi#1 Sy[ - ] is strictly concave and one has
Sq[p]<(q—1)‘1; moreoverSy[ - | is Lipschitz in the trace norm. If €gq<1, in infinite dimen-
sion, Sy[ - ] is generically(on a set of second categgrinfinity but the set where it takes finite
values is convex ang[ - | is strictly concave on it.

We do not consider the cage<0. In this case, the expressions f&f make sense in finite
dimensions when the distribution is not degenerate, or when zero is not an eigenvalue of the state.
In infinite dimension howevelg, is identically equal to infinity.

In Sec. I, we study the “internal energy” functionalf[ - ]. In Sec. Ill, we develop the basic
facts about the “thermostatistics” based on the paf - |, Sy[ - ]. The variational problem asso-
ciated with the minimization of the functionél) is worked out in Sec. IV; where some of the
main features of the formalism are established as direct consequences of the results. In Sec. V, we
consider as an illustration the non-standard “thermostatistics” for the harmonic oscillator. The
extension of the results to the multidimensional case, corresponding to fixing the valbes of
functionalsU, based orN Hamiltonians, is considered in Sec. VI. Section VII contains our final
comments. The general results about all the variational problems discussed in this paper are
proved in the Appendix.

In this paper we work with the extended real numbers and use the usual conventions for
addition; the equalities and inequalities appearing here are to be understood in this s€isge By
denote the usual real numbers withaute.

Il. THE FUNCTIONAL Ug[ -]

Assume given a selfadjoint operatét whose spectrum consists entirely of eigenvalues
{€n} which are enumerated according to their multiplicities. Accordingly, in the classical case,
{e,} is a(possibly finite sequence of real numbers. We wrété (resp.e ) for the maximakresp.
minimal) energy:

eti=supe,; € :=infe,.
n n
We assume the non-trivial cage <e, . For >0, define the “internal energy” functionals
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1792 Guerberoff, Pury, and Raggio: Nonstandard g-statistics

> €,p3, inthe discrete classical case
Uglpl=y " 2
tr(p%H), inthe quantum case.

In the infinite dimensional case and whenis unbounded, we have to specify what the trace of
the operatop?H means. We will make the following assumptidhe spectrum ofH is purely
discrete; that is to say it consists entirely of isolated eigenvalues with finite multiplicity, alterna-
tively {en} has no accumulation pointtl[ - ] can be defined under milder assumptions, but the
above condition will be necessary to insure existence of the minimizgdd the functional(l).
This spectral assumption insures that we have a seqyéhgeof pairwise orthogonal finite-rank
projectionsP,, such thatH =3 ,e,Pm (€, are the distinct eigenvalues Bf). Now, tr (p9P,,) is
finite, even wherp? is not trace-class as can happen fet @< 1. If the seriesS e tr (pP,,) is
absolutely convergent, we define ittaigpH); otherwise, the trace remains undefined. If the trace
is defined then, for any complete orthonormal bdsis} of eigenvectors), of H to the eigen-
valuee,, one has

tr(PqH):; En<¢n 1Pq¢n>'

We denote the set of all statgs (i.e., density operators in the quantum case or probability
distributions in the classical cgsby (). It is immediate in finite dimensions that foy # 1,
Ugl-]1 is not affine on Q. But if p is pure (ie.,, an extremal point of(}), then
Uglpl=U1[p]=tr(pH). Ininfinite dimension, the se®, whereU[ -] is defined contains the
convex set ofp’s whose matrix in an eigenbasis Hf has the block form

D
0 O

with D an arbitrary finite density matrix.
We write

Ug :=supUg[pl, Ug:= inf Uglp].
pelly peQyq

The variational problems posed h;./qt are solved in the Propositions A.1 and A.2 of the Appen-
dix. If we denote byH, (H_) the positive,(resp. negativepart of the operatoH; applying
Proposition A.1, we directly determirleg for g>1. And from Proposition A.2 we immediately
obtainUg for 0<g<1:

€, if e"=0 or a>1
or
—{tr(H_)Y1-oy1-a  jf ¢7<0 a
Us= : 3
{tr(H YA t=a if €'>0 ©
. for 0<g<1
e, if et<0
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€, if e <0 ¢ -
or
{tr(H)YA-oypt-aif e >0 f
Uy = : (4)
—{tr(H_)Y1-oy1=a jf ¢ <0
_ . for 0<g<1
€, if e =0

In this context, the traces in the infinite dimensional case are understood with respect to any
orthonormal basis of eigenvectorsidf i.e.,tr (HY ") =3/ | ¢ |2~ where the sum runs over
the positive(negative eigenvalues oH for H, (H_).

The lack of affinity of the functionalUy[-] manifests itself again since we can have
U;> et or U, <€ . As we show in the Appendix, th.ng = €™ and finite, the extremizers are
eigenstates oH to the eigenvaluee™ (pure eigenstates €= # 0). If Ug + € and
tr((H.)Y(~9) is finite, the extremizer is unique and given by théld¢o state:

(H)He-o

P = (A T ) ©)

wherep, (p_) is associated withd , (H_) in the expressions fdrl§ .

lll. BASIC THERMAL STATISTICS

In this section we resume the general program of the thermal statistics. The results quoted
below are independent of the specification of the “internal energy” and entropy functionals.

For anyu in the interval[U, ,UJ], we write .7 (u) for the set ofp’s with Ug[p]=u
(Z4(u)CQg). We can now define entropy as a function of “internal energy” by

Se(u):=sup {Spl}, ue[Uq,Ugl. (6)

pe.%d(u)

We are distinguishing the “thermodynamic” functionals, such$- ], defined on the states
from the “thermodynamic” functions, such &, by using square brackets for the arguments of

the former.
We consider the Legendre—Fenchel transforngpgiven by
¢q(B):= inf {Bu—S4(u)}, BeR. (7
ue(Ug .Ug)

The functionﬂwﬁ‘%q(ﬂ) is—in appropriate dimensionless variables—the “Helmholtz free-

energy” of the system whose “internal energy” functionallg| - ]. We first show thaip, is

equal to theinfimum over statesf the corresponding “free-energy” functionél), and remark

that the Legendre—Fenchel transform #f w.r.t. 8 (the Legendre-Fenchel transform of the

Legendre—Fenchel transform 8f) is the concave, uppersemicontinuous regularizatio,of
Lemma 1:

bq(B)= iné {BU4Lp]=Sylp]}, (8
peQy

Sq(u)= inf {Bu—g(B)}=1(dg)* (U). ©)
BeR

Proof : Both statements are general consequences of the defitidiof®) is a general fact in the
theory of Legendre—Fenchel transforfsee e.g., Ref.)8 moreover
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1794 Guerberoff, Pury, and Raggio: Nonstandard g-statistics

dq(B)=inf{Bu—sup,c z S pl}=infyinf,c s wiBu—Sypl}
= infuinfpe)ﬂ'(u){ﬁu[p] - Sq[p]}: Infpeﬂq{ﬂu[p] - Sq[p]}

The restriction to(); guarantees that the functiondy] - ] is defined in infinite dimension. [

The problem of “equivalence of ensembles,” at this level, is the proof that one has equality
in (9). One has then tha, is indeed concavéand upper semicontinuousind a reasonable
entropy functior?®. If, however,S, is not concave, then the appropriate entropy function is in fact
(¢q)*. The following simple result will be important here.

