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Basic properties of the q-entropy S,[p]=(q-l)-‘(l-tr(pq)) (O<q#l) for 
states of a quantum system are established: concavity, quasi-convexity, continuity, 
and failure of “additivity” and “subadditivity” for composite systems. 0 1995 
American Institute of Physics. 

For a discrete probability distribution p = (pl ,pZ , . . . ,pd), with Ospjc 1 and Ej= Ipi= 1; 
one defines, following Dar&.~y’~~ and Tsallis3 

~qbl:=(~-l)-' 1-JiI Pi" ; 
i i 

(1) 

for any positive real number q # 1. These entropies were used by Tsallis and coworkers3-5 to 
develop a thermostatistical formalism. 

Since for x~[O,l], xqsx for q>l (resp. 1 axqsx for O<q< l), the sum ~jpi” is always 
convergent for q> 1, and may diverge to 00 for d=m when O<q<l, in which case S,[p]=w. 
Properties and axiomatizations of S, are given in Ref. 1. S, is connected with Renyi’s 
a-entropy S”,[ p] = ( 1 - a) - ’ ln(X$ &), 0 < Q # 1, which has been studied and used (see, e.g., 
Refs. 2 and S).6 

It is also inmediate that one can make sense of (1) for q<O; but one has Sq[. ] identically 
03 in the infinite dimensional case.7 Thus we disregard S, for q<O here altogether. 

The quantum version of these q-entropies is then 

(2) 

where p is any density operator, i.e., positive trace-class operator on a complex separable Hilbert 
space X having unit trace. The same remark as before applies here. For q> 1, one has the 
operator inequality p QSp, which entails that tr(pq)<l. For O<q<l, pq>p, and the trace of 
pQ can be infinite so that in such a case S,[p] = m. 

Now S,[ . ] is a member of the family of entropy-like functionals given by trCf(p)) for a 
concave function f (see Chapter 3 of Ref. 8). Indeed, letting vq be the function on the unit interval 
defined by (q # 1 j 

.17,(x):=(4-1)-‘(x-xq), XE[O,l], 

one has’ S,[p] = tr( v,(p)). vq is a strictly concave, non-negative function on [O,l] which takes 
the value 0 only at x= 0 and x= 1. Moreover, limq,l vq(x) = -x In(x); so that 
lim,, 1 Sq[ p] = S , [ p], where S1 [ . ] is the familiar Boltzmann-von Neumann-Shannon entropy. 

Let 6(p) be the cardinality of the support, i.e., {n: pn>O}, of p in the classical case, and the 
codimension of the kernel of p in the quantum case. By a slight abuse of language, we say the 
quantal state p is an equidistribution of order m, if p = m - ’ P where P is an orthogonal projection 
with finite trace m. 

Lemma 1: 
I. For O<t<l 

(3) 
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Zf the Eh.s. is jinite, then there is equality iff p is oi-thogonal to 4.” 

2. In finite dimension d, Sq[ .] is non-negative and strictly concave with 

O~S,[p]~(q-- l)-‘( 1- S(pj’-q)s(q- lj-‘( 1 -d’-qj. (4) 

Equality holds in the first inequality $f p is pure: and in the second inequality $f p is an 
equidistribution of order s(p). 

3. In infinite dimension and for q> 1, S,[ .] is non-negative and strictly concave with 

OG,[p]<(q- 1j-‘. (5) 

Equality in the first inequality holds ifs p is pure. One has sup,S,( p) = (q - 1) - ’ but the 
supremum is not attained. 

4. In infinite dimension and for 0 <q < 1, Sq[ . ] is non-negative and concave with 

(6) 

Equality in the jirst inequality holds iff p is pure. Moreover; the set of states where Sq[ .] is 
jinite is convex, and Sq[ .] is strictly concave on it. 

Proof: To prove 1, we use the following inequalities due to McCarthy (Lemma 2.6, Ref. 11; 
see also Ref. 12): for positive operators A and B, 

tr((A+Bj7)Z=[resp.G]tr(A7)+tr(B7j, for y>l[resp. O<y<l]. 

When the involved quantities are finite, there is equality iff AZ? = 0. Thus, for 0 < q # 1, 0 < t< 1 
and states P,C#J we have 

with equality iff the states are orthogonal. 
One has xqs(resp.~)x for x~[O,l] with equality iff x=0 or x= 1 when q>l (resp. 

