Five-Dimensional Bieberbach Groups with Holonomy Group $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}{ }^{\text {* }}$

J. P. ROSSETTI and PAULO TIRAO
FAMAF Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
e-mail: \{rossetti, ptirao\}@mate.uncor.edu

(Received: 4 August 1998)

Abstract

In this paper we determine all five-dimensional compact flat Riemannian manifolds with holonomy group $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. The classification is achieved by classifying their fundamental groups up to isomorphism. The Betti numbers of all these manifolds are also computed.

Mathematics Subject Classifications (1991): primary: 53C20; secondary: 20 H 15.
Key words: Bieberbach groups, flat manifolds.

Introduction

A crystallographic group is a discrete cocompact subgroup of $\mathrm{I}\left(\mathbf{R}^{n}\right)$, the isometry group of \mathbf{R}^{n}. A torsion-free crystallographic group is said to be a Bieberbach group. These groups arise as the fundamental groups of compact flat Riemannian manifolds. Furthermore, two such manifolds are diffeomorphic if and only if their fundamental groups are isomorphic to each other.

The structure of crystallographic groups was determined by Bieberbach in 1910. Later (see [Ch], 1965), Charlap proposed a scheme for the classification of Bieberbach groups with a fixed holonomy group Φ. He gave a full classification in the case when Φ is cyclic of prime order. Currently, there is no other group Φ for which the classification is complete. On the other hand, all crystallographic and Bieberbach groups in dimensions $n \leqslant 4$ are known ([BBNWZ]).

In this paper we give a full list, following Charlap's scheme, of all Bieberbach groups in dimension 5, having $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ as holonomy group. The Betti numbers of the corresponding flat manifolds are also computed. This classification is possible, in this particular case, due mainly to the facts that the Krull-Schmidt property holds for integral representations of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ and, furthermore, because one can give a list of all indecomposable representations of rank $\leqslant 5$ by using the methods in [Na].

As we shall see, there are 126 such Bieberbach groups in contrast with the 3 and 26 existing in dimensions 3 and 4, respectively. Out of these there are only 3 having

[^0]first Betti number zero, while there exists only one such group in dimensions 3 and 4.

1. Preliminaries

If Γ is a crystallographic group, then Γ satisfies an exact sequence

$$
\begin{equation*}
0 \longrightarrow \Lambda \xrightarrow{j} \Gamma \xrightarrow{\pi} \Phi \longrightarrow 1 \tag{1.1}
\end{equation*}
$$

where π is the projection $\mathrm{O}(n) \ltimes \mathbf{R}^{n} \longrightarrow \mathrm{O}(n)$ and $\Lambda=\Gamma \cap \mathbf{R}^{n}$. We call Φ the holonomy group of Γ. By Bieberbach's first theorem, the holonomy group Φ is finite and Λ is a lattice in \mathbf{R}^{n}, which is maximal Abelian in Γ.

Conversely, if Γ is an abstract group satisfying an exact sequence as in (1.1), with Φ finite and Λ free Abelian of rank n and maximal Abelian in Γ, then Γ can be embedded in I (\mathbf{R}^{n}) as a crystallographic group (see [AK]).

Therefore, the classification of all crystallographic groups, in dimension n, with holonomy group Φ, will follow from the classification, up to isomorphism, of extensions Γ of Φ by \mathbf{Z}^{n}, having these properties.

The exact sequence (1.1) induces on Λ a structure of $\mathbf{Z}[\Phi]$-module which is faithful. Moreover, fixing a basis of Λ, (1.1) induces a faithful integral representation (of rank n) of Φ. We will refer to those $\mathbf{Z}[\Phi]$-modules Λ which are free Abelian groups of finite rank, as Φ-modules.

DEFINITION. Two Φ-modules Λ and Λ^{\prime} are semi-equivalent if there exist a \mathbf{Z} isomorphism $f: \Lambda \longrightarrow \Lambda^{\prime}$ and $\sigma \in \operatorname{Aut}(\Phi)$ such that

$$
\begin{equation*}
f(g \cdot \lambda)=\sigma(g) \cdot f(\lambda), \quad \forall \lambda \in \Lambda \text { and } \forall g \in \Phi \tag{1.2}
\end{equation*}
$$

If Λ is a Φ-module and $\sigma \in \operatorname{Aut}(\Phi)$, we will denote by $\sigma \Lambda$ the Φ-module with Abelian group Λ and Φ-action given by $g \cdot \lambda=\sigma(g) \lambda$ for any $g \in \Phi$ and all $\lambda \in \Lambda$.

THEOREM (Charlap). Let Γ and Γ^{\prime} be extensions of Φ by Λ and Λ^{\prime} with extension classes $\alpha \in H^{2}(\Phi ; \Lambda)$ and $\beta \in H^{2}\left(\Phi ; \Lambda^{\prime}\right)$ respectively. Then, Γ and Γ^{\prime} are isomorphic if and only if there exists a \mathbf{Z}-isomorphism $f: \Lambda \longrightarrow \Lambda^{\prime}$ and $\sigma \in$ Aut (Φ) satisfying (1.2) such that

$$
\begin{equation*}
f_{*}(\alpha)=\sigma^{*}(\beta) \tag{1.3}
\end{equation*}
$$

in $H^{2}(\Phi ; \sigma \Lambda)$, where $\sigma^{*}(\beta)(g, h)=\beta(\sigma g, \sigma h)$.
DEFINITION. A class $\alpha \in H^{2}(\Phi ; \Lambda)$ is special if for any cyclic subgroup K of Φ of prime order, $\operatorname{res}_{K}(\alpha) \neq 0$, where $\operatorname{res}_{K}: H^{2}(\Phi ; \Lambda) \longrightarrow H^{2}(K ; \Lambda)$ is the canonical restriction map.

The following proposition due to Charlap characterizes the torsion-free extensions.

PROPOSITION. Let Γ be an extension of Φ by Λ and let $\alpha \in H^{2}(\Phi ; \Lambda)$ be its extension class. Then, Γ is torsion-free if and only if α is special.

Finally, we note that the classification of all Bieberbach groups in dimension n, with holonomy group Φ, will follow by
(I) determining the semi-equivalence classes of Φ-modules of rank n;
(II) determining for each Λ in (I), the set of special classes in $H^{2}(\Phi ; \Lambda)$, up to the equivalence relation defined by (1.3).

2. Integral Representations of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$

An integral representation of rank n, of a finite group Φ, is a homomorphism $\rho: \Phi \longrightarrow \operatorname{GL}(n ; \mathbf{Z})$.

DEFINITION. An integral representation ρ is decomposable if there exist integral representations ρ_{1} and ρ_{2} such that $\rho \sim \rho_{1} \oplus \rho_{2} ; \rho$ is said to be indecomposable if it is not decomposable.

Every integral representation ρ of a finite group Φ decomposes as a direct sum of indecomposable subrepresentations, but in general, the indecomposable summands are not uniquely determined by ρ (see, for instance, [Re2]).

We shall make use of the fact that the Krull-Schmidt property holds for integral representations of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ (see [HKO]).

Let $\Phi=\mathbf{Z}_{2}$ or $\Phi=\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ and let ρ be an integral representation of Φ. For each subset S of Φ consider the group

$$
\begin{equation*}
\frac{\cap_{s \in S} \operatorname{Ker}(\rho(s) \mp I)}{\cap_{s \in S} \operatorname{Im}(\rho(s) \pm I)}, \tag{2.1}
\end{equation*}
$$

where the choice of the signs is independent for each $s \in S$. It is not difficult to see that if ρ and ρ^{\prime} are two equivalent representations, then the associated groups are isomorphic.

There are only three indecomposable representations of \mathbf{Z}_{2} (see, for instance, [Re1]), which are given by

$$
(1) ; \quad(-1) ; \quad J=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

It follows that any $A \in \operatorname{GL}(n ; \mathbf{Z})$ satisfying $A^{2}=I$, is equivalent to a block matrix $\left(\begin{array}{ccc}I & & \\ & -I & \\ & & K\end{array}\right)$, where I is of rank $r,-I$ of rank s and K is the direct sum of matrices J. The ranks r and s are determined by the formulas

$$
\begin{equation*}
\frac{\operatorname{Ker}(A-I)}{\operatorname{Im}(A+I)} \simeq \mathbf{Z}_{2}^{r} \quad \text { and } \quad \frac{\operatorname{Ker}(A+I)}{\operatorname{Im}(A-I)} \simeq \mathbf{Z}_{2}^{s} \tag{2.2}
\end{equation*}
$$

Indecomposable representations of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ of rank $\leqslant 5$.
We will identify a representation ρ of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ by the matrices

$$
B_{1}=\rho(1,0), \quad B_{2}=\rho(0,1), \quad B_{3}=\rho(1,1) .
$$

A complete list of representatives of indecomposable representations of rank 1 and 2 of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ is (see [RT] Lemma 2.1)

	B_{1}	B_{2}	B_{3}
$\chi_{0}:$	(1),	(1),	(1)
$\chi_{1}:$	(1),	(-1),	(-1)
$\chi_{2}:$	(-1),	(1),	(-1)
$\chi_{3}:$	(-1),	(-1),	(1)
$\tau_{1}:$	$-I$,	J,	$-J$
$\tau_{2}:$	J,	$-I$,	$-J$
$\tau_{3}:$	J,	$-J$,	$-I$
$\nu_{1}:$	I,	J,	J
$\nu_{2}:$	J,	I,	J
$\nu_{3}:$	J,	J,	I.

The indecomposable representations of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ were studied by Nazarova in [Na].
Each semi-equivalence class is given by a pair of distinct matrices A and B satisfying $A^{2}=I=B^{2}$ and $A B=B A$; each one may split in at most six equivalence classes, which are given by

A,	B,	$A B$
A,	$A B$,	B
B,	A,	$A B$
B,	$A B$,	A
$A B$,	A,	B
$A B$,	B,	A.

We can proceed in ranks 3, 4 and 5 following ideas in [Na]. But, it is worth noticing that those representations of rank 3 and 4 must appear in the classification of all crystallographic groups in dimensions 3 and 4 given in [BBNWZ]. Thus, for ranks 3 and 4 we shall exhibit both lists, on the left the one from [BBNWZ] and on the right the corresponding one in Nazarova's form; besides, we give a unimodular matrix P which realizes the equivalence and the parameters r and s (computed as in (2.2)) for each of the matrices involved.

After each list we point out, in Remarks 2.1 and 2.2 respectively, how each semi-equivalence class splits into different equivalence classes. This information will be useful to understand semi-equivalence among those representations of rank 5 , constructed as a direct sum of two or more representations of rank <5.

RANK 3

$$
\begin{gathered}
\sigma_{1}: \left.\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & -1 & -1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}
-1 & 1 & 0 \\
& 1 & 0 \\
& -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
& -1 & 0 \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & -1 \\
& -1 & 0 \\
& -1
\end{array}\right) \\
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) ; \quad(r, s):(0,1) ;(0,1) ;(0,1) .
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{2}: \left.\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & -1 & 0 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}
-1 & 0 & 0 \\
& 0 & 1 \\
& 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & -1 \\
& 0 & -1 \\
& -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
& -1 & 0 \\
& -1
\end{array}\right) \\
P=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right) ; \quad(r, s):(0,1) ;(0,1) ;(0,1) .
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{3}: \left.\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
-1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}
1 & 1 & 1 \\
& -1 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
& 1 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
& -1 & 0 \\
& & 1
\end{array}\right) \\
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right) ; \quad(r, s):(0,1) ;(1,0) ;(1,0)
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{4}: \left.\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}
1 & 1 & -1 \\
& -1 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
& 0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right) \\
P=\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) ; \quad(r, s):(0,1) ;(1,0) ;(1,0) .
\end{gathered}
$$

Remark 2.1. For σ_{3}, we have $B_{2} \sim B_{3} \nsim B_{1}$. Moreover the unimodular matrix $Q=\left(\begin{array}{lll}1 & & \\ & 0 & 1 \\ & 1 & 0\end{array}\right)$ satisfies $Q B_{2} Q^{-1}=B_{3}$ and $Q B_{3} Q^{-1}=B_{2}$, therefore the representations given by B_{1}, B_{2}, B_{3} and B_{1}, B_{3}, B_{2} are equivalent. One can conclude that the semi-equivalence class of σ_{3} splits into three equivalence classes:

$$
\begin{array}{clll}
\sigma_{3}: & B_{1}, & B_{2}, & B_{3} \\
\sigma_{3}^{\prime}: & B_{2}, & B_{1}, & B_{3} \\
\sigma_{3}^{\prime \prime}: & B_{2}, & B_{3}, & B_{1} .
\end{array}
$$

The case of σ_{4} is completely analogous. In this case, by taking $Q=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ one can show that there remain three equivalence classes, given by $\sigma_{4}, \sigma_{4}^{\prime}$ and $\sigma_{4}^{\prime \prime}$, according to the position of B_{1}.