Lemma 2: If u is such that there exisBy € R and p, € (1 satisfying Y[ p,]=u, and
¢q(,80)::80Uq[po]_Sq[Po]v then S‘(U)qu[po]Z((ﬁq)*(U), and Uq[P] is a subdifferential
(see Ref. 8) 0fbq at Bo: bq(B)=dq(Bo) + (B~ Bo)Uelpo] for all 5.

Proof : By the definitions of (q)* [l.h.s. of (9)], and of S;, the assumptions give:
(g)* (U)<BoU— dg(Bo) =BoU— BoUgl pol+ Syl po]=Sy(u). The first claim follows from(9).
Also ¢q(:80) +(B— Bo)Uq[po] = Bqu[Po] - Sq[Po] +(B— BO)Uq[pO] = IBUq[po] - Sq[po]
= ¢g(B)- O

Lemma 2 tells us when the minimizer of the variational probi@&nis the maximizer of the
variational problem(6). We will deal with the problem posed b§8), since it is a variational
problem without constraints om and thus easier to solve. Once this problem is solved we must
verify that for each possible valuee (U, ,Ug) there isp satisfying the hypothesis of Lemma 2
to get the solution of the original proble(). The next question for any thermal statistics is to
know if one has a unique extremizer, or not. If so, the unique extrempizes the equilibrium
state at reciprocal temperatuge Another natural question arises in connection with the varia-
tional problems. Suppose thatis a maximizer in(6) or a minimizer in(8) both in the quantum
case; is it true thap is diagonal ?, that is to say, it is diagonalized by some orthonormal basis
which also diagonalizesl.

We now record some general properties of the functign

Lemma 33 > B— ¢(B) is a concave, upper-semicontinuous function, which is continuous
on the interior of the convex (hence connected) subset(dg)rof % where it takes finite values.

One has ¢q(0)= —sup,. oSy p1(<0), and U, ")+ pg(0)<p(B)<pU, ") if g>0
(resp. B<0). Thus, if Uq+=oo (resp. Uy = —), then ¢4(B)=— for all B<0 (resp. all
B>0).

R > ,BH,Bflqsq(,B) is non-decreasing of—«,0) and on(0,). In the finite dimensional
case, or in general for g1, limg_ , (_y..8  q(B)=Ug ™.

If for some B,>0 (resp. B,<0), one hasgy(B,)=B,Us ", then ¢q(B)=pBU, ") for
every =3, (resp.f= o).

Proof : The basic propertiegconcavity, upper semicontinuity, etcare well known conse-
quences(see e.g., Ref.)8of the definition(7). Since(), contains all density operators whose
matrix in an eigenbasis dfl has finite rank, the supremum ov€r, of Sj[-] is equal to the
supremum over the whole state spdee The inequality fore, is obtained from(8) using the
inequality 0= Sy[ p]<sup,Sy[p]. The increasing property qf‘1¢q(ﬁ) follows from (8) using
the positivity of i - ] and the fact thap— — B~ ! is increasing on the intervals—x,0) and
(0,%). Using thatSy[ - | is finite in finite dimension or wheg> 1, one can show the assertion of
the limit for B— = . The last claim, concerning attainment of the bounds, follows from the

increasing property 0,8*1¢)q(/3) and the inequality. O
The largest entropy can be computed easily, and from what was said in the Introduction, it
follows that:
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(1-q)~1(1-d*"9), Vq in finite dimensiord

bg(0)=1{ (A=)~ if g>1,
—© if 0<qg<1,

in infinite dimension

The following symmetry property is immediate frof8): ¢8H)(—B)= qSE]_H)(,B), where the
superscript indicates the Hamiltonian usedJy - |.

If, in the infinite dimensional caseé{ is unbounded both above and below thég= —
except atB=0 whenqg>1. The “thermostatistics” is empty; and we rule out this case from
further consideration. We assume then that in the infinite dimensionalltdsesemibounded.
Under this conditiong is a proper concave function, that is to say: it does not take the value
o and it is not identically— .

The inequality of the above lemma implies a familiar fact in Boltzmann—Gibbs thermody-
namics: ifU§= +o — as happens whee™ = + o, that isH is not bounded abov@esp. below
— then ¢y(B) = — = for all negative(resp. positive 8. We will see in what follows that in the
present context the bourgl (*) can be attained at a finite positiyesp. negativep; this does
not occur in Boltzmann—Gibbs statistics. Thus, the present formalism presents the feature that
temperatures belowabove a certain positivgnegative value are unattainable. This unfamiliar
feature persists if the constraioty[ - | is replaced by the physical constralo[ - 1.2

IV. DETERMINATION OF ¢, AND THE MINIMIZERS

We now computep, by solving the variational probler8); this will also give us the corre-
sponding minimizers. Notice tha@U [ p]—Sy[p]=(1—q) ' +tr{p9(BH+(q—1)"'1)}, so that

bq(B)=(1—q) " *+inf tr{pA(B,a)}, (10

p

where we have introduced the selfadjoint operdto8,q):=8H+ (q— 1) *l. Thus, the problem
is solved by the results of the Appendix as soon as the lower bound
a” (B,q)=inf{Be,+(q—1)"1} of the spectrum ofA(3,q) is known. But

-1 €, if =0 11
- —(a—1)"1+ 8. .
with the usual convention @{«~)=0. Since the solution of10) is governed — via Propositions
A.1 and A.2 of the Appendix — by whether (3,q) is negative or not, there are two “critical”
values of3, the solutions of the equatiom™ (8,q) =0. These numbers can be finite firo.

We distinguish the two cases<y<1 andqg>1. As before, all traces in the infinite dimen-
sional case are to be understood with respect to an arbitrary orthonormal basis diagohhlizing

A. Case g>1
We define positive and negative critical reciprocal temperat@eq)) and 3. (q) respec-
tively by
©, if e =0 — oo, if et<0
+ = 1 N N = 1 .
Be () _ i o< Pcl@ ~ it et>o (12
(1-q)e (1-q)e

Notice that ifH is not bounded abovéesp. below then 3; =0 (resp.8. =0); at least one of
these critical reciprocal temperatures is finite; and if the spectrum has both negative and positive
elements, then both critic@l’s are finite.

