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Abstract. In this paper we determine all five-dimensional compact flat Riemannian manifolds with
holonomy groupZ, & Z,. The classification is achieved by classifying their fundamental groups up
to isomorphism. The Betti numbers of all these manifolds are also computed.
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Introduction

A crystallographic group is a discrete cocompact subgrougRif)| the isometry

group of R". A torsion-free crystallographic group is said to be a Bieberbach
group. These groups arise as the fundamental groups of compact flat Riemannian
manifolds. Furthermore, two such manifolds are diffeomorphic if and only if their
fundamental groups are isomorphic to each other.

The structure of crystallographic groups was determined by Bieberbach in 1910.
Later (see [Ch], 1965), Charlap proposed a scheme for the classification of
Bieberbach groups with a fixed holonomy gro®p He gave a full classification
in the case whe® is cyclic of prime order. Currently, there is no other grobp
for which the classification is complete. On the other hand, all crystallographic and
Bieberbach groups in dimensions< 4 are known ([BBNWZ]).

In this paper we give a full list, following Charlap’s scheme, of all Bieberbach
groups in dimension 5, having, & Z, as holonomy group. The Betti numbers of
the corresponding flat manifolds are also computed. This classification is possible,
in this particular case, due mainly to the facts that the Krull-Schmidt property holds
for integral representations @f ® Z, and, furthermore, because one can give a list
of all indecomposable representations of rahk by using the methods in [Na].

As we shall see, there are 126 such Bieberbach groups in contrast with the 3 and
26 existing in dimensions 3 and 4, respectively. Out of these there are only 3 having
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150 J. P. ROSSETTI AND PAULO TIRAO

first Betti number zero, while there exists only one such group in dimensions 3
and 4.

1. Preliminaries

If T is a crystallographic group, thahsatisfies an exact sequence
0— AT 2+ d—>1, (1.1)

wherer is the projection Qn) x R — O(n) andA = ' N R". We call ® the
holonomy group ofl". By Bieberbach'’s first theorem, the holonomy grofgs
finite andA is a lattice inR", which is maximal Abelian irf".

Conversely, ifl" is an abstract group satisfying an exact sequence as in (1.1),
with @ finite andA free Abelian of rank: and maximal Abelian i, thenI” can
be embedded in(R") as a crystallographic group (see [AK]).

Therefore, the classification of all crystallographic groups, in dimensjovith
holonomy group®, will follow from the classification, up to isomorphism, of
extensiond" of ® by Z", having these properties.

The exact sequence (1.1) induces &ra structure ofZ[®]-module which is
faithful. Moreover, fixing a basis ah, (1.1) induces a faithful integral represent-
ation (of rankn) of ®. We will refer to thoseZ[®]-modulesA which are free
Abelian groups of finite rank, a&-modules.

DEFINITION. Two ®-modulesA and A’ are semi-equivalent if there existza
isomorphismf: A — A’ ando € Aut (®) such that

flg-N=o0() f(A), VrieA andVge ®. (1.2)

If Ais ad-module ands € Aut(®), we will denote byo A the ®-module
with Abelian groupA and®-action given byg - » = o (g)A for anyg € ® and all
A €A,

THEOREM (Charlap). Let I and I'” be extensions o by A and A’ with
extension classes € H?(®; A) and g € H?(®; A') respectively. Ther and
" are isomorphic if and only if there existszisomorphismf: A — A’ and
o € Aut (®) satisfying(1.2) such that

fela) = 0*(B) (1.3)
in H?(®; 0 A), whereo*(B)(g, h) = B(og, oh).

DEFINITION. A classa € H?(®; A) is specialif for any cyclic subgroupk of
® of prime order, reg(«) # 0, where reg: H>(®; A) — H?(K; A) is the
canonical restriction map.

The following proposition due to Charlap characterizes the torsion-free exten-
sions.
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FIVE-DIMENSIONAL BIEBERBACH GROUPS 151

PROPOSITION. LetI" be an extension ob by A and leta € H?(®; A) be its
extension class. Theh,is torsion-free if and only i is special.