In the case of σ_{1}, the situation is even better, since there are matrices Q_{1} and Q_{2} that allow us to permute B_{1} with B_{2} and B_{1} with B_{3}, respectively. Therefore, there remains only one equivalence class. Suitable matrices Q_{1} and Q_{2} are,

$$
Q_{1}=\left(\begin{array}{ccc}
1 & & \\
& 0 & 1 \\
& 1 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

In the case of $\sigma_{2}, Q_{1}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ interchanges B_{1} and B_{2} while $Q_{2}=$ $\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right)$ interchanges B_{1} and B_{3}. Again, there is only one equivalence class left.

RANK 4

$$
P=\left(\begin{array}{cccc}
1 & & & \\
-1 & -1 & & \\
0 & -1 & 1 & \\
0 & 1 & 1 & 1
\end{array}\right) ; \quad(r, s):(0,0) ;(0,0) ;(0,0) .
$$

$\mu_{2}:\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ & 1 & 0 & 1 \\ & & -1 & 0 \\ & & & -1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ & -1 & 0 & -1 \\ & & & -1 \\ & & & -1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ & -1 & 0 & 0 \\ & & 1 & 1 \\ & & & -1\end{array}\right) \left\lvert\,\left(\begin{array}{llll}1 & & -1 & 1 \\ -1 & 0 & 0 \\ & & 0 & 1 \\ & & 1 & 0\end{array}\right)\left(\begin{array}{cccc}1 & & 0 & 0 \\ & -1 & 1 & -1 \\ & & 0 & -1 \\ & & -1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & -1 & 1 \\ & 1 & -1 \\ & & 1 \\ & & -1 \\ & & \\ & & -1\end{array}\right)\right.$

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) ; \quad(r, s):(1,1) ;(1,1) ;(1,1) .
$$

$\mu_{3}: \left.\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ & 1 & 0 & 1 \\ & & & -1\end{array}\right)\left(\begin{array}{cccc}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ & & 1 & 1 \\ & & 0 & -1\end{array}\right)\left(\begin{array}{cccc}0 & 1 & & \\ 1 & 0 & & \\ & & & -1\end{array}\right) \right\rvert\,\left(\begin{array}{ccc}-1 & 0 & 0 \\ & & \\ & & 0 \\ \\ & & 1\end{array}\right]$

$$
P=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 2 & 1
\end{array}\right) ; \quad(r, s):(1,1) ;(0,0) ;(0,0) .
$$

$\mu_{4}:\left(\begin{array}{cccc}0 & -1 & \\ -1 & 0 & & \\ & & 1 & 1 \\ & & & -1\end{array}\right)\left(\begin{array}{cccc}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ & & 1 & 1 \\ & & 0 & -1\end{array}\right)\left(\begin{array}{cccc}-1 & 0 & 0 & -1 \\ & -1 & 0 & -1 \\ & & 1 & 0 \\ & & & -1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & -1 \\ -1 & -1 & 0 \\ & & 1 \\ \\ & & -1\end{array}\right)\left(\begin{array}{llll}1 & & 1 & 0 \\ & -1 & 0 & 1 \\ & & -1 & \\ & & & 1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ & 1 & 1\end{array}\right)$

$$
P=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right) ; \quad(r, s):(0,0) ;(0,0) ;(1,1) .
$$

$$
\begin{aligned}
& \mu_{5}:\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 1 \\
& -1 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{cccc}
0 & -1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
& & -2 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{cccc}
0 & -1 & -1 & -1 \\
-1 & 0 & -1 & -1 \\
& & -1 & 0 \\
& & -1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & \\
1 & 0 & \\
& & 1 \\
& & -1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & -1 \\
1 & 1 & 1 \\
1 & 0 & -1 \\
& -1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & -1 \\
& 1 & -1 \\
& & -1 \\
& & -1
\end{array}\right) \\
& P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) ; \quad(r, s):(1,1) ;(1,1) ;(1,1) .
\end{aligned}
$$

Remark 2.2. As in the case of the representations of rank 3 , the following holds for all $\mu_{j}, 1 \leqslant j \leqslant 5$: for each pair of matrices $B_{i_{1}}, B_{i_{2}}$ having the same parameters (r, s), there exists a unimodular matrix $Q_{i_{1} i_{2}}$ that interchanges $B_{i_{1}}$ with $B_{i_{2}}$. That is, $Q_{i_{1} i_{2}} B_{i_{1}} Q_{i_{1} i_{2}}^{-1}=B_{i_{2}}$ and also $Q_{i_{1} i_{2}} B_{i_{2}} Q_{i_{1} i_{2}}^{-1}=B_{i_{1}}$.

We only write down suitable matrices Q for the representations μ_{2} and μ_{5}, since it is just in these cases that we will actually need this property.

In the case of μ_{2}, adequate matrices are

$$
Q_{12}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad Q_{13}=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

In the case of μ_{5}, adequate matrices are

$$
Q_{12}^{\prime}=\left(\begin{array}{cccc}
0 & -1 & 1 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { and } \quad Q_{13}^{\prime}=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 \\
-1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

RANK 5

It will turn out (see Section 4) that it is only possible to construct a Bieberbach group from those representations for which the three matrices B_{1}, B_{2} and B_{3} have parameter $r \geqslant 1$. Thus, by following Nazarova and taking into account this extra condition ($r \geqslant 1$), one finally gets four semi-equivalence classes of indecomposable representations of rank 5 . We list them with the corresponding parameters (r, s) as before.

$$
\begin{aligned}
& \pi_{1}:\left(\begin{array}{ccccc}
1 & & & 0 & 1 \\
& 1 & & 0 & 0 \\
& & -1 & 1 & 0 \\
& & & & 1 \\
& & & & -1
\end{array}\right)\left(\begin{array}{lllll}
1 & & & 0 & 0 \\
& 1 & & 1 & 0 \\
& & -1 & 0 & 0 \\
& & & & -1 \\
& & & & \\
\hline
\end{array}\right)\left(\begin{array}{lllll}
1 & & & 0 & 1 \\
& 1 & & 1 & 0 \\
& & 1 & -1 & 0 \\
& & & & -1 \\
& & & & \\
\hline
\end{array}\right) \\
& (r, s):(1,0) ;(1,0) ;(1,0) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2}:\left(\begin{array}{ccccc}
1 & & & & \\
& 0 & 1 & 0 & 1 \\
& 1 & 0 & -1 & 0 \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right) & \left(\begin{array}{ccccc}
1 & & & 1 & 1 \\
& 0 & 1 & 1 & 0 \\
& 1 & 0 & 0 & 1 \\
& & & 0 & -1 \\
& & & -1 & 0
\end{array}\right)\left(\begin{array}{ccccc}
1 & & & 1 & 1 \\
& 1 & & -1 & 1 \\
& & 1 & 1 & 1 \\
& & & -1 & \\
& & & & -1
\end{array}\right) \\
& (r, s):(1,0) ;(1,0) ;(2,1) .
\end{aligned}
$$

$$
\begin{aligned}
\pi_{3}:\left(\begin{array}{ccccc}
1 & & & 0 & 1 \\
& 0 & 1 & 0 & 0 \\
& 1 & 0 & 0 & 0 \\
& & & 1 & \\
& & & & -1
\end{array}\right) & \left(\begin{array}{ccccc}
1 & & & 1 & 0 \\
& 0 & 1 & 1 & 0 \\
& 1 & 0 & 1 & 0 \\
& & & -1 & \\
& & & & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & & & 1 & 1 \\
& 1 & & 1 & 0 \\
& & 1 & 1 & 0 \\
& & & -1 & \\
& & & & -1
\end{array}\right) \\
& (r, s):(1,0) ;(1,0) ;(1,0) .
\end{aligned}
$$

$$
\begin{aligned}
\pi_{4}:\left(\begin{array}{ccccc}
1 & & & 0 & 1 \\
& 0 & 1 & 0 & 1 \\
& 1 & 0 & 0 & 1 \\
& & & 1 & \\
& & & & -1
\end{array}\right) & \left(\begin{array}{ccccc}
1 & & & 1 & 0 \\
& 0 & 1 & 1 & 0 \\
& 1 & 0 & 1 & 0 \\
& & & -1 & \\
& & & & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & & & 1 & 1 \\
& 1 & & 1 & 1 \\
& & 1 & 1 & 1 \\
& & & -1 & \\
& & & & -1
\end{array}\right) \\
& (r, s):(1,0) ;(1,0) ;(2,1) .
\end{aligned}
$$

3. Cohomology Computations

In this section we shall determine the cohomology groups $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right)$, where Λ is any $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-module of rank 5.

Since cohomology is additive (in Λ) it suffices to assume that Λ is indecomposable. Moreover, semi-equivalent modules have isomorphic cohomology groups, hence we should only consider the $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-modules given by the following representations (see Section 2):

```
RANK 1 : }\mp@subsup{\chi}{0}{},\quad\mp@subsup{\chi}{1}{}
RANK 2 : }\mp@subsup{\tau}{1}{},\quad\mp@subsup{v}{1}{}
RANK 3 : }\mp@subsup{\sigma}{1}{},\quad\mp@subsup{\sigma}{2}{},\quad\mp@subsup{\sigma}{3}{},\quad\mp@subsup{\sigma}{4}{}
RANK 4 : }\mp@subsup{\mu}{1}{},\mp@subsup{\mu}{2}{},\mp@subsup{\mu}{3}{},\mp@subsup{\mu}{4}{},\mp@subsup{\mu}{5}{}\mathrm{ ;
RANK 5 : }\mp@subsup{\pi}{1}{},\quad\mp@subsup{\pi}{2}{},\quad\mp@subsup{\pi}{3}{},\quad\mp@subsup{\pi}{4}{}
```

We regard the cohomology groups $H^{n}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right)$ as the homology of the standard complex of functions $\left\{\mathcal{F}^{n}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) ; \partial^{n}\right\}_{n \geqslant 0}$.

All of the computations are standard and the results can be achieved by simple methods. Actually, in the case of rank 1 and rank 2 modules the computations can be carried out following the definitions; the details may be found in [RT]. In the cases of higher rank (3,4 and 5) one can make use of the cohomology long exact sequence induced by a short exact sequence of modules, plus the results in lower ranks and $a d$ hoc manipulations in each particular case.

In Example 3.1 we sketch the computations made in a particular rank 3 module. All the others are similar. In order not to make this section too long and since only the results will be used we shall omit proofs. The results are in Proposition 3.2.

Notation. We will denote indistinctly $H^{n}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \rho\right)$ or $H^{n}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right)$, where (ρ, Λ) is a $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-representation.