It is immediately verified that
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<0 if B<pB.(q)<0 withequality iff =2 (q)
>0 if Bc(q)<p<O

a (B >0 if 0<p<pBi(q)
<0 if 0<BJ(q)<B withequality iff 3= (q)

Furthermorea ™ (8,q)= —= if B<B; =0 or 8> B, =0. With this, Proposition A.1 of the Ap-
pendix leads us to the solution ¢0) as follows:

Theorem 1: Let -1, and let positive and negative critical reciprocal temperatures be defined
by (12), then

$q(B)=(a-1) Htr[(Ba-DHH+ DM =d-1}, if B (a)<B<B:(q), (13

Be", if B=<pB:.(q)<0 or B<pB:(q)=0

- i + + . (14)
Be~, if B=B.(q)>0 or g>B,(q)=0

¢q(B) =

Moreover
1. Forﬁc‘(q)<ﬂ<,8§(q) there is a unique minimizes; given by the TsallisHolder state:

_ (BgDH+ U
P (B(a—DH+ 1T

(19

when t{(B8(q—1)H+1)YA~"®]<o; and no minimizer if this trace ise in which case
¢q(B)=(1—0q) ! (infinite dimensional case).

2. For0<e* < and 8= B, (q) [resp.B<B. (q)] the minimizers are the eigenstates (resp.
pure eigenstates) of H to the eigenvakie.

3. For —»<e <0 and 8=87(q) [resp. 8> B (q)] the minimizers are the eigenstates
(resp. pure eigenstates) of H to the eigenvadie

The unique equilibrium state; given by(15) wheng e 7= (8- (q),B¢ (9)) will be referred
to as Tsallis—Htler (TH) state. As their name intends to convey, these states were introduced by
C. Tsallis(in a remark at the bottom of page 483 of Ref. 1, and then in Ref. 3 and subsequent
paper$, and they saturate Hier's inequality on the mathematical side. The first important ob-
servation to be made is that, whenever the TH state exists, it isirffggie minimizer of the
“free-energy” functional, and thushe equilibrium state.

Now, before clarifying further features, we give a sketchy description in words of the content
of Theorem 1. FopB e .7, the operatoB(q—1)H +1 is strictly positive. Let

an(B):=(B(a—1) e+ 1)1 9.

The TH state has eigenvaluesaﬁon:(Enan(ﬂ))‘lan(ﬁ) with eigenfunction ¢,, where
Hy,= € ¢, . In particular, the state is non-degenerate: every eigenstateisfpopulated. Con-
sider the case whet is bounded below but not above; there being an analogous argument for the
opposite case. Recall thgf (q)=0 here. As one increasgsaway from 0, pg), decreases for
allnwith €, # €, and increases far with e,= ¢~ . Wheng_ (q) is reached, assuming it is finite,
i.e., —o<e <0, pB:(tr(P*))*lP* whereP ™ is the orthogonal projection onto the eigenspace
to the eigenvalue™, andtr(P~) gives the multiplicity of this eigenvalue. AGZ(q), our result
says that any eigenstate to the eigenvattie minimizes ¢4(B; (4))=B8¢ (q)e =(1—q) "
Above ,8§(q), only pure eigenstates t© are minimizers. Thus, there is a discontinuity here if
e is degenerate. However, this is of no relevance siseabove 8. (q) are not accessible:
¢q is linear, and its second derivative related to the “specific heat” is zere. I#0, we have

B. (@)= and O0<U, <e". Here, we get another unusual feature which, for want of a better
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name, we refer to astrong violation of the third law. Indeed, ag—, i.e., T—0, the TH
equilibrium statep; tends to the Hioler statep, of (5) (recall thatH , =H here with “internal

energy” U, . This state is non-degenerate, i.e., all eigenstates are populated, and has non-zero
entropy (independently of the degeneracy of the ground-state epefgg situation for3<0 in

the case wherél is bounded above is totally analogous.

In what follows we will consider the questions relating to the differentiability of the “ther-

modynamical” functions. Consider the functiah, (“internal energy” as a function of reciprocal
temperaturggiven byU,(8):=Uy[ psl, whenever the minimizes ; exists andJy[ p,] is finite.
In the finite dimensional case, where everything is finite, it can be verifiedtjas continuous
and the derivative ofp, by direct differentiation in(13) and (14). The concavity ofe, implies
then thaig—U () is decreasingrecall the assumptioa” <e™) and strictly so for3 € .7. One
can also verify directly that

lim  Uq(B)=Uy .
B— B3 (a)

This guarantees that for eashe (U, ,Ug) there exists a uniqué e .7 such that ,(8) =u. This,
via Lemma 2 insures th&,=(¢y)*. As a consequencaeii.q is strictly concave and differentiable
with derivative 8(u) determined by the inverse of the m@p>U,(8). One can also verify the
differentiability of U, connected to the “specific heatC, by

du,
Co(B)= —Bzw(ﬁ)- (16)

Always in the finite dimensional cas€g is finite and positive for alg € .7.

The existence op; in the infinite dimensional case imposes conditions on the eigenvalue set.
For the harmonic oscillator spectruri,,a,(8)=c for all g=2. It is perhaps remarkable that
under our assumption on the spectrumtbf(purely discretg the existence op, guarantees
differentiability of ¢4. ¢4 is given, up to trivial summands and a power, by the “trace”
>qan(B) of the positive operatofB(q—1)H+ 1)Y= |f this “trace” converges for some
By, then Pg, exists and assuming 4(8,) is defined, we know from Lemma 2 that it is a
subdifferential of¢, at g, .

The following two Lemmas summarize our results about differentiability in the infinite di-
mensional case:

Lemma 4: Let be the interior of the domain ap,. The following conditions

1. ¢ is differentiable inZ,

2. Uy is continuous iz, are equivalent,

and they imply that | is the derivative ofp,.

Proof : We have remarked, in Lemma 2, tHdtis a subgradient foep (we omit the index
q). If the latter function is differentiable, the subgradient is unique and equal to the derivative.
Consider the left- and right-derivatives and¢!, respectively ofp which exist by concavity
and satisfy:

d(B1)— P(B2) , g _ d(B3)— ¢(B2)
W/ql(ﬂz)/(lh(ﬂz)/ T BB,

wheneverg; < ,< 3. Using the definition ofp and the minimizing property g, we estimate

d(B2) — d(B1) - ﬁZU(Bl)_S[P,Bl]_ ¢(,31) _
Ba—B1 B2—B1 B

U(B1);
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D(Bs)— b(B2) _ &(B3) — B2U(B3) + S pg,]

= =U .