Finally, we note that the classification of all Bieberbach groups in dimemsion
with holonomy groupd, will follow by

(1) determining the semi-equivalence classe®eahodules of ranl;
(1) determining for each in (1), the set of special classesk?(®; A), up to the
equivalence relation defined by (1.3).

2. Integral Representations of 2 & Z,

An integral representation of rank of a finite group®, is a homomorphism
p. ® — GL(n; 2).

DEFINITION. An integral representatiomis decomposable if there exist integral
representationg; andp, such thato ~ p1 @ p2; p is said to be indecomposable if
it is not decomposable.

Every integral representatiop of a finite group® decomposes as a direct
sum of indecomposable subrepresentations, but in general, the indecomposable
summands are not uniquely determineddofsee, for instance, [Re2]).

We shall make use of the fact that the Krull-Schmidt property holds for integral
representations &, @ Z, (see [HKO]).

Letd = Z,0or ® = Z, ® Z, and letp be an integral representation ®f For
each subsef of ® consider the group

Nses Ker(o(s) 7 1)
NyesIm (p(s) £1)

2.1)

where the choice of the signs is independent for ga€l$. It is not difficult to see
that if p and o’ are two equivalent representations, then the associated groups are
isomorphic.

There are only three indecomposable representatio@s ¢fee, for instance,
[Rel]), which are given by

1); 1); J = 01

It follows that anyA e GL (n; Z) satisfying A> = I, is equivalent to a block
matrix - « , wherel is of rankr, —I of ranks andK is the direct sum of
matricesJ. The ranks ands are determined by the formulas

Ker(A —1) N
ImA+1) —

Ker(A +1) N

Z; and i~
Im (A = 1)

z5. (2.2)
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152 J. P. ROSSETTI AND PAULO TIRAO

Indecomposable representationsZof® Z, of rank < 5.
We will identify a representatiop of Z, ® Z, by the matrices

B]_:p(l, O)’ BZ=IO(0’ l)’ BS=P(1, 1)

A complete list of representatives of indecomposable representations of rank 1 and
20fZ,®Z,is (see [RT] Lemma 2.1)

B B> B3
Xo: D), D), D
X1t @, D, D
x2: (=1, D, D
x3: (=1, (=D, D

T1: —1, J, —J (2.3)
T ! J, —1, —J
T3 : J, —-J, -1
vy - 1, J, J
vy - J, 1, J
V3 : J, J, 1.

The indecomposable representationZ £ Z, were studied by Nazarova in [Na].
Each semi-equivalence class is given by a pair of distinct maticesd B
satisfying A2 = I = B? and AB = BA; each one may split in at most six

equivalence classes, which are given by

A, B, AB
A, AB, B
B, A, AB
B, AB, A
AB, A, B
AB, B, A.

We can proceed in ranks 3, 4 and 5 following ideas in [Na]. But, it is worth
noticing that those representations of rank 3 and 4 must appear in the classification
of all crystallographic groups in dimensions 3 and 4 given in [BBNWZ]. Thus, for
ranks 3 and 4 we shall exhibit both lists, on the left the one from [BBNWZ] and on
the right the corresponding one in Nazarova’s form; besides, we give a unimodular
matrix P which realizes the equivalence and the parametansls (computed as
in (2.2)) for each of the matrices involved.

After each list we point out, in Remarks 2.1 and 2.2 respectively, how each
semi-equivalence class splits into different equivalence classes. This information
will be useful to understand semi-equivalence among those representations of rank
5, constructed as a direct sum of two or more representations okrdnk
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FIVE-DIMENSIONAL BIEBERBACH GROUPS 153
RANK 3

0O 1 0 0 0 1 -1 -1 -1 -11 0 -1 0 1\/1 -1 -1
o1 1 0 O -1 -1 -1 0 0 1 1 0 -10 -1 0
-1 -1 -1 1 0 O 0 1 0 -1 1 -1

100
p :(1 . 0); (rs): (0,1); (0,1); (0,1).