EXAMPLE 3.1. We sketch how to compute $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \sigma_{1}\right)$.
Let $\Lambda_{1}=\left\langle e_{1}+2 e_{2}\right\rangle$ and set $\Lambda_{2}=\Lambda / \Lambda_{1}$. It is easy to check that Λ_{1} is a $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-submodule of $\Lambda=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, thus Λ_{2} is also a $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-module. By inspection one can see that these modules are given by χ_{1} and $\chi_{3} \oplus \chi_{2}$ (see (2.3)) respectively.

We consider the short exact sequence of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-modules

$$
0 \longrightarrow \Lambda_{1} \xrightarrow{j} \Lambda \xrightarrow{\pi} \Lambda_{2} \longrightarrow 0,
$$

which induces the long exact sequence

$$
\begin{gathered}
\cdots \longrightarrow H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) \xrightarrow{\pi^{\prime}} H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{2}\right) \xrightarrow{\delta_{1}} H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{1}\right) \xrightarrow{j^{\prime}} \\
\quad H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) \xrightarrow{\pi^{\prime}} H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{2}\right) \xrightarrow{\delta_{2}} H^{3}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{1}\right) \longrightarrow \cdots
\end{gathered}
$$

It is a basic (but long) linear algebra exercise to compute $H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right)$ and $H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{2}\right)$. One can show that $H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) \simeq \mathbf{Z}_{4} \oplus \mathbf{Z}_{2}, H^{1}\left(\mathbf{Z}_{2} \oplus\right.$ $\left.\mathbf{Z}_{2} ; \Lambda_{2}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ and that the morphism $\pi^{\prime}: H^{1}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) \longrightarrow H^{1}\left(\mathbf{Z}_{2} \oplus\right.$ $\left.\mathbf{Z}_{2} ; \Lambda_{2}\right)$ is defined by $\pi^{\prime}(1,0)=\pi^{\prime}(0,1)=(1,1)$. Hence the above long exact sequence turns into

$$
\begin{aligned}
\cdots & \mathbf{Z}_{4} \oplus \mathbf{Z}_{2} \xrightarrow{\pi^{\prime}} \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \xrightarrow{\delta_{1}} \mathbf{Z}_{2} \xrightarrow{j^{\prime}} \\
& H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right) \xrightarrow{\pi^{\prime}} \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \xrightarrow{\delta_{2}} H^{3}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda_{1}\right) \longrightarrow \cdots
\end{aligned}
$$

Now one can check, by doing explicit computations, that δ_{2} is injective and that δ_{1} is surjective, from which the result follows.

In the rest of the cases we proceed in the same manner. Precisely, we choose Λ_{1} a submodule of Λ in the most natural possible way and we set $\Lambda_{2}=\Lambda / \Lambda_{1}$. Then we consider the cohomology long exact sequence as in Example 3.1. Finally, by using this sequence we get all the desired cohomology groups.

PROPOSITION 3.2. Let ρ be any of the representations in (3.1) and let Λ be the corresponding $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$-module. Then the cohomology groups $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \rho\right)$ are as in Table 3.3.

3.3. SOME EXPLICIT COHOMOLOGY GENERATORS

All the 2-cocycles h are normalized, that is $h(x, I)=h(I, x)=0$ for all $x \in$ $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.

Table 3.3.

Rep.	$H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \Lambda\right)$	Extra information $\left(^{*}\right)$
χ_{0}	$\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$	$\left\langle\left[h_{1}\right],\left[h_{2}\right]\right\rangle$
χ_{1}	\mathbf{Z}_{2}	$\left\langle 1_{\chi_{1}}\right\rangle$
τ_{1}	0	-
ν_{1}	\mathbf{Z}_{2}	$\left\langle 1_{v_{1}}\right\rangle$
σ_{1}	0	-
σ_{2}	\mathbf{Z}_{2}	for $\Lambda_{1}=\left\langle e_{1}\right\rangle, j^{\prime}$ is an isomorphism
σ_{3}	\mathbf{Z}_{2}	$\left\langle 1_{\sigma_{3}}\right\rangle$
σ_{4}	$\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$	for $\Lambda_{1}=\left\langle e_{1}\right\rangle, j^{\prime}$ is an isomorphism
μ_{1}	0	-
μ_{2}	$\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right) \oplus \mathbf{Z}_{2}$	for $\Lambda_{1}=\left\langle e_{1}, e_{2}\right\rangle, j^{\prime}$ is an isomorphism
μ_{3}	\mathbf{Z}_{2}	for $\Lambda_{1}=\left\langle e_{1}\right\rangle, j^{\prime}$ is an isomorphism
μ_{4}	\mathbf{Z}_{2}	for $\Lambda_{1}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle, j^{\prime} \mid\left\langle e_{2}\right\rangle$ is an isomorphism
μ_{5}	$\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$	$\left\langle\left[g_{1}\right],\left[g_{2}\right]\right\rangle$
π_{1}	$\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$	for $\Lambda_{1}=\left\langle e_{1}, e_{2}\right\rangle, j^{\prime}$ is onto (see 3.36)
π_{2}	$\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$	for $\Lambda_{1}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, j^{\prime}$ is an isomorphism
π_{3}	\mathbf{Z}_{2}	for $\Lambda_{1}=\left\langle e_{2}, e_{3}\right\rangle, j^{\prime}$ is an isomorphism
π_{4}	\mathbf{Z}_{2}	for $\Lambda_{1}=\left\langle e_{2}, e_{3}\right\rangle, j^{\prime}$ is an isomorphism

*For the explicit generators see (3.3).
3.31. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \chi_{0}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}=\left\langle\left[h_{1}\right],\left[h_{2}\right]\right\rangle$, where

h_{1}	B_{1}	B_{2}	B_{3}
B_{1}	0	0	0
B_{2}	0	1	1
B_{3}	0	1	1

h_{2}	B_{1}	B_{2}	B_{3}
B_{1}	1	0	1
B_{2}	0	0	0
B_{3}	1	0	1

3.32. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \chi_{1}\right) \simeq \mathbf{Z}_{2}=\left\langle\left[1_{\chi_{1}}\right]\right\rangle$, where

$1_{\chi_{1}}$	B_{1}	B_{2}	B_{3}
B_{1}	-1	-1	0
B_{2}	0	0	0
B_{3}	1	1	0

3.33. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; v_{1}\right) \simeq \mathbf{Z}_{2}=\left\langle\left[1_{\nu_{1}}\right]\right\rangle$, where

$1_{\nu_{1}}$	B_{1}	B_{2}	B_{3}
B_{1}	1	1	0
	1	1	0
B_{2}	1	1	0
	1	1	0
B_{3}	0	0	0
	0	0	0

3.34. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \sigma_{3}\right) \simeq \mathbf{Z}_{2}=\left\langle\left[1_{\sigma_{3}}\right]\right\rangle$, where

$1_{\sigma_{3}}$	B_{1}	B_{2}	B_{3}
B_{1}	0	0	-1
	0	1	1
	0	0	0
	1	0	0
B_{2}	0	-1	-1
	-1	0	-1
	-1	-1	-2
B_{3}	0	0	0
	1	0	1

3.35. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \mu_{5}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}=\left\langle\left[g_{1}\right],\left[g_{2}\right]\right\rangle$, where

g_{1}	B_{1}	B_{2}	B_{3}
	0	0	0
B_{1}	0	0	0
	0	0	0
	0	1	1
	0	0	0
B_{2}	0	1	1
	0	0	0
	0	-1	-1
	0	1	1
B_{3}	0	0	0
	0	0	0
	0	0	0

g_{2}	B_{1}	B_{2}	B_{3}
	0	0	0
B_{1}	0	0	0
	-1	0	-1
	0	0	0
	0	0	0
B_{2}	1	0	1
	1	0	1
	0	0	0
	1	0	1
B_{3}	0	0	0
	0	0	0
	0	0	0

3.36. $H^{2}\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} ; \pi_{1}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.

Let $\Lambda_{1}=\left\langle e_{1}, e_{2}\right\rangle$, then the action of $\Phi=\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ on Λ_{2} is given by σ_{1}. Hence, it follows by using the long exact sequence that j^{\prime} is onto. Notice that $H^{2}\left(\Phi ; \Lambda_{1}\right)=H^{2}\left(\Phi ;\left\langle e_{1}\right\rangle\right) \oplus H^{2}\left(\Phi ;\left\langle e_{2}\right\rangle\right)=\left\langle\left[h_{1}\right],\left[h_{2}\right]\right\rangle \oplus\left\langle\left[k_{1}\right],\left[k_{2}\right]\right\rangle$, where h_{1}, h_{2}, k_{1} and k_{2} are as in 3.31. In addition one can check that $j^{\prime}\left(\left[h_{2}+k_{1}\right]\right)=0$ and that $\left\langle j^{\prime}\left(\left[h_{1}+h_{2}\right]\right), j^{\prime}\left(\left[k_{1}\right]\right), j^{\prime}\left(\left[k_{2}\right]\right)\right\rangle \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$, therefore the result follows.

4. Classification

In this section we develop the last step of the classification scheme mentioned at the end of Section 1, that is, we shall find all special classes and the equivalences among them. This will be a rather technical section. A summary of the results can be found in the tables in Section 5.

Throughout this section Φ will denote $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. We shall consider separately the representations having an indecomposable direct summand of rank 3,4 or 5. The representations that decompose as a direct sum of representations of rank 1 and 2 were called \mathcal{F}-representations in [RT]. The Bieberbach groups constructed from \mathcal{F}-representations were classified in [RT], for any dimension. A complete list containing the five-dimensional members of this family, will be given in Section 5.

We include now the restriction functions corresponding to the cohomology of representations of rank 1 and 2, since they will be used frequently. Recall that for any subgroup K of Φ the restriction homomorphism $\operatorname{res}_{K}: H^{2}(\Phi ; \Lambda) \longrightarrow$ $H^{2}(K ; \Lambda)$ is defined by res ${ }_{K}([g])=\left[\left.g\right|_{K \times K}\right]$. Also, recall that for any $K \simeq \mathbf{Z}_{2}$ one has that ([Ch], p. 26)

$$
H^{2}(K ; \Lambda) \simeq \begin{cases}\mathbf{Z}_{2}, & \text { if } \Lambda \text { is trivial of rank } 1 \tag{4.1}\\ 0, & \text { if } K \text { acts by }(-1) \text { on } \Lambda(\text { of rank } 1) \\ 0, & \text { if } K \text { acts by } J \text { on } \Lambda(\text { of rank } 2)\end{cases}
$$

where the generator in the first case is the normalized cocycle $K \times K \rightarrow \mathbf{Z}$ such that $(1,1) \mapsto 1$.

The next cases correspond to the first cases of Table 3.3. By 3.31 and (4.1),

$$
\begin{align*}
\operatorname{res}_{\left\langle B_{j}\right\rangle}\left[h_{i}\right] & =1-\delta_{i j} . \tag{4.2}\\
\operatorname{res}_{\left\langle B_{j}\right\rangle}\left[1_{\chi_{i}}\right] & =\delta_{i j} . \tag{4.3}\\
\operatorname{res}_{\left\langle B_{j}\right\rangle}\left[1_{\nu_{i}}\right] & =\delta_{i j} . \tag{4.4}
\end{align*}
$$

Note. In order to determine when two special classes are equivalent (see (1.3) in Section 1) it will be useful, in several cases, to know how some of the indecomposable representations in Section 2 diagonalize over \mathbf{Q}.

It follows from Charlap's theorem (Section 1) that special classes corresponding to representations which are not semi-equivalent cannot be equivalent. Since we shall deal with representations which are not semi-equivalent, then the only special
classes (abbreviated s.c., from now on) that could be equivalent are those which arise from the same representation.