Bz~ B2 Bs— B2 (Bs)
Thus,U(B1)= ¢ (B2)= ¢, (B2)=U(B3) under the same condition for th&'s. Thus, if U is
continuous,¢ is differentiable andJ its derivative. O

Lemma 5: Suppose H is bounded below but not above [implyfhdq)=0]. If
tr[ (B(q—1)H + 1)Y1-97] is finite for some8 e .7, then it is finite for all@ e .7. In this case,
pp exists for all3 € .7 and ¢ is twice differentiable with derivative {Jand second derivative
—B2Cy(B) on 7.

Proof : We first notice thatthe prime denotes derivation with respect@p

a(B) = ex(B(A- Vet DYV, al(B)=der(Ba—1)ey+ 1) 2 VA0,

so thata, is convex on7. Let us number the eigenvalues f as e = e, <e;<e,<---. It
follows thats,(B8):==;_,ax(B) is convex on7, and thus if the sequence converges on some
bounded subinterval of, the convergence is uniform. Suppose now that the sequence converges
for some B, € .7, then, due to our assumptioe™ =o, for all n sufficiently large
Bo(d—1)e,=1 so that

an(Bo) = (2B,(q— 1)+ V9.

It follows from this and the assumption that the spectrunildé purely discrete, that the infinite
seriesS ,ex'(1~9 is absolutely convergent. But since, for evgtye .7 we have

an(B)<(B(d—1)en) 179

as soon as is sufficiently large(i.e., as soon as,=0), we conclude thag, converges uniformly
on any compact subset of. We also notice that as soon gs=0, we have

-1
lan(B)[<(B(a—1) *an(B), an(B)< lan(B)|-

qg-1
A q

This implies that both sequencey8) ands,(B) converge absolutely for a8 € .7. From this
one can deduce the existence Wf and C,, and then the continuity and differentiability of
Ug, which leads to the differentiability ob, in 7. The argument continued proves thgy{ is
c”. O

B. Case 0<g<1

The path to be followed is as in the former case, but the results are more involved. There are
two sets of critical temperatures. The supercritical reciprocal temperatures are given by:

0, if e =—o 0, if et=00
N e if —o<e =<0 _ —o0, if 0<e’<o
:Bc (Q): 1 ﬂc ()= 1
S — if e>0 —_— if e"<0
(1-q)e (1-q)e

17

The other set involves the first excited-state energy aleoveand the first de-excited-state energy
below ™. We define:

€, =infle, e>€ ) € i=sufe, e, <€’}
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TABLE |. Critical and supercritical reciprocal temperatures wiheiis semibounded in the<9g<1 case.

€ € B: (a) B (a)
% —» 0 0
finite, <0 finite, <0 o0 o
finite, <0 finite, >0 0 (1—q)e;)t
finite, >0 finite, >0 (1-q)e)? (1—-q)e;)t

et € Be (a) By (9)

s} e} 0 0
finite, >0 finite, =0 — —
finite, =0 finite, <0 —o (1—-q)eH?
finite, <0 finite, <0 (1-q)eh)? (1—-qg)e))t

Notice that in the finite dimensional casg¢ <e* ande, >¢~; and also that iH is unbounded

above(resp. below e =e" =« (resp.e, =€ =—=). The critical reciprocal temperatures are
given by
0, if e,=— 0, if e =00
N o0, if —o<e, <0 a — o0, if 0$EI<°O
B (@)= 1 B« (@)= 1
—_— if e, >0 _ if e/<0
(1-0)e, * (1-a)e; ¥
(18

One always hag; (q)= 3, (q)=0 andg_ (q)<g, (q)<0. In Table | we show all possibilities
for the critical and supercritical reciprocal temperatures in the semibounded case. We can again
determinea™ (8,q) as a function ofB:

=0 if B<p.(q)<0 with equality iff 3= (q)
<0 if Bc(q)<p=0

a (B9 <0 if 0<B<pBI(q)
=0 if 0<BJ(q)<B withequality iff 3= 3. (q)

Furthermorea ™ (8,q) = — if B<B, =0 or 8>B,=0.

For 8's inside the interva(3; (), 3. (q)), the minimizer is unique and given by the negative
part of the operatoA(8,q). But, in this interval A(B,q) — has finite rank. Moreover, fg8 in the
interval (8 (q),B8, (a)] (resp.[ B, (a),B8< (q))), A(B,q) _ has exactly one non-zero eigenvalue,
and the minimizer is the equidistribution of ceiling statessp. ground statgsThis, and Propo-
sition A.2 of the Appendix leads to

Theorem 2: LeD<<q<1, and let positive and negative supercritical and critical reciprocal
temperatures be defined by (17) and (18) respectively, then

1. If B<B.(q)<0 (—»<e"<0) then

bq(B)=PBe"
and the minimizers are the pure eigenstates to the eigenwdlue

(1-9) Y, it —o< B (q)<0
bo(Be (A)=1

©, if B (q)=0, which occurs only in infinite dimension
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1800 Guerberoff, Pury, and Raggio: Nonstandard g-statistics

2. Wheng. (q) =0 the minimizers are not unique. In the other case, the minimizers are all the
eigenstates to the eigenvaleé.

3. If B (q)<B=<p,(9)<0 then
i1

1-q

_ g
bo(B)=Bg} %" -

and there is a unique minimizer given by the equidistribution of ceiling stafé@@, where
P* is the orthogonal projection onto the eigenspace to the eigenvalyand g, =tr(P*) is the
multiplicity of this eigenvalue.

4.1f B, (q)<B<p, (q) then the operatof3(q— 1)H+1), , the positive part of the operator
B(g—1)H+I (see Sec. ll), has finite rank,

b(B)=(1—q) Y1-[tr[(B(q—DHH+1)Y "]t~ ay,

and there is a unique minimizer given by

_ (Ba-pH+DIT
PP l(Ba-DH+ I I

19

5. 1f 0< B, (q)<B=<pB<(q) then

. 91
$a(B)=Pg" e~ — 4

and there is a unique minimizer given by the equidistribution of ground staté® g where
P~ is the orthogonal projection onto the eigenspace to the eigenvaluand g_=tr(P ™) is the
multiplicity of this eigenvalue.