O<q< 1). Since the eigenvalues pi of p lie in [O,l], we conclude the operator inequality 
pqG(resp.Z=jp, where equality holds iff p is pure, i.e., a one-dimensional projection. It then 
follows that tr( pq) G (resp.>) 1 with equality iff p is pure. This proves that Sq[ p] 30 with equality 
iff p is pure. 

To prove the upper bounds of (4) we use the classic HGlder’s inequalities (e.g., Ref. 13, 
Theorem 13). For O<q< 1, 

(7) 

when S(p) is finite (otherwise the inequality is obvious since the right-hand side is m). There is 
equality here iff pi is constant for j = 1,2,. . . , S(p), so that normalization implies pj= S(p) - ‘. For 
q> 1, the inequality in (7) is reversed but the conditions for equality are the same. This completes 
the proof of 2. 
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Letting d--+m for q> 1 in the upper bound of (4) we get the upper bound of (5). But 
Sq[ p] = (q - 1 )- ’ for q> 1 implies tr(pq) = 0 which is impossible; however, we can make 
tr(pq)>O as small as we like, so that sup,, S,[p]=(q- l)-‘. 

For 0 <q< 1, (3) implies that the set of states with finite S,[p] form a convex set. 
It remains only to settle the claims about concavity of S,[ a]. These are consequences of the 

convexity of - vq and (for example) Proposition 3.1 of Ref. 8, the proof of which can be easily 
supplemented to yield strict convexity. Q.E.D 

An inmediate consequence of (3) is 

S,Cpl=inf G vq@,):p=Z LP,,P, pure 
i 

, n I 

where the infimum is assumed precisely at the decompositions of p into pure orthogonal states 
(i.e., spectral decompositions). 

S,[ .] has the same continuity properties as S’ (see, e.g., Refs. 2 and 8). With respect to the 
distance IIP- 4lI=Ml~- 4, S,C. 1 is continuous in finite dimensions, and lower semicontinuous in 
infinite dimension. For d = CO and 0 <q< 1, in each 11. II-neighbourhood of every state there are 
states q5 with Sq[ C#J] = ,.I4 But if 4> 1, then Sq[ -1 is Lipschitz: 

Lemma 2: For q>l, ISq[pl-Sq[411~d~- ~>-‘IIP-~II. 
Proof: The derivative qxq- ’ of the map x-+x4 is bounded by q on [ O,l], so that this map is 

Lipschitz with constant q. Then, enumerating the eigenvalues of p and 4 non-increasingly, one 
has 

since the involved traces are finite. But the sum on the r.h.s. is not larger (see, e.g., Lemma 1.7 in 
Ref. 8; or (1.22) in Ref. 12) than tr(lp--~$1) which is equal to llp-q!$ Q.E.D. 

An estimate for the difference Sq[ p] - Sq[ 4-j is obtained by a standard procedure involving 
the concavity and differentiability of vq. Since ~7~ is differentiable at each x E [O,l] when 
q>l, and at each x E (0,l) when O<q<l, with derivative vi(x)=(q-l)-‘(l-qxq-‘); we 
have vi(y)(y-x)G vq(y)- vq(x)G gi(x)(y-x) by concavity. With Proposition 3.16 of Ref. 8 
(generalized Klein’s inequality), we get 

whenever the right and left hand sides are defined for 0 <q < 1, and with no restrictions on the 
states for q> 1 .15 

We now turn to properties of q-entropies for composite systems. We recall that the familiar 
entropy S’ satisfies (see, e.g., Refs. 2 and 8): 

~,~~1~~,~~,~~21=~~~~~1+~~~~21 (9) 

for any state o on 5%” @%$ (or probability distribution on X’ XX,), where Oj is the state over 
%j (or probability distribution over Xi> obtained by tracing over the other Hilbert space, i.e. 
tr~,~,~~(w(A~l))=tr~l(~lA) for all bounded operators A on 5%“. 

The inequality in (9) is known as the “subadditivity” property of the entropy; it is custom- 
arily paraphrased by saying that since all correlations between the subsystems present in w are lost 
in the state w’ @I w2 (when o is not a product state) the entropy should increase. The equality in 
(9) is known as “additivity” and it is indeed a rather reasonable property for an entropy to have. 
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It is known (see Section II.F in Ref. 2 where the pertinent references are given) that among the 
“entropies” of the form trCf(p)), St is the only one that satisfies “subadditivity” and “additivity.” 
The additivity and subadditvity issues for S, were discussed by Tsallis (remarks following Eq. (8) 
of Ref. 3). 

