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Abstract

The derivation of thermodynamic stability conditions for the Rényi and Dar6czy-Tsallis entropies recently given by
Ramshaw [Phys. Lett. A 198 (1995) 119] are based on an incorrect assumption about the “equilibrium” state for a
composite non-interacting system. Moreover, contrary to the claim by Ramshaw, it can be shown that these conditions
are satisfied when the parameter g entering the definition of the entropies is less than 1. We also establish a number of

inequalities for the entropies that are important in the context of stability considerations.

In a recent paper [1], J.D. Ramshaw considers
“thermodynamic stability conditions” for the Rényi
(SX1-1) and Tsallis (S][-]) entropies given by

Sylol = (1=~ Inlu(ph], (H
STlpl = (g—1)7'[1 = tr(p")]; (2)

defined for a quantum mechanical state p and any
positive real g distinct from?® 1. These entropies are
connected by

Silpl=(1—g) ' In{1 + (1 - q)S] [ p]} (3)

and are thus monotonically increasing functions of
each other, as remarked in Ref. [1].
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Y We disregard the case g < 0 altogether for reasons expounded
in Ref. {2]. Also, we refer to Ramshaw’s paper [ 1] for references
to original papers, and applications of Tsallis* proposal to build a
“generalized” thermostatistics (2 la Jaynes) based on SZ[~ l.

According to Ramshaw, the usual thermodynamic
stability condition, namely concavity of the entropy
functions

Sy (E) = sup{S;[p] : Ulp] = E}, (4)
Sy (E) :=sup{Sj[p] : Ulp] = E}, (5)

based on the energy functional U[ p] = tr(pH), where
H is the Hamiltonian of the system, do not suffice and
have to be supplemented by the following inequalities
(which are equivalent via (3)),

S§(3(Ei+ E)) 2 $SH(E)) + 5S5(Ea), (6)

28T (A(E1 + E2)) + (1 — @) [S; (3(Ey + E2))1°
> SJ(E) + 853 (Ey) + (1 = @) Sy (E1) Sy (Ey).
(7)

Notice that we distinguish the functionals Sf} / "1 on

states from the associated functions Sf} /T of the energy
by square brackets for the arguments of the former.
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Now Ramshaw claims that “... the concavity prop-
erties of S;r[p] are not in fact sufficient to guaran-
tee thermodynamic stability” (i.e., (7)). Postponing
the proof of concavity of S7 for all 0 < g # 1
and of S} for ¢ < 1, we have the following com-
ment. Due to concavity of E — Sg(E ) and the arith-
metic/ geometric mean inequality, one has

Sy (3(E1 + E2)) = 3S;(Er) + 381 (Ep)

2 \/ST(EY) ST(E);

thus, if ¢ < 1, we obtain (7) (and thus (6)) quite
simply,

28] (3(EL + E2)) + (1 = @) [S;(3(Er + E2))]*
> S](E) + 5, (E) + (1 - ) [S] (3 (E1 + E2)) ]
> ST(E1) + S;(E2) + (1 - )S}(E1) S} (Ey).

Or more directly, (6} is concavity of E — Ss(E)
which is valid for 0 < ¢ < 1. Thus, the inequalities
{6) and (7) do hold for g < 1.

It has been shown in Ref. [3] for the Tsallis case,
that (2) admits a unique maximizing state wg when
the underlying Hilbert space is finite-dimensional,
or when the Hamiltonian is semibounded and has a
purely discrete spectrum. Due to (3) this carries over
to the Rényi case and the maximizer is the same state
WE,

S§/T(E) = S}/ [w]. (8)

It will be convenient to rewrite Eqs. (6) and (7) in
order to understand their origin. Consider a composite
system described by the tensor product H; ® Hy of
the individual Hilbert spaces ;. Denote by p ® ¢ the
product state of the composite system obtained from
the states p and ¢. Now, (6) and (7) are respectively
equivalent to

MM wg, ® wg, ],

€))

T
Sq/ [wl(E|+Ez) Qw, (E\+E2)]

in view of the general equations

Sile@el =5 1pl+ Sl +(1-q)S)[p]S; [¢],
(10)
Silp® @1 =S5[p) + S/ o). (1)