(1-q)° %, if 0<pB¢(q)<e
¢o(BE(@)=1{

©, if B2 (q)=0 which occurs only in infinite dimension

6. Wheng_ (q) =0 the minimizers are not unique. In the other case, the minimizers are all the
eigenstates to the eigenvalee.
7. 1f0<B.(q)<pB (0<e <) then

bq(B)=Pe"

and the minimizers are the pure eigenstates to the eigenwalue
The TH state is based on the positive part of the opegtgr— 1)H + 1 which has finite rank.
Using the notatiom\,(8)=1— B(1—q) €, the eigenvalues are given by

-1
(}k‘, Ak(ﬁ)“(lq)> A BV~ n such that\,(8)>0

(P,B)n: '
0, n such that\ ,(B8)<0

where the sum runs ovérsuch thatA,(8)>0. Not every eigenstate &f is populated as soon as
B(g—1)H+1 has non-zero negative part. This is impossible in the exponential Gibbs—Boltzmann
distribution. Now, we discuss the typical features.

In the finite dimensional case, if the spectrum has more than one positive eigenvalue and more
than one negative eigenvalue, both critigéé are not finite. At8=0 the TH state is the normal-
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ized trace. As we increasg away from 0, all energy eigenstates are populated until we reach
B=((1—q)e*) L. Atthis point, all eigenstates to this highest eigenvalue are depopulated and all
other eigenstates remain populated. As we continue incre@simghing interesting happens until
we reachB=((1—q)e,) 1, recallef >0 here. At this point, the eigenstates corresponding to
€, are also depopulated. As we continue increaginge depopulate successively downwards the
positive energy eigenstates until there are none left. From then onwards, only the non-positive
eigenstates are populated. As we continue increa8imge approach asymptotically the der
statep_ of (5). For 8<0 we have the same features, but now the negative energy eigenstates are
depopulated successively upwards until only the non-negative energy eigenstates remain popu-
lated, and the Hder statep, of (5) is approached asymptotically g — —«. There is thus
strong violation of the third law af=0~".

If the spectrum is strictly positived; (q) is finite andg, (q)=—. As we increases away
from O the eigenstates are successively depopulated downwards, until there is just ground-states
left; this happens precisely & (q); we then have~*P~, the equidistribution of ground states.
As we further increasg8 nothing changes until we reagh, (q). Our result claims that any
ground-state is a minimizer @& (q) ; and any pure ground-state is a minimizer abg@/gq).
But, as before, th8’s aboveg, (q) are inaccessible. Decreasigaway from 0, all eigenstates
are always populatefgince 8(q— 1)e,+ 1>0] and the Htder statep . of (5) is reached asymp-
totically for B— — . The features of the strictly negative spectrum case, are analogous to those
of the strictly positive spectrum case reversing signs and directions, and replacing ground- by
ceiling-states and so on.

WhenH is bounded below but not above, we hatg(8) = — = for every 3<0. The features
for >0 are exactly the same as those of the corresponding finite-dimensional case.

The successive depopulation of eigenstates has a drastic effect which cannot be seen at first
glance in¢, which is a nice concavén fact differentiablg function. This feature is detected, as
we will discuss below, in the functiod 4(B8): =Uy[ pz] whose graph is a staircase: the derivative
of Uy w.r.t. 8, does not exist for each (negative or positivewhere a depopulation occurs. More
precisely, the derivative has different limits as we approach tiggsdrom left or right. Since
tr is always a finite sum, we can analyze the differentiabilitybgfterm by term. One checks that
Uq(B) is the derivative ot for all B € (B, BH=7,.

The general expression for the “specific heal; can be derived fronf16):

Co(B)=0B%Z(B)~ T NZ(B)AxB) —AL(B)?),

where

Z(B)=2 A(BYITD, AUB) =D An(B)Y I Ve, AB)=2 Ap(B)RATVIATDEZ,

The summations run over such thatA,>0. From this we can see also tha§=0. The differ-
entiability of U, is guaranteed except at all poings= 1/(1—q)e, lying inside .7, . Taking
B=pB,+ 5 (according to whetheB,Z0) and if we denote:

F+(Bn):: lim F(B,+6); F (Bn):= lim F(B,+9),
6—0+ 6—0—

and y=(1—-q)|e,| 8 we can prove that:

Z*(Bn)=Z7(Bn)+ lim y179,
6—0+

AL (B =A; (B)+ €, lim 59170,
5—0+

J. Math. Phys., Vol. 37, No. 4, April 1996

Downloaded-30-Aug-2004-t0-192.107.75.159.=-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



1802 Guerberoff, Pury, and Raggio: Nonstandard g-statistics

As (B =A;(Bn)+ €2 lim y2a- D=
5—0+

where Z7(8,), A (Bn), and A, (B,) are finite quantities. Fop<q<1, Z, A,, and A, are
continuous ap,,, henceC, is continuous for al3 € .7, . Forq= 3, Z andA, are continuous but
A§=A2_+eﬁ, therefore the “specific heat” presents finite discontinuities3at For 0<q<3,
A, diverges Z andA, are still continuousand in consequenc@; diverges:

©° if B1B.>0 or B|B,<0

CalB) =\ finite  if B1B,>0 or B18,<0"

In the g—0 limit, C, vanishes everywhere except/@t where the lateral divergences survive.

Let us look closely at the case<(e” <€, . ¢y is a straight line in the interval
[B81(a),B8¢(a)) with slopeg’ ™%~ and C,(B8)=0. At B¢ (q) this line connects to the straight
line Be~ which gives the value o, for B=B.(q). When the ground state is degenerate, i.e.,
g-=2, these lines have different slope asg is not differentiable aB; (q). There is a discon-
tinuity in Uq at 8¢ (q):

im Ug(B)=g % >Ug=€ = lim Uq(p).
BTBL () BLBL (@)

This happens also #; (q) when the ceiling state is degenerate, igg.=2, ande, <e*<0. The
range of the functiorB—U(B) is not[U, ,U;] when there are degeneracies in the ground or
ceiling states and these states have non-zero finite energy. There are then anéogiedich
there is no reciprocal temperature.

Wheng_>1, we can computey , defined in(9), as follows. To eachu=g' 9, there
corresponds a uniqug(u) € (—=,8,(q)] and the corresponding minimizers lead us, using
Lemma 2, toSy(u) = ¢ (u) =Sy[ pg(u)]. Foru in the non-thermal intervale”,g* %) there is
no B such thatU,[ pz]=u. But we can compute the Legendre—Fenchel transforgodirectly
for this interval. The result is:

1 1
bi(u)=pB (u—€ )= (1—q)e’u+q—l’ for ue[e ,g> % 1.