Remark 4.1. We have seen in Remarks 2.1 and 2.2 that, for instance, $\sigma_{3}=$ $\left(B_{1}, B_{2}, B_{3}\right)$ is equivalent to $\widetilde{\sigma}_{3}=\left(B_{1}, B_{3}, B_{2}\right)$. Then it is clear that $\sigma_{3} \oplus \rho$ is equivalent to $\widetilde{\sigma_{3}} \oplus \rho$, for all ρ. Since $\widetilde{\sigma_{3}} \oplus \chi_{3} \sim \sigma_{3} \oplus \chi_{2}$, it follows that $\sigma_{3} \oplus \chi_{3} \sim$ $\sigma_{3} \oplus \chi_{2}$. Also $\sigma_{3} \oplus \nu_{3} \sim \sigma_{3} \oplus \nu_{2}$, etc. The same occurs with the other equivalences shown in the mentioned remarks.

Now we state a series of lemmas which will be helpful later in this section.
LEMMA 4.2. If $\alpha, \beta \in H^{2}(\Phi ; \Lambda)$ are equivalent $(\alpha \sim \beta)$, then the number of subgroups $\left\langle B_{i}\right\rangle$ such that the restriction of α to $\left\langle B_{i}\right\rangle$ does not vanish is equal to the number of subgroups $\left\langle B_{i}\right\rangle$ such that the restriction of β to $\left\langle B_{i}\right\rangle$ does not vanish.

Proof. By (1.3) in Section $1, \alpha \sim \beta$ implies that there exist a \mathbf{Z}-isomorphism $f: \Lambda \longrightarrow \Lambda$ and $\sigma \in \operatorname{Aut}(\Phi)$ satisfying (1.2) and such that $f_{*}(\alpha)=\sigma^{*}(\beta)$, i.e., $f \circ \alpha=\beta \circ(\sigma, \sigma)$. Then res ${ }_{\left\langle B_{i}\right\rangle}(\beta)=\left[\left.\beta\right|_{B_{i} \times B_{i}}\right]=\left[\left.\beta \circ(\sigma \times \sigma)\right|_{\sigma^{-1}\left(B_{i}\right) \times \sigma^{-1} B_{i}}\right]=$ $\left[\left.f \circ \alpha\right|_{\sigma^{-1}\left(B_{i}\right) \times \sigma^{-1} B_{i}}\right]=\operatorname{res}_{\left\langle\sigma^{-1}\left(B_{i}\right)\right\rangle}([f \circ \alpha])=f_{*}\left(\operatorname{res}_{\left\langle\sigma^{-1}\left(B_{i}\right)\right\rangle}(\alpha)\right.$. The last equality is due to the fact that f_{*} and res ${ }_{\left\langle\sigma^{-1}\left(B_{i}\right)\right\rangle}$ commute. Since f_{*} is an isomorphism, then res ${ }_{\left\langle B_{i}\right\rangle}(\beta)=0$ if and only if $\operatorname{res}_{\left\langle\sigma^{-1}\left(B_{i}\right)\right\rangle}(\alpha)=0$, and the lemma is proved.

LEMMA 4.3. Let $\Lambda_{1}=\oplus_{i=1}^{k} \mathbf{Z} e_{i}$ and $\Lambda=\oplus_{i=1}^{n} \mathbf{Z} e_{i}$ be Φ-modules. If the inclusion $j: \Lambda_{1} \longrightarrow \Lambda$ induces an isomorphism j^{\prime} in cohomology, then the following diagram commutes

Proof. If $[\alpha] \in H^{2}(\Phi, \Lambda)$, then there exists $[\beta] \in H^{2}\left(\Phi, \Lambda_{1}\right)$ such that $j^{\prime}[\beta]=$ $[\alpha]$ and the last $n-k$ coordinates of $j \circ \beta$ are zero. Thus $\left(j^{\prime \prime} \circ \operatorname{rest}_{\langle g\rangle} \circ\left(j^{\prime}\right)^{-1}\right)[\alpha]=$ $\left(j^{\prime \prime} \circ \operatorname{rest}_{\langle g\rangle}\right)[\beta]=\left(\operatorname{res}_{\langle g\rangle}\right)[(\beta, \underbrace{0, \ldots, 0}_{n-k})]=\left(\operatorname{res}_{\langle g\rangle}\right)\left(j^{\prime}[\beta]\right)=\left(\operatorname{res}_{\langle g\rangle}\right)[\alpha]$.

LEMMA 4.4. Let $\rho=\left(B_{1}, B_{2}, B_{3}\right)$ be an integral representation of Φ on $\Lambda=\mathbf{Z}^{n}$ and $[g] \in H^{2}(\rho, \Lambda)$. Suppose that there exist $j, 1 \leqslant j \leqslant 3$, and e_{i} such that $B_{j} e_{i}=e_{i}$ and there is a sub-lattice $\left\langle B_{j}\right\rangle$-invariant, W, such that $\Lambda=\mathbf{Z} e_{i} \oplus W$.
(a) If the ith coordinate of $g\left(B_{j}, B_{j}\right)$ is ± 1, then $\operatorname{res}_{\left\langle B_{j}\right\rangle}[g] \neq 0$.
(b) If the i th coordinate of $g\left(B_{j}, B_{j}\right)$ is 0 and $H^{2}\left(\left\langle B_{j}\right\rangle, W\right)=0$, then $\operatorname{res}_{\left\langle B_{j}\right\rangle}[g]=$ 0.

Proof. The proof of (b) is trivial. For (a), clearly there is an ordered basis, \mathcal{O}, of Λ with first vector e_{i} such that $\left[B_{j}\right]_{\mathcal{O}}=\left(\begin{array}{ll}1 & 0 \\ 0 & *\end{array}\right)$ and the first coordinate of $\operatorname{res}_{\left\langle B_{j}\right\rangle}[g]$ in \mathcal{O} is ± 1. By additivity of the cohomology, one can show that res ${ }_{\left\langle B_{j}\right\rangle}[g]$ does not vanish in $H^{2}\left(\left\langle B_{j}\right\rangle, \mathbf{Z} e_{i}\right) \simeq \mathbf{Z}_{2}$.

LEMMA 4.5. (i) If $(f, \mathrm{Id}):(\Lambda, \rho) \longrightarrow\left(\mathbf{Z}, \chi_{j}\right)$ is a linear homomorphism of Φ-modules and $\left(\Lambda_{2}, \oplus_{i \neq j} \chi_{i}\right)$ is a submodule of (Λ, ρ), then $\left.f\right|_{\Lambda_{2}} \equiv 0$.
(ii) If $0 \neq[h] \in H^{2}(\Phi, \Lambda)$ is the class corresponding to a function $h: \Phi \times$ $\Phi \longrightarrow \Lambda$, with $\operatorname{Im}(h) \subseteq \Lambda_{2} \subseteq \Lambda$, and $\left.\rho\right|_{\Lambda_{2}}=\oplus_{i \neq j} \chi_{i}$, then there does not exist a linear homomorphism $(f, \mathrm{Id}):(\Lambda, \rho) \longrightarrow\left(\mathbf{Z}, \chi_{j}\right)$ such that $f_{*}([h])=1_{\chi_{j}}$.

Proof. (ii) follows as a direct consequence of (i).
To prove (i), let $v_{2} \in \Lambda_{2}$ such that $\rho(g) v_{2}=\chi_{i}(g) v_{2}$. Thus, $\chi_{j}(g) \cdot f\left(v_{2}\right)=$ $f\left(\rho(g) \cdot v_{2}\right)=f\left(\chi_{i}(g) \cdot v_{2}\right)=\chi_{i}(g) f\left(v_{2}\right)$. The last equality holds because $\chi_{i}(g)$ is a scalar. By taking $g \in \Phi$ such that $\chi_{i}(g)=-\chi_{j}(g)$ it follows that $f\left(v_{2}\right)=$ $-f\left(v_{2}\right)$, and so $f\left(v_{2}\right)=0$. By linearity of f one has that $\left.f\right|_{\Lambda_{2}} \equiv 0$.

The following Lemma can be obtained from [RT, Lemma 5.1].
LEMMA 4.6. (i) In $H^{2}\left(\Phi, \chi_{0} \oplus \chi_{0}\right)$, if $i \neq j$, then $\left(h_{i}, h_{j}\right) \sim\left(h_{1}, h_{2}\right) \nsim\left(h_{i}, 0\right)$.
(ii) If $\alpha \in H^{2}(\Phi, \rho)$, then $(\alpha, \underbrace{0, \ldots, 0}_{k-1}) \sim\left(\alpha, \delta_{1} \alpha, \ldots, \delta_{k-1} \alpha\right)$ in $H^{2}(\Phi, \underbrace{\rho \oplus \ldots \oplus \rho}_{k})$, where $\delta_{i}=0$ or 1, for $1 \leqslant i \leqslant k-1$.

Representations containing $\sigma_{i}, 1 \leqslant i \leqslant 4$.
We shall now consider those representations containing an indecomposable subrepresentation σ of rank 3 , hence, $\sigma=\sigma_{i}$, for some $1 \leqslant i \leqslant 4$.
$\operatorname{CASE} \sigma=\sigma_{1}$.
The representations of rank 5 having σ_{1} as a direct summand that can be constructed using the indecomposable representations in Section 2 are: $\sigma_{1} \oplus \tau_{i}, \sigma_{1} \oplus v_{i}$ for $1 \leqslant i \leqslant 3$ and $\sigma \oplus \chi_{i} \oplus \chi_{j}$ for $0 \leqslant i, j \leqslant 3$. However, since $H^{2}\left(\Phi ; \sigma_{1}\right)=0$, it is clear that some of these will not admit any special class. Thus, there remains to be considered only $\sigma_{1} \oplus \chi_{0} \oplus \chi_{i}$ for $0 \leqslant i \leqslant 3$. Moreover, $\sigma_{1} \oplus \chi_{0} \oplus \chi_{i}$ are semi-equivalent for $1 \leqslant i \leqslant 3$ (see Remark 2.1). Therefore, we should consider only $\sigma_{1} \oplus \chi_{0} \oplus \chi_{0}$ and $\sigma_{1} \oplus \chi_{0} \oplus \chi_{1}$.

- In $H^{2}\left(\Phi ; \sigma_{1} \oplus \chi_{0} \oplus \chi_{0}\right)$ there is just one special class (up to equivalence) given by $\left(0,\left[h_{1}\right],\left[h_{2}\right]\right)$, since in $H^{2}\left(\Phi ; \chi_{0} \oplus \chi_{0}\right)$ we have $\left(\left[h_{i}\right],\left[h_{j}\right]\right) \sim\left(\left[h_{1}\right],\left[h_{2}\right]\right)$ for all $i \neq j$ (Lemma 4.6(i)).
- It is clear that the unique special class in $H^{2}\left(\Phi ; \sigma_{1} \oplus \chi_{0} \oplus \chi_{1}\right)$ is $\left(0,\left[h_{1}\right], 1_{\chi_{1}}\right)$.

Therefore, in this case there are $\mathbf{2}$ nonisomorphic Bieberbach groups.

CASE $\sigma=\sigma_{2}$.
Reasoning as in the previous case and observing that $H^{2}\left(\left\langle B_{i}\right\rangle ; \mathbf{Z}^{3}\right)=0$ for $1 \leqslant$ $i \leqslant 3$, we conclude that there are two semi-equivalence classes of representations having σ_{2} as a direct summand. They correspond to $\sigma_{2} \oplus \chi_{0} \oplus \chi_{0}$ and $\sigma_{2} \oplus \chi_{0} \oplus \chi_{1}$.

Associated to each of these representations there can remain at most two nonequivalent special classes. Precisely, ($\left.[h],\left[h_{1}\right],\left[h_{2}\right]\right)$ and $\left(0,\left[h_{1}\right],\left[h_{2}\right]\right)$ for the first one and $\left([h],\left[h_{1}\right], 1_{\chi_{1}}\right)$ and $\left(0,\left[h_{1}\right], 1_{\chi_{1}}\right)$ for the second, where $[h]$ is the generator of $H^{2}\left(\Phi ; \sigma_{2}\right) \simeq \mathbf{Z}_{2}$.