Lemma 3: One has (with the proviso that all the entropies arejnite for the case O<q<1)16 

(10) 
For q>l, S,[~@~]CS,[~]+S,[ cp] with equality iff either of the states p, 4 is pure. For 

O<q<l, 

(11) 
and if the 1.h.s. is finite then there is equality tp either of the states p, C+?I is pure. 

Proof: Direct computation gives (10): 

The sign of the product on the r.h.s. is determined by that of (q - 1) since the other two factors are 
non-negative. Moreover, one gets 0 iff either S,[ p] = 0 or S,[ cp] = 0 which, as we have seen, is 
equivalent to purity of p resp. 4. Q.E.D. 

Due to (IO), one has in general Sq[ w r @  oz] # Sq[ w t] + Sq[ oZ] and two possible versions of 
“subadditivity” suggest themselves: 

Sq[+=Sq[q@~zI; 

~qbl~~qblI+~qc~21. 

We first remark that the reverse inequalities, 

(12) 

(13) 

cannot hold in general since: if o is a pure, non-product state, then wt , w2 and or @  w2 are all not 
pure,” thus Sq[w]=O, but Sq[wj]>O forj= 1,2, and Sq[ol@~2]>0 . 

As to (13), it is not true for O<q< 1 since it contradicts (11) in the case where 
o=or@~~ with both w, and w2 not pure. 

Lemma 4: Zf dim@?,) and dim(x2) (aEternativeZy dim(X,) and dim(Xz)) are both larger 
than 1, then w*Sq[ o, @  w2] - Sq[ 01 does not have a definite sign, and (12) fails. 

Proof It suffices to consider the xi=x2={1,2}, with x=x, xx, 
={1=(1,1),2=(1,2),3=(2,1),4=(2,2)}whichiscontainedinanynon-trivialcase.Theprob- 
ability distributions on X are ~~~{W~(A~~A*~A~~A~~1~A~~A~~A~)~O~Aj for 
j=1,2,3,ki+h2+h3C1}. The restrictions are w,=(A~+X,,A~+L+) and 
w~=(A~+A~,A~+A~). The product distributions are St,= { o(t,s)=(ts,t( 1 -s),(l -s)t,( 1 -s) 
X(1-t)): Ostcl; OGssl}. Consider the function 

F is identically zero on 9$ and has partial derivatives with respect to At ,A2 and A3 of arbitrary 
order in the interior of Y’. The first partial derivatives evaluated at a point w( t,s) E 5$ are: 
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-&o(t,s))=-qt(tq-l-(l -ty-I)(#-(1 -s)q-‘). 

If O< t< f and 0 <s< f the partial derivatives with respect to A2 and As are strictly negative, and 
the partial derivative with respect to At is strictly positive. We can thus see that F takes both 
positive and negative values around these product interior points of Y. Q.E.D. 

We formulate the only version of subadditivity which may be true as a conjecture; it is proved 
in the classical discrete case at the end of this note. 

Conjecture: For q>l, (13) holds true and there is equality iff either of the states w1,02 is 
pure. 

The “non-additivity” and “non-subadditivity” might be rather shocking for someone 
schooled in (Boltzmann-Gibbs) statistical mechanics. At any rate, these properties together with 
strong subadditivity are the key to many results on the thermodynamical limit. The fact that these 
properties fail to hold might well constitute, as Tsallis suggests,18 the reason why the S, entropies 
could be useful in statistical inference theory. 

We finally consider the q-dependence of Sq[ p] for fixed p. For fixed x E [O,l], the map 
0 <q++ vq(x) is decreasing and strictly convex except when x = 0 or x = 1 where it is constant and 
equal to 0. This implies inmediately the following result. 

Lemma 5: The map O<gS,[p] is non-increasing and convex for each state p. 