Thus gb; is a straight line on the non-thermal-interval. We know by Lemma 1, that
Sq(u)=< ¢ (u). We also know thaB,(g' %)= ¢; (g2 %) because at this point there is a
minimizerpB:(q). We can compute the value 8f ate™ directly from the definition(6). Indeed,
the only statesp such thatUy[p]=€¢" are the pure eigenstates to that eigenvalue; thus
Sy(e7)=0=¢y(e"). Since in the non-thermal intervd, lies below ¢§ and coincides with
qS;; at the end-points we conclude thaS(j(u)<¢>a‘(u) for someu inside this interval, thes, is
not concave, and the correct entropy functiotilie straight ling¢ ¢§ on this interval. This strange
effect of degeneracy is rather drastic. In the finite dimensional case, ghen so large that
gl % >e€", the whole spectrunfe,} lies inside the non-thermal interval. The non-thermal
interval disappears as soon @is<0 even where, >0 andg_=2. Indeed, herg8_ (q) =« and
the least energy, =g Y% is reached aB, (q) where the minimizer ig~_'P~ and coincides
with the Hdder statep_ of (5).

C. A remark about equilibrium
We have been referring to the TH statg, which is the unique minimizer of the variational

problem(8), as the equilibrium state at reciprocal temperaijirdn fact, this is a gross abuse of
the analogy with the connection between Boltzmann—Gibbs statistical mechanics and Thermody-
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namics. We should first analyze if this notion of equilibrium entails its transitivity; that is, if the
familiar 0'"-law of thermodynamics holds in this formalistt.does not Suppose one has two
systems with Hamiltonianbl; described on the Hilbert spaces; such thatH; is not a multiple

of the identity (=1,2). The composite noninteracting system is described by the Hamiltonian
H=H;®1+1®H, on the Hilbert space#=.7,® 7, . The TH state at reciprocal temperature

B in .7, which is the unique minimizer o) with UgH)[p]=tr_,7(qu), is not a product-state:

pp7 (pp)1®(pp)2,

where (pg); is the restriction op; to a state of thg-th subsystem. Moreoverpg); is not a TH

state of the system in the sense that it does not minimig® with UgHi)[w]ztr%j(quj) for

any B. Thus, it is impossible to assign a reciprocal temperature to the subsystems when the

composite non-interacting system is in the sggge It follows that this notion of equilibrium is not

transitive and the analogue of th&@aw is not true. Thus, a possible connection between this

“thermostatistics” and some thermometrical notion cannot be established with the pargneter
The reason behind this unwanted feature is to be seen in the non-additivity property of the

g-entropy

Sq[p® w]= Sq[p] + Sq[w] +(1- q)Sq[P]Sq[w];

and of the functional [ - ]
U lpew]=U " [p]+ Uy P [w]+(1-a) (U] Y [p]Sw]+ Uy [w]S{p]).

These properties can be easily checked.

For 0<q<1, Tsalli¢ introduced the notion “thermally forbidden region” for the intervals
B<pB. and B=pB., and “thermally frozen region” for the intervals3, <B<g, and
ﬁ:sﬁ<,8;' . For theq>1 case, the intervalg< g andﬁzﬁg were called “thermally frozen
region.” For us, all these regions are thermally inaccessible, without further discrimination, be-
cause the “free-energy” functiogh,, which is well defined, is linear therein. In consequence the
“specific heat” in these regions is identically zero. It is worthwhile to stress that the variational
problem posed by(8) only gives aunigue minimizer state, the TH equilibrium state, for

Be <B<B¢ .

V. ILLUSTRATION

At present, “specific heat” calculations for non-standard thermal statistics based on
g-entropies(as was worked out in Ref)3are available for the two-level system, a free partifle,
and the Ising chaift

In this Section we present as an application of the non-standard formalism developed above,
the “free-energy” functiong, and the “specific heat” of the harmonic oscillator characterized by
the spectrum:

e,=n—a, n=012;.-,

wherea e R. Immediately we have’ =€, =« ande = —«, €, =1—a. The influence ofx is
relevant forg # 1. For conventional use, we will present the results of this section as functions of
the temperaturdl instead of = 1/T. The “Helmholtz free-energy” isT¢q(T). Here,H is
bounded below but not above, in consequence=T, = — and the thermally relevant region is
T>T/ for g>1 andT>T, for 0<q<1.

Case g~1:
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FIG. 1. Thermal dependence @f; in the harmonic oscillator for typical values gf>1. For <0, T.=0. In the case
q=1.2, fora=5, T =1. The casg=1 is also shown for a comparison with the Boltzmann—Gibbs curve.

. o, a<0
Te= (-1, o>0
— o, T<0
_2 0<T<T}
Dq(T)= T :
1 (a—1)(n—a) vi-a1i=a N
N R

The convergence of the series is obtained only der2. For q=2, formally we obtain
#(T)=(1/1—q) for T>T_, thenCy(T)=0.

Figure 1 illustrates the thermal dependence of the “specific heat” for typical values of
g>1 anda. For T— the contribution to the series are from the terms with>«. Then for a

giveng>1, the “specific heat” curves for different values af coalesce asymptotically.
CaseO<g<1:

T+ 0, aBO__I_+ 0, a=1
¢l -(1-q)a, a<0 * |[(1-q)(1l—a), a<1

J. Math. Phys., Vol. 37, No. 4, April 1996

Downloaded-30-Aug-2004-t0-192.107.75.159.=-Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



Guerberoff, Pury, and Raggio: Nonstandard g-statistics 1805

FIG. 2. Thermal dependence Gf, in the harmonic oscillator for two values dfin the region%<q<1 anda=0.

— o0, T=<0
bu(T)= —%, O<T<T,
o(T)=

_ _ U(1-qg)\1-¢q
R

whereX’ runs ovemn<T/(1—q) + a.

Figure 2 shows the thermal dependenc€gffor typical values ofj in the interval 61). We
observe strong oscillations in the “specific heat” but it is continuous everywhereq&grthe
functionU(T) is not differentiable in the point§,=(1—q)(n— «)>0. These points are equally
spaced for the harmonic oscillator. The cases; is presented in Figure 3, where we can observe
the finite discontinuities irC, at T,. The lateral divergences i, at T,, for a typicalq< 3 are
shown in Figure 4. The “specific heat” was numerically evaluated in all presented pictures.

VI. RESULTS ON THE MULTIDIMENSIONAL CASE

The results of the Appendix apply immediately to the case where one impbsesastraints
via N HamiltoniansH ,H,, - - - ,Hy.*? Let

Sq(Up Uz, Uy) =SUR{S[p]:UY [ p]: =tr (pH ) =u; =12, N};

then one has
N .
bo B):=inf{B- U= Sy(w}=inf| 2 U{'[p]=Sp]
u poLi
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FIG. 3. Thermal dependence G, in the harmonic oscillator foq= % and typical values of, showing discontinuities.

for the Legendre—Fenchel transformyfat the pointB: (B1.B2,---,Bn) € M. The solution of
this variational problem is controlled, via Propositions A.1 and A.2 of the Appendix, by the sign
of the least eigenvalue of the operaf(s,q): =2}\‘:1,BJ-HJ-+(q— 1)71.