Regarding σ_{2} as a \mathbf{Q}-representation we have that $\sigma_{2} \sim_{\mathbf{Q}} \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$. It follows that the special classes corresponding to the first representation are not equivalent to each other. On the other hand, for $\sigma_{2} \oplus \chi_{0} \oplus \chi_{1}$, taking the semi-linear map (f, Id) defined by $f: \mathbf{Z}^{5} \longrightarrow \mathbf{Z}^{5}, f\left(e_{i}\right)=e_{i}$, if $i \neq 5$ and $f\left(e_{5}\right)=e_{1}+e_{5}$, it is not difficult to see that $f_{*}\left(0,\left[h_{1}\right], 1_{\chi_{1}}\right)=\left([h],\left[h_{1}\right], 1_{\chi_{1}}\right)=\operatorname{Id}^{*}\left([h],\left[h_{1}\right], 1_{\chi_{1}}\right)$. Thus $\left(0,\left[h_{1}\right], 1_{\chi_{1}}\right) \sim\left([h],\left[h_{1}\right], 1_{\chi_{1}}\right)$.

Therefore, if $\sigma=\sigma_{2}$, there are $\mathbf{3}$ nonisomorphic Bieberbach groups.
$\operatorname{CASE} \sigma=\sigma_{3}$.
Let us consider the quotients (as in (2.1)) for σ_{3}

$$
\begin{align*}
& \frac{\operatorname{Ker}\left(B_{1}-I\right) \cap \operatorname{Ker}\left(B_{2}-I\right) \cap \operatorname{Ker}\left(B_{3}-I\right)}{\operatorname{Im}\left(B_{1}+I\right) \cap \operatorname{Im}\left(B_{2}+I\right) \cap \operatorname{Im}\left(B_{3}+I\right)}=\frac{\left\langle e_{1}\right\rangle}{\left\langle e_{1}\right\rangle}=0 ; \\
& \operatorname{Ker}\left(B_{1}-I\right) \cap \operatorname{Ker}\left(B_{2}+I\right) \cap \operatorname{Ker}\left(B_{3}+I\right)=0 ; \\
& \frac{\operatorname{Ker}\left(B_{1}+I\right) \cap \operatorname{Ker}\left(B_{2}-I\right) \cap \operatorname{Ker}\left(B_{3}+I\right)}{\operatorname{Im}\left(B_{1}-I\right) \cap \operatorname{Im}\left(B_{2}+I\right) \cap \operatorname{Im}\left(B_{3}-I\right)}=\frac{\left\langle e_{1}-2 e_{2}\right\rangle}{\left\langle e_{1}-2 e_{2}\right\rangle}=0 ; \tag{4.5}\\
& \frac{\operatorname{Ker}\left(B_{1}+I\right) \cap \operatorname{Ker}\left(B_{2}+I\right) \cap \operatorname{Ker}\left(B_{3}-I\right)}{\operatorname{Im}\left(B_{1}-I\right) \cap \operatorname{Im}\left(B_{2}-I\right) \cap \operatorname{Im}\left(B_{3}+I\right)}=\frac{\left\langle e_{1}-2 e_{3}\right\rangle}{\left\langle e_{1}-2 e_{3}\right\rangle}=0 .
\end{align*}
$$

From the numerators one can deduce that $\sigma_{3} \sim_{\mathbf{Q}} \chi_{0} \oplus \chi_{2} \oplus \chi_{3}$.
Remark 4.7. If Λ is a ρ-module and f is a ρ-automorphism of Λ, then it is not difficult to see that the class of λ and that of $f(\lambda)$ in any quotient as in (4.5) must both be zero or nonzero simultaneously.

It will be useful for us to introduce the following terminology.
DEFINITION. Given classes $\alpha \in H^{2}\left(\Phi, \rho_{1}\right)$ and $\beta \in H^{2}\left(\Phi, \rho_{2}\right), \beta \neq 0$, we will say that α yields β (notationally $\alpha \succ \beta$) if $(\alpha, 0) \sim(\alpha, \beta)$ in $H^{2}\left(\Phi, \rho_{1} \oplus \rho_{2}\right)$.

Observation 4.8. For each character χ_{i}, exactly one of the four quotients computed for σ_{3} is different from zero, more precisely, it is isomorphic to \mathbf{Z}_{2}.

Let us now consider these quotients for $\rho=\sigma_{3} \oplus \chi_{i} \oplus \chi_{j}$ and let $f: \mathbf{Z}^{5} \longrightarrow \mathbf{Z}^{5}$ be a ρ-automorphism. We notice that the canonical vectors $e_{i}, 1 \leqslant i \leqslant 3$, vanish in
the four quotients while e_{4} and e_{5} do not vanish in one quotient. Hence, by Remark 4.7, it must happen that $f\left(\oplus_{i=1}^{3} \mathbf{Z} e_{i}\right) \subseteq \oplus_{i=1}^{3} \mathbf{Z} e_{i} \oplus \widetilde{\Lambda_{2}}$, where $\widetilde{\Lambda_{2}}=\left\langle 2 e_{4}, 2 e_{5}\right\rangle$. Every element in the cohomologies computed in Section 3 has order two. Thus, if $[g] \in H^{2}(\Phi, \rho)$ and $\operatorname{Im}(g) \subseteq \widetilde{\Lambda}_{2}$ then $[g]=0$. Hence $1_{\sigma_{3}}$ does not yield any other class in $H^{2}\left(\Phi, \sigma_{3} \oplus \chi_{i} \oplus \chi_{j}\right), \forall 0 \leqslant i, j \leqslant 3$.

On the other hand, $H^{2}\left(\Phi, \sigma_{3}\right)=\left\langle 1_{\sigma_{3}}\right\rangle \simeq \mathbf{Z}_{2}$, and, by applying Lemma 4.4 it follows that res ${ }_{\left\langle B_{i}\right\rangle} 1_{\sigma_{3}}=1-\delta_{i 1}$ for $1 \leqslant i \leqslant 3$.

Let us see that when considering $\sigma_{3} \oplus \chi_{i}$ the cohomology class $1_{\chi_{i}}$ does not yield any nonzero class in $H^{2}\left(\Phi ; \sigma_{3}\right)$.

We write the general form of a coboundary ∂g in $H^{2}\left(\Phi ; \sigma_{3}\right)$, where

$$
g\left(B_{1}\right)=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right) ; \quad g\left(B_{2}\right)=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) ; \quad g\left(B_{3}\right)=\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

∂g	B_{1}	B_{2}	B_{3}
B_{1}	$2 r_{1}+r_{2}+r_{3}$	$r_{1}-t_{1}+s_{1}+s_{2}+s_{3}$	$r_{1}-s_{1}+t_{1}+t_{2}+t_{3}$
	0	$r_{2}-s_{2}-t_{2}$	$r_{2}-s_{2}-t_{2}$
	0	$r_{3}-s_{3}-t_{3}$	$r_{3}-s_{3}-t_{3}$
	$r_{1}+r_{3}+s_{1}-t_{1}$	$2 s_{1}+s_{3}$	$-r_{1}+s_{1}+t_{1}+t_{3}$
	$r_{2}+s_{2}-t_{2}$	$2 s_{2}$	$-r-2+s_{2}+t_{2}$
	$r_{3}+s_{3}-t_{3}$	0	$-r_{3}+s_{3}-t_{3}$
B_{3}	$r_{1}+r_{2}-s_{1}+t_{1}$	$-r_{1}+s_{1}+s_{2}+t_{1}$	$2 t_{1}+t_{2}$
	$-r_{2}-s_{2}+t_{2}$	$-r_{2}-s_{2}+t_{2}$	0
	$r_{3}-s_{3}+t_{3}$	$-r_{3}+s_{3}+t_{3}$	$2 t_{3}$

In the case of $\sigma_{3} \oplus \chi_{0}$, since σ_{3} acts trivially only on $\mathbf{Z} e_{1}$, if (f, I) is a semilinear automorphism (of \mathbf{Z}^{4} with the action given by $\sigma_{3} \oplus \chi_{0}$), then $f\left(e_{4}\right) \in\left\langle e_{1}, e_{4}\right\rangle$. However, for

$$
f\left(e_{i}\right)= \begin{cases}e_{i}, & \text { if } i \neq 4 \\ e_{1}+e_{4}, & \text { if } i=4\end{cases}
$$

it holds that $f_{*}\left(0,\left[h_{i}\right]\right)=\left(0,\left[h_{i}\right]\right)$, because the canonical projection over $\oplus_{i=1}^{3} \mathbf{Z} e_{i}$ of $f_{*}\left(0,\left[h_{i}\right]\right)$ is equal to ∂g by taking g defined as above with $r_{1}=s_{1}=t_{1}=1$ and $r_{2}=r_{3}=-1$ the nonzero values for h_{1} and $r_{2}=t_{2}=1$ the nonzero values for h_{2}.

In the case of $\sigma_{3} \oplus \chi_{1}$, it is clear by Lemma 4.5 that $1_{\chi_{1}} \nsucc 1_{\sigma_{3}}$.
In the cases $\sigma_{3} \oplus \chi_{j}, 2 \leqslant j \leqslant 3$, the way for the generator $1_{\chi_{j}}$ to yield $1_{\sigma_{3}}$ is via a semi-linear automorphism (f, I) of \mathbf{Z}^{4} defined by $f\left(e_{i}\right)=e_{i}$ for $1 \leqslant i \leqslant 3$,
$f\left(e_{4}\right)=e_{4}+\left(e_{1}-2 e_{2}\right)$ if $j=2$ and $f\left(e_{4}\right)=e_{4}+\left(e_{1}-2 e_{3}\right)$ if $j=3$. But in these cases $f_{*}\left(0,1_{\chi_{j}}\right)=\left([\partial g], 1_{\chi_{j}}\right)=\left(0,1_{\chi_{j}}\right)$ by taking the coboundary ∂g with $r_{1}=s_{2}=1$ and $r_{2}=r_{3}=s_{3}=-1$ the nonzero values of g when $j=2$ and $r_{1}=t_{3}=1$ and $r_{2}=r_{3}=t_{2}=-1$ the nonzero values of g when $j=3$.

With all this information we are in a condition to determine the equivalence classes of special classes when $\sigma=\sigma_{3}$.

The representations having at least one s.c. in this case are: $\sigma_{3} \oplus \chi_{0} \oplus \chi_{0} ; \sigma_{3} \oplus$ $\chi_{0} \oplus \chi_{1} ; \sigma_{3} \oplus \chi_{0} \oplus \chi_{2} ; \sigma_{3} \oplus \chi_{1} \oplus \chi_{1} ; \sigma_{3} \oplus \chi_{1} \oplus \chi_{2}$ and $\sigma_{3} \oplus \nu_{1}$. We will often denote h_{i} instead of $\left[h_{i}\right]$, the class it represents.