Thus, if Sq[ p] C m for some q > 0, then S,[ p] is finite for every r3 q.19 The is not pure: the 
map qH Sp[ p] is decreasing and strictly convex on the interval (inf{ q > 0 : Sq[ p] < w}, m) where it 
is finite. Since lim,,,, vq(x) = 1 --x for x E (O,l] and limq,m~q(x) = 0, the natural definitions of 
So and S, are 

S,[p]:=,“9 S,[p]=&p)-1; S,[p]:= inf S,[p]=O. 
> c-0 

Proof of the conjecture in the discrete classical case: The discrete classical case is equivalent 
to the quantum case when o is diagonal in a basis compatible with the tensor-product 
.X= 9Yl @X2. Specifically, 

“=i E 
n=l m=l 

%,m(Pn@ CPA (14) 

where {pn:n= 1,2,..., N} (resp. {(~~:rn= 1,2 ,..., M}) is a family of pairwise orthogonal pure 
states (i.e. one-dimensional projections) of %t (resp. .%$). Here N<dim(%r) and 
M<dim(.%2)=d. 

We prove the conjecture by induction on N, the size of the sum over n. If in (14), N= 1, then 
o=p,@w, and since p1 is pure, Sq[pl]=O; and Lemma 3 gives S,[o]=S,[w,] which is (13) 
with equality. Assume (13) holds for Ksl. Let o be given by (14) with N=K+l. If 
oK+ ,,+= 0 for all m then there is nothing to prove. Otherwise let t = Z$= t oK+ l,m, which lies in 
(O,l]. Set q=ttll$=lwK+lmqm. If t= 1 then ~=P~+~@(P and we have seen that (13) is true. 
If t-Cl, put w’=(l-t)-lCfI?=,Zd,=IOn,m(pn~~(Pm). It follows that o=t(pK+I@p)+(l-t)wO; 
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and since pK+ i is orthogonal to all p,, with n # K + 1, we conclude that w0 is orthogonal to 
pK+ 1 @ cp. By 1. of Lemma 1 we have Sq[ 01 = tqS,[p K+I@‘(P]+(~ -t)qSqCW’l+SqC(t,l--t)l; by 
Lemma 3, we have Sq[pK+ t @ ~1 = Sq[ cp] taking into account the purity of pK+ t . Thus abbrevi- 
ating Sq[(t,l-t)]=a(t) 

For the restrictions of o to 99, we have wt = tpK+ 1 + ( 1 - t) 0;. Again, pK+ 1 is orthogonal to 
W~=(l-t)-lC~=~(l~==lOn,m)pn, thus applying 1. of Lemma 1, we get 

We also have 

(17) 

Combining (15), (16), and (17) we obtain 

+(t-t~)sq[cp]+((l-t)-(l-t)~)Sq[O;]. (18) 

Since w0 is of the form (14) with N= K, and t< 1, the induction hypothesis says that the first 
summand is non-negative; the second and third summands are non-negative since x>xq for q> 1 
and 0 <x < 1. This completes the proof of (13) for states of the form (14) with N finite. If 99t is 
infinite dimensional, the proof is completed by approximating w in the trace-norm by o(N) of the 
form (14) with N finite, and using Lemma 2. 

We turn to the conditions for equality in (13). If say wr is pure, then (Problem 1 on page 182 
of Jauch’s bookt7) w = o, @ 02, and Lemma 3 gives Sq[ 01 = Sq[ w2] so there is equality in (13). 
Suppose that there is equality in (13). If w is pure then 0= Sq[ o]= S,[w,] +S,[ w2] implies 
Sq[ w t ] = Sq[ 02] = 0 and both restrictions must be pure. If w is not pure and has the form (14), we 
must have an n 0 such that t = Xi = r on0 ,nt lies in (0,l). Defining cp and o0 as above but using 
pa, in place of PK+ 1, we see that each of the three summands in (18) must be 0. Moreover, by the 
strict concavity of Sq[ .] applied to (17) we must have cp= 05. Then, it follows that 
50=wz=02 is pure, and o=o,@q. Q.E.D. 

A final remark on the conjecture. If q > 1, then (13) is equivalent to 

f(q)=l+tr(wq)-tr,(of)-tr2(0q)30. 

Now,f(1)=0,andf’(l)=S1[ol@ti2]-St[ti] whichisstrictlypositivewhenoisnotaproduct 
state. In this case, and since (q- l)-‘f(q)--+f’(l) as q-+1, it follows that f(q)>0 for q> 1 
sufficiently near 1 (depending on w). 
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