In the infinite dimensional case there are domain problems to be taken into account and one
has to establish conditions such that the operator has purely discrete spectrum. To avoid all this we
consider in what follows only the finite dimensional case.

For q>1, let J,;:={B:a"(B,q)>0}. Since the function®N s B—a (B,q):
=inf{spedA(S,q))} is concave,”, is a convex subset @rkN. The boundary of7, defines the

10 T T T T

0.3

FIG. 4. Thermal dependence G, in the harmonic oscillator foq=0.3 anda=0.
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hypersurface of criticaB’s; this hypersurface is difficult to describe explicitly and globally when

the Hamiltonians do not commute with each other. There is a unique minimizer )é/hert?q
given by the Tsallis—Hider state

pp=tr (AR, TIA(B,q) .

On the critical hypersurface, the minimizers are ground- or ceiling-stat%ﬁﬂfq). Outside the
closure of.7,, the minimizers are pure ground- or ceiling- statesA()ﬁ,q).

For 0<q<1, the relevant regions aré,:={B:a"(8,q)<0}, and a second regia®; de-
fined as the complement N of the B’s with either a‘(,é,q)>0 or such that the operator
A(,é,q)_ has exactly one non-zero eigenvalue; alternativei%‘ :={B:a*(,[§,q)<0,
and A(8,q) _ has more than one non-zero eigenvaliNeither of these sets is convex in general.
ForB e 74 » the minimizer is unique and given by the Tsallis-er state

pp=trAB.Y ) IAB Y.

For,é € .%/.7}; , the minimizer is the equidistribution of ground- or ceiIing—stateA(:ﬁ,q). On
the boundary or outside of, the situation is as in the casg>1.

Clearly, the multidimensional case reduces to the case of only one constraint. Taking an
arbitrary unit vectori.e., direction e in ®Y, and IettingH(é)=EJN=1ejHj, the problem is re-
duced to that which we have solved explicitly:

SP(B): = b BE) =int{BUT @ p] - S [ p1).
p

Thus the intersections of the sefg and.7; with the rays inkN are described explicitly in terms
of direction dependens; (e,q)’s and, for 0<q<1, B; (€,q)’s.

VIl. CONCLUDING REMARKS

We have solved rigorously the variational problem associated witlg-thietropies under the
non-affine constraint [ - ]= constant. We have determined by use of thédepinequality the
corresponding quantum states minimizing the functigal,[ - ]—Sy[ - ]. Then we have estab-
lished all the “thermostatistical” consequences. In particular, the analogue of thiavd of
Thermodynamics does not hold in termsf

For g>1 the bizarre feature as perceived from familiar Boltzmann—Gibbs statistics, apart
from the manifest dependence on the energy-zero, is the unattainability of temperatures in the
interval [1/(B; (q)) , (B2 (q))], and what we have called strong violation of the third law.

The case 8.q<1 is much richer. Generally speaking the caseq3<1, presents the same
features as the cage>1: strong violation of the third law, and unattainability of low temperatures
(but not always But the depopulation phenomenon of levels, has a drastic effect in the “specific
heat,” which may present oscillations, discontinuities and lateral divergences.

Note added in proofive complete a point left open in the case <1, and show thag, is
concave. In the last two paragraphs of part B in Sec. IV, we had seen that if the ground-state
energy is degenerate, i.g., =2 (alternatively the ceiling-state is degenerae=2), then there
are energiesl for which there are no reciprocal temperatures wkéen-0. The corresponding
energy interval € ,g* %) was referred to as the non-thermal interval. We computed the
Legendre—Fenchel transfornd)a‘ of ¢4 for this interval obtaining ¢>a‘(u)=,8§(u— €)
= (q—1)"Y(1—ule"). We then said that, due to the general inequaify ¢; , and the fact that
Sy= ¢ at the end-points of the non-thermal interval, we could concludeSha not concave if
for some non-thermal we hadSq(u)<¢§(u). Here we show thaSq=¢§ on the whole non-
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thermal interval, so tha, is indeed always concave. Take a statguch thapP _ =p [recall that

e >0 is degenerate, i.e.g_=tr(P_)=2]. Then tr(piH)=e€_tr(p%), so that Sjp]

= (g—1)"(1-Ugy[pl/€e"). Since i=tr(p9) =tr(pIP_)=<g' 9, givenu in the non-thermal in-
terval, we can choose @ satisfying the conditions withJ ;[ p]=u and thusS[ p]= ¢§(u). On

the other hand, for any stagewith Uy[p]=u, we haveSq[p]$Sq(u)S¢a‘(u). We conclude that

Sy(u) = qbg (u) on the non-thermal interval. The same argument applies to the case of degenerate
ceiling-energy.
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APPENDIX: THE BASIC VARIATIONAL PROBLEM

Here we solve the two variational problemspimf(qu) and sup tr(pYA) for 0<qg # 1,
whereA is selfadjoint and its spectrum consists entirely of isolated eigenvalues of finite multi-
plicity. These we number &s,} according to their multiplicities:

A= ; an| ¢n><¢n|-

where {¢,} is a complete orthonormal basis of eigenvectors Aor We let o™ :=supa,,
a :=inf,a,, and remark that if either of these two numbers is finite, then it is an eigenvalue of
A. The traces in question are always understood as

tr<pQA>=; anl¥n P W) (A.1)

when the series on the right-hand side is absolutely convergent.

The solution requires use of the classiclttey inequality which we quote from Ref. 13 for the
readers convenience:

Holder Inequalities: Let k be a real number distinct frod and from 1, and put
k'=k/(k—1). Let{a,} and{b,} be sequences of non-negative real numbers, then:

1k , 1K’
(; bﬁ) for k>1, (A.2)

> ab,=
n

2 aj
n

with equality iff either §=cb" or cak=b¥  for every n with a non-negative real c;

1k , 1K’
(2 bX ) for k<1, (A.3)
n

> agb,=
n

> aj
n
with equality iff either ab,=0, or ak=chX  for every n with a positive real c

We will also use the following well known result:
Lemma A.1For any unit vectonry,

(B.p%)=(h,ph), for g>1
(.0 =<(,p)", for 0<q<1’
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In both inequalities there is equality if and onlygdly= (&, pi) &, i.e., if ¢ is an eigenvector of
p.