- Corresponding to $\sigma_{3} \oplus \chi_{0} \oplus \chi_{0}$ there are exactly 3 classes of s.c. corresponding to: $\left(0, h_{1}, h_{2}\right) ;\left(1_{\sigma_{3}}, h_{1}, h_{2}\right)$ and $\left(1_{\sigma_{3}}, h_{2}, 0\right)$. The last two are not equivalent because of Lemma 4.6 and Observation 4.8.
Observation 4.9. Notice that $\left(1_{\sigma_{3}}, h_{3}, 0\right) \sim\left(1_{\sigma_{3}}, h_{2}, 0\right)$, defining the semilinear homomorphism (f, A), with $f: \mathbf{Z}^{5} \longrightarrow \mathbf{Z}^{5}$, by $A(1,0)=(1,0), A(0,1)=$ $(1,1)$ and $f=Q \oplus I, Q=\left(\begin{array}{ll}1 & \\ & J\end{array}\right)$ (see Remark 2.1), it follows that $f_{*}\left(1_{\sigma_{3}}, h_{2}, 0\right)$ $=\left(Q_{*} 1_{\sigma_{3}}, h_{2}, 0\right)=\left(A^{*} 1_{\sigma_{3}}, A^{*} h_{3}, 0\right)=A^{*}\left(1_{\sigma_{3}}, h_{3}, 0\right)$.
- Corresponding to $\sigma_{3} \oplus \chi_{0} \oplus \chi_{1}$ there are exactly 5 classes of s.c. given by: $\left(1_{\sigma_{3}}, h_{1}, 1_{\chi_{1}}\right) ;\left(0, h_{1}, 1_{\chi_{1}}\right) ;\left(1_{\sigma_{3}}, h_{2}, 1_{\chi_{1}}\right) ;\left(1_{\sigma_{3}}, h_{2}, 0\right)$ and $\left(1_{\sigma_{3}}, 0,1_{\chi_{1}}\right)$. We notice that the third s.c. is equivalent to $\left(1_{\sigma_{3}}, h_{3}, 1_{\chi_{1}}\right)$ and the fourth is equivalent to ($1_{\sigma_{3}}, h_{3}, 0$) by an analogous argument to that in Observation 4.9.
- Corresponding to $\sigma_{3} \oplus \chi_{0} \oplus \chi_{2}$ there are also 5 classes of s.c.: $\left(1_{\sigma_{3}}, h_{2}, 1_{\chi_{2}}\right)$; $\left(0, h_{2}, 1_{\chi_{2}}\right) ;\left(1_{\sigma_{3}}, h_{2}, 0\right) ;\left(1_{\sigma_{3}}, h_{3}, 1_{\chi_{2}}\right)$ and $\left(1_{\sigma_{3}}, h_{3}, 0\right)$. We notice that since $\sigma_{3} \oplus \chi_{0} \oplus \chi_{3} \sim \sigma_{3} \oplus \chi_{0} \oplus \chi_{2}$, the classes corresponding to $\sigma_{3} \oplus \chi_{0} \oplus \chi_{3}$ are already considered here.
- Corresponding to $\sigma_{3} \oplus \chi_{1} \oplus \chi_{1}$ there is only one class, corresponding to ($1_{\sigma_{3}}$, $\left.1_{\chi_{1}}, 0\right)$. From Lemma 4.6 it follows that this s.c. is equivalent to $\left(1_{\sigma_{3}}, 1_{\chi_{1}}, 1_{\chi_{1}}\right)$.
- Corresponding to $\sigma_{3} \oplus \chi_{1} \oplus \chi_{2}$ there are only two classes: $\left(1_{\sigma_{3}}, 1_{\chi_{1}}, 1_{\chi_{2}}\right)$ and $\left(1_{\sigma_{3}}, 1_{\chi_{1}}, 0\right)$. They are not equivalent because of Observation 4.8.
- Corresponding to $\sigma_{3} \oplus \nu_{1}$ there is only one: $\left(1_{\sigma_{3}}, 1_{\nu_{1}}\right)$.

Summing up, there are 17 Bieberbach groups, up to isomorphism, corresponding to representations having σ_{3} as a direct summand.
$\operatorname{CASE} \sigma=\sigma_{4}$.
The representation σ_{4} diagonalizes over \mathbf{Q} as $\chi_{0} \oplus \chi_{2} \oplus \chi_{3}$, in the ordered basis $\left\{e_{1}, e_{1}-e_{2}+e_{3}, e_{2}+e_{3}\right\}$.

Let us investigate the restriction functions from $H^{2}\left(\Phi ; \sigma_{4}\right)=\left\langle\widetilde{h_{1}}, \widetilde{h_{2}}\right\rangle \simeq \mathbf{Z}_{2} \oplus$ \mathbf{Z}_{2} to $H^{2}\left(\left\langle B_{k}\right\rangle ; \mathbf{Z}^{3}\right), 1 \leqslant k \leqslant 3$, where $\widetilde{h_{i}}=j^{\prime}\left(h_{i}\right)$, for $1 \leqslant i \leqslant 3$, and j^{\prime} is as in Section 3. Since $H^{2}\left(\left\langle B_{1}\right\rangle ; \mathbf{Z}^{3}\right)=0$, we have to consider only $\left\langle B_{2}\right\rangle$ and $\left\langle B_{3}\right\rangle$. By Lemma 4.4, it follows that the restrictions of $\widetilde{h_{1}}$ and $\widetilde{h_{3}}$ do not vanish in $H^{2}\left(\left\langle B_{2}\right\rangle ; \mathbf{Z}^{3}\right)$; while the restriction of $\widetilde{h_{2}}$ vanishes. Similarly, since $\left\langle e_{1}\right\rangle$ is also a direct summand in the decomposition of B_{3} as an integral representation of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$,
where B_{3} acts trivially, then, the restrictions of $\widetilde{h_{1}}$ and $\tilde{h_{2}}$ to $\left\langle B_{3}\right\rangle$ do not vanish, but the restriction of $\widetilde{h_{3}}$ vanishes.

Besides, we notice that in $H^{2}\left(\Phi ; \sigma_{4} \oplus \chi_{0}\right),\left(0, h_{i}\right) \sim\left(\tilde{h}_{i}, h_{i}\right)$, for $1 \leqslant i \leqslant 3$, via the linear isomorphism $f: \mathbf{Z}^{4} \longrightarrow \mathbf{Z}^{4}$ defined by

$$
f\left(e_{i}\right)= \begin{cases}e_{1}+e_{4}, & \text { if } i=4 \\ e_{i}, & \text { if } i \neq 4\end{cases}
$$

(and the automorphism of Φ is the identity).
Also, in $H^{2}\left(\Phi ; \sigma_{4} \oplus \chi_{2}\right)$, defining

$$
f\left(e_{i}\right)= \begin{cases}e_{1}-e_{2}+e_{3}+e_{4}, & \text { if } i=4 \\ e_{i}, & \text { if } i \neq 4\end{cases}
$$

it turns out that $f_{*}\left(0,1_{\chi_{2}}\right)=\left(\tilde{h_{3}}, 1_{\chi_{2}}\right)$. We shall omit the verification of this fact. Thus $1_{\chi_{2}} \succ \widetilde{h_{3}}$. In the same way $1_{\chi_{3}} \succ \widetilde{h_{2}}$.

LEMMA 4.10. If $\alpha \in H^{2}\left(\Phi, \sigma_{4}\right)$ and $\beta \in H^{2}\left(\Phi, \chi_{j}\right), 0 \leqslant j \leqslant 3$ then $\alpha \nsim \beta$.
Proof. It is clear, by virtue of Lemma 4.2, that $\widetilde{h_{2}} \nsucc h_{i}$ and $\widetilde{h_{3}} \nsucc h_{i}$ for $1 \leqslant i \leqslant 3$. By Lemma 4.5(ii), it follows that $\widetilde{h_{i}} \nsucc \chi_{j}$ for every $i, j, 1 \leqslant i, j \leqslant 3$. It remains only to prove that $\widetilde{h}_{1} \nsucc h_{i}$ for $1 \leqslant i \leqslant 3$. Let f be an automorphism of $\left(\mathbf{Z}^{4}, \sigma_{4} \oplus \chi_{0}\right)$. Then $f\left(e_{1}\right)$ must be in $\left\langle e_{1}, e_{4}\right\rangle$. Set $f\left(e_{1}\right)=a e_{1}+b e_{4}$ and $f\left(e_{3}\right)=$ $\sum_{i=1}^{4} c_{i} e_{i}$. Since f is a morphism, $f\left(B_{1} \cdot e_{3}\right)=B_{1} \cdot f\left(e_{3}\right)$, hence $b=-2 c_{4}$. The proof is complete since $H^{2}\left(\Phi, \chi_{0}\right)$ has order two.

Now we are in a condition to describe the equivalence classes of s.c. in this case.

- Corresponding to $\sigma_{4} \oplus \nu_{1}$ there is just one class of s.c. given by $\left(\widetilde{h_{1}}, 1_{v_{1}}\right)$.
- Corresponding to $\sigma_{4} \oplus \chi_{0} \oplus \chi_{0}$ there are exactly two classes of s.c. They are $\left(0, h_{1}, h_{2}\right)$ and ($\left.\widetilde{h_{1}}, h_{2}, 0\right)$. Note that the first one is equivalent to $\left(\widetilde{h_{3}}, h_{1}, h_{2}\right)$ and the second to ($\widetilde{h_{3}}, h_{2}, 0$). The last equivalence is because $h_{2} \succ \widetilde{h_{2}}$ and $\widetilde{h_{1}}+\widetilde{h_{2}}=\widetilde{h_{3}}$. Also, $\left(\widetilde{h_{1}}, h_{3}, 0\right) \sim\left(\widetilde{h_{1}}, h_{2}, 0\right)$ via the equivalence mentioned in Observation 4.9 with Q_{23} as in Remark 2.1 and $A \in \operatorname{Aut}(\Phi)$, the permutation $B_{2} \leftrightarrow B_{3}$.
- Corresponding to $\sigma_{4} \oplus \chi_{0} \oplus \chi_{1}$ there are five classes of s.c. They are given by $\left(\widetilde{h_{2}}, h_{1}, 1_{\chi_{1}}\right) ;\left(0, h_{1}, 1_{\chi_{1}}\right) ;\left(\widetilde{h_{1}}, h_{2}, 1_{\chi_{1}}\right) ;\left(\widetilde{h_{1}}, 0,1_{\chi_{1}}\right)$ and $\left(\widetilde{h_{1}}, h_{2}, 0\right)$.
- Corresponding to $\sigma_{4} \oplus \chi_{0} \oplus \chi_{2}$, there are four classes of s.c. which are given by $\left(0, h_{2}, 1_{\chi_{2}}\right) ;\left(\widetilde{h_{1}}, h_{2}, 0\right) ;\left(\widetilde{h_{1}}, h_{3}, 1_{\chi_{2}}\right)$ and $\left(\widetilde{h_{1}}, h_{3}, 0\right)$.
- Corresponding to $\sigma_{4} \oplus \chi_{1} \oplus \chi_{1}$ there is only one class of s.c. given by ($\left.\tilde{h_{1}}, 1_{\chi_{1}}, 0\right)$.
- Corresponding to $\sigma_{4} \oplus \chi_{1} \oplus \chi_{2}$ there are exactly two classes of s.c. given by $\left(\widetilde{h_{1}}, 1_{\chi_{1}}, 1_{\chi_{2}}\right)$ and $\left(\widetilde{h_{1}}, 1_{\chi_{1}}, 0\right)$.
Therefore, there are $\mathbf{1 5}$ Bieberbach groups corresponding to representations having σ_{4} as a direct summand.

Summing up, corresponding to indecomposable representations of rank 3, there are exactly $2+3+17+15=\mathbf{3 7}$ nonisomorphic Bieberbach groups.

Representations containing $\mu_{i}, 1 \leqslant i \leqslant 5$.
We shall now consider those representations containing an indecomposable subrepresentation μ of rank 4 , hence, $\mu=\mu_{i}$, for some $1 \leqslant i \leqslant 5$. Here, each μ_{i} can be combined with each $\chi_{j}, 0 \leqslant j \leqslant 3$, to construct a faithful representation of $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ of rank 5.

CASE $\mu=\mu_{1}$.
In this case each $B_{i}, 1 \leqslant i \leqslant 3$ is conjugate by a matrix in $\operatorname{GL}(4, \mathbf{Z})$ to the $\operatorname{matrix}\left(\begin{array}{cc} & \\ & \\ & J\end{array}\right)$, therefore $H^{2}\left(\left\langle B_{i}\right\rangle, \Lambda\right)=0$ for $1 \leqslant i \leqslant 3$. Since there is no s.c. in $H^{2}\left(\Phi, \chi_{i}\right)$, then it is clear that there is no Bieberbach group in this case.