The rewritten version, i.e., (9), of Ramshaw’s ther-
modynamic stability conditions (6) and (7) exposes
their true nature, namely, they demand that the entropy
for a composite non-interacting system be the largest
when there is equipartition of energy, if it is true that
the state of the composite is a product-state. However,
for a composite non-interacting system with Hamilto-
nian H; ® 1+ 1 ® H», the maximizer of the problems
(4) and (5) is not a product state at all* (see Ref.
[3]1). One has

SMT(E + Ey) > sup{SY T [p® o] :
p(Hy) = Ei, ¢(Hy) = E}. (12)

Now SR[-] is additive (11), thus we obtain

Sp(E) + Ep) > S (Ep) + Sy (E2)

from (12) and (8) for a composite system for any
0 < g # 1. But although ST is not additive since one
has (10), we do have sT[p ® @] 2 S[p] + Sile]
if ¢ < 1, and thus (12) and (8) 1mply

S}(E\ + Ez) > SJ(E\) + ST (E3)
(O<gx), (13)

for a composite system if g < 1. This inequality is
reversed for g > 1,

S](E\ + Ey) < SJ(E) + S[(Ey) (g>1). (14)

The proof can be given by the following steps. By (5)
and (8), one has

S;(E\ + Ey) = S [0k, 45, ] (15)

For a state p of the composite system 1 ® H,, denote
by p'¥ the restriction to the jth Hilbert space H; (j =
1,2). It was proved in Ref. [2] that if p is diagonal
in a basis compatible with the tensor product (that is
a basis of the form {¥, ® @,,}), then one has a weak
form of subadditivity for ¢ > 1,

S3(p) < SF(pV) + 857 (p?).

We can apply this to (15) since it was shown in Ref.
[3] that the maximizer wg is always diagonal in an
“ This has the unpleasant consequence that the variable ﬂR/ T

dSR /T /dE conjugate to E is not an equilibrium parameter - the
zeroth law of classical thermodynamics does not hold at all (Ref.

31).
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eigenbasis of the Hamiltonian, and our Hamiltonian
here is Hy ® 1 + 1 ® H,. Thus,

Sqloe e < S)(@e+e) "] + ST (0p+6)P].
(16)

But since (wg, 1) (H;) = E;, the definition (5)
gives

Syl(@s48) V) + 8] [(wE15,) )
<SG (E) + SHEp), (17)

completing the proof of (14).
We stress that for a composite system

WE +E, ¥ WE ® WE,.

The implicit assumption made by Ramshaw in his
derivation of (6) and (7), namely that the maximiz-
ing state wg, g, is a product-state, is incorrect.

In our view, concavity of (5) (resp. (4)) in E is the
true thermodynamic stability condition for a closed
system, The concavity of the map E — SZ(E) is an
immediate consequence of the fact that the functional
U[] is affine (i.e., convex linear) and the functional
Sg[-] is concave; see e.g. Refs. [3] and {2]. For
g < 1, the concavity of the functional S,‘}[-] can be
verified directly using the monotonicity and concavity
of the logarithm, and the fact that the map p > tr( p%)
is concave for g < 1 (see Ref. [2] where the original

references are given). Alternatively, it can be deduced
from the concavity of SZ[-] using (3). Thus, the map
E — S!}(E) is concave for any ¢ < 1. Due to the
fact (see Ref. [3]) that the maximizer is diagonal in
an eigenbasis of the Hamiltonian, it is easy to calcu-
late sf}/ T[-1 in the case of a two-dimensional Hilbert
space. One sees easily that E — S§(E ) is not concave
for ¢ > 1. This has the consequence that Ramshaw’s
conditions (6) and (7) do not hold for ¢ > 1.

In summary, we have shown that

(HYE— S}(E) is concave forali 0 < g # 1.

(2) E — SR(E) is concave for all 0 < ¢ < 1, but
not concave for g > 1.

(3) For a composite system, Sg(E, + E) 2
SR(E1) + S§(Ey) forall0 < q # 1.

(4) For a composite system, SZ(El + E) >
(resp. <) S](E1) + S (Ez) holds forall 0 < g < 1
(resp. g > 1).

(5) The conditions (6) and (7) of Ramshaw hold
for all 0 < g < 1, but not for ¢ > 1.
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