Proof : Let {P,,} be a family of orthogonal projections with,P,=1, and pP,=pmPm.,
where{p.} are the distinct eigenvalues pf Then,tr(P,,) is the multiplicity of the eigenvalue
pm, and= (&, Pn)=1. The mapx—xY is strictly convex(resp. strictly concaveon the unit
interval forg>1 (resp. 0<g<1); thus

(o) =3 p?nw,me(z)(% pm<¢,me>)q=<w,p¢>q-

In both cases we have equality if and only if either gl| are equal(as happens ip is the
normalized trace in finite dimensioner else(,Pmi) = 6y m, for somem,. In both cases, it

follows thatpwzpmolp:(zp,pzp)w. O

A useful and immediate consequence of the equality condition of this result is that, since the
eigenvalues op lie in [0,1]: tr (p9) <( resp.=)tr(p)=1 for g>1 (resp. 0<q<1); with equality
iff p is a pure statep%=p).

Lemma A.2Supposex™ = 0. For every statp, one has:

1. For g>1,

{tr(AYd-onl-a  jf 4=>0

t= aA) = .
a (A=) g if @ =0

(A.4)

When0<a™ <, there is equality on the I.h.s. iff is a pure eigenstate of A to the eigenvalue
a’. Whena™ >0, and tr(AY(1~9) is finite, there is equality in the r.h.s. iff

A(L-q)

Whena ™ =0, there is equality on the r.h.s. iff is an eigenstate of A to the eigenvaldie
2. 1f 0<g<1,

a” <tr(pdA)<{tr(AY1-a}1-a, (A.6)

Whentr(AY(1~9) is finite, there is equality in the r.h.s. jffis given by (A.5). Whea™ =0 (resp.
a~ >0) there is equality on the I.h.s. iff is an eigenstate (resp. pure eigenstate) to the eigenvalue
a .
We call the states such #4.5) Holder states because they saturatdddds inequality.
Proof :
1. Caseq>1. Suppose that™ <. We havetr (pfA)<a™tr(p9)<a™. If >0, there is
equality in the second inequality iff is a pure state. But then there is also equality in the first
inequality if p is a pure eigenstate to the eigenvalué. If a* =0 there is nothing to prove.
Supposexr™ =0; then, since,=0, obviouslytr (p%A)=0 with equality iff (¢, ,p%,,)=0 for
everyn with a,>0. The latter condition is equivalent {@,,p#,)=0 for everyn with a,>0.
This is equivalent tdr (pA) =0 which, with the variational characterization of the bottom of the
spectrum, is equivalent te being an eigenstate & to the eigenvalue 0.
Supposex” >0; then Lemma A.1 and Hder's inequality(A.3) with k=1/q together with
a,>0, produces

q 1-q
tf(quPE an<¢n,p¢n>q>(; <llfn.p<!/n>) 2 aﬁ’“““) :
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There is equality in the last inequality iffy, ,p ) =cal >~ for everyn with ¢>0. But then,
there is equality in the first inequality iffp is diagonal in the{y,} basis, that is
(¥n\pin)=pn= Caﬁ/(l_q) :

If =,aX"9 s finite, then one can determimeby normalization to be X,aX® ®)~1 and
obtain the assertions. If the sumods the r.h.s. of(A.4) which is 0 is not attained.

2. Case 2q< 1. We havetr(p9A)=a tr(p%)=a . Whena >0, there is equality in the
last inequality iffp is a pure state; and also in the first inequalitygdffs a pure eigenstate &f to
the eigenvaluex—. Whena™ =0, there is equality in the first inequality iff is an eigenstate of
A to the eigenvalue 0.

Applying Lemma A.1, and Hider's inequality(A.2) with k=1/gq>1, together with the as-
sumption thata,=0, we get

q

1-q
Z aﬁ/(lq)> )
n

tr(qu)ﬁz an(‘r//n apwn>q$(; <lr/fn rP‘//n>

The rest of the claim can be got as in the cgsel. If =,aY*~ is «, then the r.h.s. ofA.6)
which is« is not attained. O

It is instructive to consider the case whekeis the Hamiltonian of the harmonic oscillator
with eigenvalues,, « n. HereS a9 = if 0 <q<1 orq=2; so the r.h.s. ofA.4) which is
0, and the r.h.s ofA.6) which ise, are not attained in these cases.

Having solved the case of a strictly positiveit is now easy to solve the general case as
follows.

Proposition A.1:For g>1

inf tr(p9A)=
P

{tr(AYI-@)1=aif a7>0
a, if a~ <0
If = >0 andtr(AY~9) is finite there is a unique minimizer, the ider state given by (A.5). If

a” =0 (resp.—»<a” <0), then the minimizers are the eigenstates (resp. pure eigenstates) of
A to the eigenvaluer .

suptr(p9A) =

[ —{tr(—A)YI-ani-a 4t <0
P

a’, if =0

If a*<0 and tr((—A)Y~9) is finite, there is a unique maximizer, the lHer state given by
(A.5) with the positive operatorA. If a™=0 (resp. 0<a ™ <), then the maximizers are the
eigenstates (resp. pure eigenstates) of A to the eigenvalue

We recall the definitions of the positivA, and negativeA_ parts of the operatoA:
A.=3[(lan=an)/2]|n){ts|. One has that bothA, and A_ are non-negative, and
A=A,—-A_.

Proposition A.2:For 0<q<1,

—{tr((A_)¥1-oyi-a  jf ¢~ <0

inf tr p9A) = it 020"
a =

P @

If =<0 andtr((A_)Y~9) is finite, then there is a unique minimizer, thélder state given by
(A.5) with A_. If a~ =0 (resp.a” >0), the minimizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvalue .
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o, [AF(ADYETOA - if a™>0
Sll;jptr(p A): a+, if a+$0'

If «*>0 andtr((A,)Y1~9) is finite, then there is a unique maximizer, théldtw state given by
(A5) with A_ . If «"=0 (resp.a™<0) the maximizers are the eigenstates (resp. pure eigen-
states) of A to the eigenvalug’.

Proof of the PropositionsSince sup tr(p9A)= —inf, tr(p9(—A)), it suffices to prove the
assertions for the infimum. In view of Lemma A.2, it remains only to consider the €ase0.
But then, lettingA_ (resp.A.) be the negativéresp. positive part of the operatoA, we have

inf tr(p9A)= inf tr(pd(—A_))=— inf tr(p9A_),
p {p:tr(p9A,)=0} {p:tr(p9A,)=0}

so that Lemma A.2, proves the statements after a careful and detailed analysis of the condition
tr(p%A,)=0. O

We want to remark that in this variational problem we can have, supiA)>e" or
inf, tr(p9A)<e™ because of the lack of affinity of the functioria( p9A).
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