CASE $\mu=\mu_{2}$.
In this case we shall use the notation $\widetilde{h_{1}}=(1,0,0) ; \widetilde{h_{2}}=(0,1,0) ; \widetilde{1_{\chi_{3}}}=$ $(0,0,1)$ in $H^{2}\left(\Phi, \mu_{2}\right)$.

The representation μ_{2} diagonalizes over \mathbf{Q} as $\chi_{0} \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$ in the basis $\left\{e_{1}, e_{3}+e_{4}, e_{1}+e_{2}+e_{3}-e_{4}, e_{2}\right\}$. If we consider the same quotients as for σ_{3} (see (4.5)), it holds that e_{1} does not vanish in the first one, neither $e_{3}+e_{4}$ in the second, neither $e_{1}+e_{2}+e_{3}-e_{4}$ in the third, neither e_{2} in the fourth. On the other hand $\operatorname{Ker}\left(B_{i}-I\right) / \operatorname{Im}\left(B_{i}+I\right) \simeq \mathbf{Z}_{2}$ for $1 \leqslant i \leqslant 3$ with e_{1} the generator in the cases $i=1$ and $i=2$, and e_{1} or e_{2} the generator in the case $i=3$. One can make use of Lemma 4.3 in the cases $i=1$ and 2 and Lemma 4.4 for B_{3} (by taking $\left\langle e_{1}\right\rangle$ and, for instance, $\left.W=\left\langle e_{1}+e_{2}, e_{3}, e_{4}\right\rangle\right)$ to show that the restrictions of $\widetilde{h_{i}}$ to $\left\langle B_{j}\right\rangle$ are $1-\delta_{i j}, 1 \leqslant i, j \leqslant 3$, and the restriction of $\widetilde{{\chi_{3}}_{3}}$ to $\left\langle B_{3}\right\rangle$ does not vanish but the restriction to $\left\langle B_{1}\right\rangle$ and $\left\langle B_{2}\right\rangle$ vanishes.

Hence, one out of the 8 classes in $H^{2}\left(\Phi, \mu_{2}\right)$ is s.c. It is $\widetilde{h_{3}}+\widetilde{1_{\chi_{3}}}(\simeq(1,1,1))$. Also, by looking at the cohomology of μ_{2}, it is clear that the class h_{i} in $H^{2}\left(\Phi, \chi_{0}\right)$ yields the class $\widetilde{h_{i}}$ in $H^{2}\left(\Phi, \mu_{2}\right), 1 \leqslant i \leqslant 3$, via $\left\langle e_{1}\right\rangle$, and $1_{\chi_{3}} \succ \widetilde{1_{\chi_{3}}}$ via $\left\langle e_{2}\right\rangle$. By a similar calculation to that made at the end of the proof of Lemma 4.10, one can show that $\widetilde{h_{i}} \nsucc h_{i}, 1 \leqslant i \leqslant 3$, and $\widetilde{h_{2}}+\widetilde{{\chi_{3}}^{\prime}} \nsucc 1_{\chi_{1}}$. With all this information we are in a condition to obtain the list of classes of s.c. in case μ_{2}.

- Corresponding to $\mu_{2} \oplus \chi_{0}$ there are three classes of s.c. given by: $\left(\widetilde{h_{3}}+\widetilde{1_{\chi_{3}}}, 0\right)$; $\left(\widetilde{h_{2}}+\widetilde{1_{\chi_{3}}}, h_{1}\right)$ and $\left(\widetilde{h_{2}}, h_{1}\right)$. We notice that the classes of the form $\left(*, h_{2}\right)$ or $\left(*, h_{3}\right)$ are equivalent to classes of the form $\left(*, h_{1}\right)$ via the equivalence given by $B_{1} \leftrightarrow B_{2}$ or $B_{1} \leftrightarrow B_{3}$ respectively (see Remark 2.2 and Observation 4.9).
- Corresponding to $\mu_{2} \oplus \chi_{1}$ there are two classes of s.c. given by $\left(\tilde{h}_{1}, 1_{\chi_{1}}\right)$ and $\left(\widetilde{h_{3}}+\widetilde{\tilde{1}_{3}}, 0\right)$. The first one is equivalent to $\left(\widetilde{h_{3}}+\widetilde{1_{\chi_{3}}}, 1_{\chi_{1}}\right)$ because $1_{\chi_{1}} \succ \widetilde{h_{2}}+\widetilde{\chi_{\chi_{3}}}$ and $\widetilde{h_{1}}+\widetilde{h_{2}}+\widetilde{1_{\chi_{3}}} \sim \widetilde{h_{3}}+\widetilde{\chi_{3}}$.

Hence there are 5 Bieberbach groups in this case.

CASE $\mu=\mu_{3}$.
In this case $B_{i} \sim\left(\begin{array}{ll}J^{\prime} & \\ & J\end{array}\right)$, for $i=2,3$. Thus, $H^{2}\left(\left\langle B_{i}\right\rangle, \mathbf{Z}^{4}\right)=0$ for $i=2,3$. By virtue of Lemma 4.3 it follows that the generator $j^{\prime}\left(1_{\chi_{3}}\right)$ of $H^{2}\left(\Phi, \mu_{3}\right) \simeq \mathbf{Z}_{2}$ restricts to $\left\langle B_{1}\right\rangle$ as $1_{\chi_{3}}$ does (since B_{1} is a block matrix of the form $\left(\begin{array}{cc}1 & 0 \\ 0 & *\end{array}\right)$). Thus the restriction of the cohomology class of $H^{2}\left(\Phi, \mu_{3}\right)$ to $\left\langle B_{i}\right\rangle$ vanishes for $1 \leqslant i \leqslant 3$.

Hence, it is not possible to construct a Bieberbach group of rank 5 using the representation μ_{3}.

CASE $\mu=\mu_{4}$.
In this case $H^{2}\left(\left\langle B_{i}\right\rangle, \Lambda\right)=0$, for $i=1,2$. Also $\operatorname{Ker}\left(B_{3}-I\right) / \operatorname{Im}\left(B_{3}+I\right)=$ $\left\langle e_{1}, e_{2}\right\rangle /\left\langle e_{1}+e_{2}, 2 e_{1}, 2 e_{2}\right\rangle \simeq \mathbf{Z}_{2}$, thus e_{1} and e_{2} do not vanish in this quotient. The generator of $H^{2}\left(\Phi, \mu_{4}\right)$ (denoted by $1_{\mu_{4}}$) restricted to $\left\langle B_{3}\right\rangle$ does not vanish, because according to Table 3.3, it comes from $1_{\chi_{3}}$ in the second coordinate, so it becomes a 1 in the second coordinate of $\left\langle B_{3}\right\rangle \times\left\langle B_{3}\right\rangle$, i.e. in $\mathbf{Z} e_{2}$, and Lemma 4.4 holds by taking $W=\left\langle e_{1}+e_{2}, e_{3}, e_{4}\right\rangle$.

Hence there is only one way to add a one-dimensional representation to μ_{4} to obtain a s.c. It is $\mu_{4} \oplus \chi_{0}$ with the s.c. $\left(1_{\mu_{4}}, h_{1}\right)$.
$\operatorname{CASE} \mu=\mu_{5}$.
Let us see how the restrictions to $\left\langle B_{i}\right\rangle$ of the generators g_{1} and g_{2} are. It is clear that res ${ }_{\left\langle B_{1}\right\rangle}\left(g_{1}\right)=0$ (see 3.35). In turn, res ${ }_{\left\langle B_{2}\right\rangle}\left(g_{1}\right)=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ -1\end{array}\right]$ is different from zero in $H^{2}\left(\left\langle B_{2}\right\rangle, \Lambda\right)$. This is because if we take $g:\left\langle B_{2}\right\rangle \longrightarrow \Lambda, g\left(B_{2}\right)=\left(\begin{array}{l}s_{1} \\ s_{2} \\ s_{3} \\ s_{4}\end{array}\right)$, then $\partial g\left(B_{2}, B_{2}\right)=\left(\begin{array}{c}s_{1}+s_{2}-s_{3}+s_{4} \\ s_{1}+s_{2}-s_{3}-s_{4} \\ 0 \\ 2 s_{4}\end{array}\right)$, and clearly $g_{1} \neq \partial g, \quad \forall g$. Also, res ${ }_{\left\langle B_{3}\right\rangle}\left(g_{1}\right)=$ $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ does not vanish in $H^{2}\left(\left\langle B_{3}\right\rangle, \Lambda\right)$, by virtue of Lemma 4.4, taking $\left\langle e_{1}\right\rangle$ and
$\bar{W}=\left\langle e_{1}+e_{3},-e_{1}+e_{2}, e_{4}\right\rangle$. Similarly, it is not difficult to see that res $\left.{ }_{\left\langle B_{i}\right\rangle}\right\rangle\left(g_{2}\right)$ is $\begin{cases}0, & \text { if } i=2 ;\end{cases}$

Now we will combine μ_{5} with χ_{0} and χ_{1}. It is not necessary to consider $\mu_{5} \oplus \chi_{i}$, $i=2,3$, since these last two representations are semi-equivalent to $\mu_{5} \oplus \chi_{1}$ (see Remark 4.1).

- Corresponding to $\mu_{5} \oplus \chi_{0}$, the s.c. $\left(g_{1}, h_{2}\right)$ and $\left(g_{1}, h_{3}\right)$ are equivalent via a linear isomorphism similar to that indicated in Observation 4.9, taking into
account Remark 2.2. Similarly $\left(g_{2}, h_{1}\right) \sim\left(g_{1}, h_{2}\right) ;\left(g_{2}, h_{3}\right) \sim\left(g_{1}, h_{3}\right)$; etc. Therefore, there is only one s.c. (up to equivalence) in this case.
- Corresponding to $\mu_{5} \oplus \chi_{1}$, there is only one possible s.c.: $\left(g_{1}, 1_{\chi_{1}}\right)$.

Hence, corresponding to μ_{5}, there are exactly 2 Bieberbach groups.
Summing up, corresponding to indecomposable representations of rank 4, there are $0+5+0+1+2=\mathbf{8}$ nonisomorphic Bieberbach groups.

Representations of rank 5.
$\operatorname{CASE} \pi_{1}$.
In order to analyze the restrictions of the cohomology classes to $\left\langle B_{j}\right\rangle$, we point out that $H^{2}\left(\left\langle B_{j}\right\rangle, \Lambda\right) \simeq \mathbf{Z}_{2}$, for $1 \leqslant j \leqslant 3$. Also we observe that B_{j} acts by the identity on the submodule $\left\langle e_{2}\right\rangle$ when $j=1$ and on $\left\langle e_{1}\right\rangle$ when $j=2$, and these submodules have a direct summand in Λ in which the cohomology of $\left\langle B_{j}\right\rangle$ is zero there. Finally, $\Lambda=\left\langle e_{i}\right\rangle \oplus W, 1 \leqslant i \leqslant 3$, where $W=\left\langle e_{1}-e_{2}, e_{2}-e_{3}, e_{4}, e_{5}\right\rangle$ is B_{3}-invariant. Thus, by 3.36 and Lemma 4.4, it follows that
$\operatorname{res}_{\left\langle B_{i}\right\rangle} j^{\prime}\left(\left[h_{1}\right]\right)$ is $\left\{\begin{array}{ll}0, & \text { if } i=1 ; \\ \neq 0, & \text { if } i=2,3 ;\end{array} \quad \operatorname{res}_{\left\langle B_{i}\right\rangle} j^{\prime}\left(\left[h_{2}\right]\right)\right.$ is $\begin{cases}0, & \text { if } i=1,2 ; \\ \neq 0, & \text { if } i=3 ;\end{cases}$
$\operatorname{res}_{\left\langle B_{i}\right\rangle} j^{\prime}\left(\left[k_{1}\right]\right)$ is $\left\{\begin{array}{ll}0, & \text { if } i=1,2 ; \\ \neq 0, & \text { if } i=3 ;\end{array} \quad \operatorname{res}_{\left\langle B_{i}\right\rangle} j^{\prime}\left(\left[k_{2}\right]\right) \quad\right.$ is $\begin{cases}0, & \text { if } i=2 ; \\ \neq 0, & \text { if } i=1,3 .\end{cases}$
Thus, there are two classes of s.c., corresponding to $\left[h_{1}+k_{3}\right]$ and $\left[h_{3}+k_{2}\right]$, but in fact, they are equal (since $j^{\prime}\left(\left[h_{2}+k_{1}\right]\right)=0$, see 3.36).

Hence, there is only one Bieberbach group in this case.

CASE π_{2}.
In this case B_{1} has the block form $\left(\begin{array}{ll}1 & 0 \\ 0 & *\end{array}\right)$, thus it is easy, using Lemma 4.4, to compute the restrictions of the cohomology classes to $\left\langle B_{1}\right\rangle$. For B_{2} and B_{3} we write the general form of a coboundary.
If $g\left(B_{i}\right)=\left(\begin{array}{c}s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5}\end{array}\right), i=2,3$, then $\partial g\left(B_{2}, B_{2}\right)=\left(\begin{array}{c}2 s_{1}+s_{4}-s_{5} \\ s_{2}+s_{3}+s_{4} \\ s_{2}+s_{3} \\ s_{4}-s_{5} \\ -s_{4}+s_{5}\end{array}\right)$, and $\partial g\left(B_{3}, B_{3}\right)=$ $\left(\begin{array}{c}2 s_{1}+s_{4}+s_{5} \\ 2 s_{2}-s_{4}+s_{5} \\ 2 s_{3}+s_{4}+s_{5} \\ 0 \\ 0\end{array}\right)$.

If $s_{4} \pm s_{5}=0$ then the first coordinate of ∂g is even in both cases, B_{2} and B_{3}. Hence res ${ }_{\left\langle B_{i}\right\rangle} j^{\prime}\left(\tilde{h_{k}}\right)=1-\delta_{i k}$. If one interchanges the roles of B_{1} and B_{3} in
3.33 it follows that res $\left\langle B_{1}\right\rangle j^{\prime}\left(\tilde{\widetilde{\mathcal{L}_{3}}}\right)=0$. By taking $s_{2}=1$ and the remaining s_{i} zero, $\partial g\left(B_{2}, B_{2}\right)=\operatorname{res}{ }_{\left\langle B_{2}\right\rangle} j^{\prime}\left(1_{v_{3}}\right)$. In return there is no g such that $\partial g\left(B_{3}, B_{3}\right)=$ res ${ }_{\left\langle B_{3}\right\rangle} j^{\prime}\left(\widetilde{1_{v_{3}}}\right)$, since the parity of the first three coordinates of $\partial g\left(B_{3}, B_{3}\right)$ are the same. Hence the only s.c. in this case is $j^{\prime}\left(\widetilde{h_{3}}+\widetilde{1_{v_{3}}}\right)$.

CASES π_{3} and π_{4}.
There are no Bieberbach groups in these cases because the restriction to $\left\langle B_{1}\right\rangle$ of the unique nonzero cohomology class vanishes in both cases. This is clear by observing 3.33 (interchanging the roles of B_{1} and B_{3}) and (4.4), since the generator of $H^{2}\left(\Phi, \mathbf{Z}^{5}\right)$ is $j^{\prime}\left(1_{v_{3}}\right)$.

Summing up, there are $\mathbf{2}$ nonisomorphic Bieberbach groups corresponding to indecomposable representations of rank 5 .

5. Conclusions

By following the steps in Section 6 of [RT] one can obtain explicit realizations for the Bieberbach groups Γ as subgroups of $\mathrm{I}\left(\mathbf{R}^{n}\right)$ corresponding to the s.c. obtained in Section 4. Using such a realization, it is not difficult to compute $H_{1}(M, \mathbf{Z}) \simeq$ $\Gamma /[\Gamma, \Gamma]$, for $M \simeq \mathbf{R}^{n} / \Gamma$.

We will give now the Betti numbers, $\beta_{i}, 1 \leqslant i \leqslant 5$, of the manifolds classified, which depend only on the \mathbf{Q}-class of the holonomy representation (see [Hi]). We have to compute just 8 cases of the form $\chi_{i_{1}} \oplus \chi_{i_{2}} \oplus \chi_{i_{3}} \oplus \chi_{i_{4}} \oplus \chi_{i_{5}}$.

Case	Representation	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}
A	$\chi_{0} \oplus \chi_{0} \oplus \chi_{0} \oplus \chi_{i} \oplus \chi_{j}$	3	3	1	0	0
B	$\chi_{0} \oplus \chi_{0} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{j}$	2	2	2	1	0
C	$\chi_{0} \oplus \chi_{0} \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$	2	1	1	2	1
D	$\chi_{0} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{j}$	1	3	3	0	0
E	$\chi_{0} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{j} \oplus \chi_{j}$	1	2	2	1	1
F	$\chi_{0} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{j} \oplus \chi_{k}$	1	1	3	2	0
G	$\chi_{i} \oplus \chi_{i} \oplus \chi_{i} \oplus \chi_{j} \oplus \chi_{k}$	0	3	3	0	1
H	$\chi_{i} \oplus \chi_{i} \oplus \chi_{j} \oplus \chi_{j} \oplus \chi_{k}$	0	2	4	1	0

Here $1 \leqslant i, j, k \leqslant 3$ and in each case i, j and k are different from each other.
We now give a table which summarizes our result on the classification of Bieberbach groups of dimension 5. In the second column we put the number (\#) of nonisomorphic Bieberbach groups corresponding to the representation beside.

Repres.	$\#$	β
$\sigma_{1} \oplus \chi_{0}^{2}$	1	C
$\sigma_{1} \oplus \chi_{0} \oplus \chi_{1}$	1	F
$\sigma_{2} \oplus \chi_{0}^{2}$	2	C
$\sigma_{2} \oplus \chi_{0} \oplus \chi_{1}$	1	F
$\sigma_{3} \oplus \chi_{0}^{2}$	3	A
$\sigma_{3} \oplus \chi_{0} \oplus \chi_{1}$	5	C
$\sigma_{3} \oplus \chi_{0} \oplus \chi_{2}$	5	B
$\sigma_{3} \oplus \chi_{1}^{2}$	1	F
$\sigma_{3} \oplus \chi_{1} \oplus \chi_{2}$	2	F
$\sigma_{3} \oplus \nu_{1}$	1	C
$\sigma_{4} \oplus \chi_{0}^{2}$	2	A
$\sigma_{4} \oplus \chi_{0} \oplus \chi_{1}$	5	C
$\sigma_{4} \oplus \chi_{0} \oplus \chi_{2}$	4	B
$\sigma_{4} \oplus \chi_{1}^{2}$	1	F
$\sigma_{4} \oplus \chi_{1} \oplus \chi_{2}$	2	F
$\sigma_{4} \oplus \nu_{1}$	1	C
$\mu_{2} \oplus \chi_{0}$	3	C
$\mu_{2} \oplus \chi_{1}$	2	F
$\mu_{4} \oplus \chi_{0}$	1	C
$\mu_{5} \oplus \chi_{0}$	1	C
$\mu_{5} \oplus \chi_{1}$	1	F
π_{1}	1	C
π_{2}	1	C
$\chi_{0}^{3} \oplus \chi_{2} \oplus \chi_{3}$	5	A
$\chi_{0}^{2} \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$	8	C

Repres.	$\#$	β
$\chi_{0}^{2} \oplus \chi_{2} \oplus \chi_{3}^{2}$	8	B
$\chi_{0} \oplus \chi_{2}^{2} \oplus \chi_{3}^{2}$	2	E
$\chi_{0} \oplus \chi_{2} \oplus \chi_{3}^{3}$	4	D
$\chi_{0} \oplus \chi_{1} \oplus \chi_{2} \oplus \chi_{3}^{2}$	8	F
$\chi_{1} \oplus \chi_{2} \oplus \chi_{3}^{3}$	1	G
$\chi_{1} \oplus \chi_{2}^{2} \oplus \chi_{3}^{2}$	1	H
$\chi_{0} \oplus \nu_{1} \oplus \nu_{2}$	1	A
$\chi_{3} \oplus \nu_{1} \oplus \nu_{2}$	1	C
$\chi_{0}^{2} \oplus \chi_{3} \oplus \nu_{2}$	5	A
$\chi_{0} \oplus \chi_{2} \oplus \chi_{3} \oplus v_{1}$	6	C
$\chi_{0} \oplus \chi_{2} \oplus \chi_{3} \oplus v_{2}$	6	B
$\chi_{0} \oplus \chi_{3}^{2} \oplus \nu_{2}$	3	B
$\chi_{2} \oplus \chi_{3}^{2} \oplus \nu_{1}$	1	F
$\chi_{1} \oplus \chi_{2} \oplus \chi_{3} \oplus v_{1}$	2	F
$\chi_{0} \oplus \nu_{1} \oplus \tau_{1}$	1	C
$\chi_{0} \oplus \nu_{1} \oplus \tau_{2}$	1	B
$\chi_{0}^{3} \oplus \tau_{1}$	1	A
$\chi_{0}^{2} \oplus \chi_{3} \oplus \tau_{1}$	3	B
$\chi_{0}^{2} \oplus \chi_{3} \oplus \tau_{3}$	3	C
$\chi_{0} \oplus \chi_{3}^{2} \oplus \tau_{1}$	1	D
$\chi_{0} \oplus \chi_{3}^{2} \oplus \tau_{3}$	1	F
$\chi_{0} \oplus \chi_{2} \oplus \chi_{3} \oplus \tau_{1}$	2	E
$\chi_{0} \oplus \chi_{2} \oplus \chi_{3} \oplus \tau_{3}$	3	F
$\chi_{1} \oplus \chi_{2} \oplus \chi_{3} \oplus \tau_{1}$	1	H

We note that the table on the right lists the groups already treated in [RT]. In total there are 49 representations, up to semi-equivalence. Out of these 23 contain a direct summand of rank $\geqslant 3$. The Bieberbach groups are 126, up to isomorphism. Hence there are exactly 126 five-dimensional compact flat Riemannian manifolds with holonomy group $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.

Acknowledgement

The authors wish to thank Professor R. Miatello for his constant help and encouragement while writing this paper.

References

[AK] Auslander, L. and Kuranishi, M.: On the holonomy groups of locally Euclidean spaces, Ann. of Math. 65 (1957), 411-415.
[BBNWZ] Brown, H., Bülow, R., Neubüser, J., Wondratschok, H., and Zassenhaus, H.: Crystallographic Groups of Four-Dimensional Space, Wiley, New York, 1978.
[Ch] Charlap, L.: Compact flat manifolds: I, Ann. of Math. 81 (1965), 15-30.
[Hi] Hiller, H.: Cohomology of Bieberbach groups, Mathematika 32 (1985), 55-59.
[HKO] Hindman, P., Klingler, L. and Odenthal, C. J.: On the Krull-Schmidt-Azumaya theorem for integral group rings, to appear in Comm. in Algebra.
[Na] Nazarova, L.: Integral representations of Klein's four group, Dokl. Akad. Nauk. SSSR 140 (1961), 1011-1014; English transl. in Soviet Math. Dokl. 2 (1961), 1304-1308.
[Re1] Reiner, I.: Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146.
[Re2] Reiner, I.: Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. J. 9 (1962), 225-231.
[RT] Rossetti, J. P. and Tirao, P.: Compact flat manifolds with holonomy group $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ (II), To appear in Rend. Sem. Mat. Univ. Padova 101 (1999).

[^0]: * Supported in part by FaMAF and CONICOR, Argentina.