101
01-1 0-11 -1 00 -100,/-1 1 -1 1 -1 1
op: (10 -1 0-10 -101 01 0 -1 -1 0
00 -1 1-10 -110 10 -1 0 -1

1 -1 0
P =<l 0 o ); (r,s): (0,1); (0,1); (0, 1).
0o 1 -1

0 1 0 0 0 -1 11 1 11 1 101 1 1 0
03 1 0 O 1 11 0 0 -1 -1 0 1 0 -10
-1 -1 -1 -10 O 0-1 0 -1 -1 1

0
1 ); (r,s): (0,2); (1,0); (1, 0.
-1

01-1 0 1-1 1 0 O 11 -1 1 0 O 11-1
o4 10 -1 010 1 0 -1 -1 0 0 -1 0 1
00 -1 -11 0 1 -1 0 -1 -1 0 1 0

1 0 -1
P =(—1 10 ); (r,s) : (0,D); (1,0); (1,0).
0 0 -1

~
I
N
Lor
or o

Remark 2.1. Foros, we haveB, ~ Bz 7 B;. Moreover the unimodular
1
matrix Q = ( 0 1) satisfiesQB,0~! = B; and 0B;Q~! = By, therefore
10

the representations given B4, B,, Bz and By, B3z, B, are equivalent. One can

conclude that the semi-equivalence classzdplits into three equivalence classes:

03: B1, By, Bs
Oéi Bz, Bl, Bg
o3 : By, B3, Bi.

10 -1
The case of, is completely analogous. In this case, by takihg= ( 01 0 >
00 -1

one can show that there remain three equivalence classes, givandjyando,,
according to the position a#;.

In the case 0f, the situation is even better, since there are matiizeand O,
that allow us to permut®; with B, and B, with Bz, respectively. Therefore, there
remains only one equivalence class. Suitable matiizeand Q- are,
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154 J. P. ROSSETTI AND PAULO TIRAO

1 1 0 O
Ql: 01 s Q2= 2 -1 -1
10 0 0 1

10 1
In the case ofs,, 01 :(o 10 ) interchangesB; and B, while Q, =
00

00 1
<1 -1 1) interchangesB; and Bz. Again, there is only one equivalence class
1.0 0

left.
RANK 4
10 -10\/41-10 O\/11 1 1\]/01-10\ /01 1 0 1
] ~10 -1 100 ~10 -1}|{f10 0 1}{20 1-10
M- 10 “1-1 1.1 01 0 -1 “10
1 1 1 10 “10 0
1
—1-1
P=l o 11 | (r,s) : (0,0); (0,0); (0,0.
0 1 11
100 1\/10 0 0o\/100 1 1 —11\/1 0 0\ /1 -11
[ 10 1 10 -1 -10 0 100 11 -1 1-11
M2 —10 —1-1 11 01 0 -1 ~1
-1 1 -1 10 -10 -1
1000
0010
P = o100’ (V,S)I(l,l); (1’1)7 (l’l)
0101
100 1\N\/o10 1\ /01 1 0o0\/-1 o1 /1 0 -1
] 10 1lfr00 21)[20 10 1 110 11 1
M3 - -1 0 11 -1 -1 1 -1 -1
-1 0 -1 1 1 1 -1
00 10
01 -10
P = 1-1 0 01 (I",S):(l,l); (an)a (0,0)
00 21
0 -1 010 1\/-100-1\|/2 0 -1\/1 10\/1 1 -1
[-10 100 1 ~10-1 -1-10 101 11 -1
M4 - 11 11 10 1 1 1
-1 0 -1 -1 -1 1 -1
10-10
1000
P = 11 0 0 ; (V,S):(0,0); (0,0), (l’l)
1101
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FIVE-DIMENSIONAL BIEBERBACH GROUPS 155

100 1\ /0 -1 1 0\ /0 -1-1-1\|/01 01-1 1 -1-1
| 10 1)[-10 1 0o)f-10-1-1]|[20 10-1-1 1-11
Hs - “10 10 “10 1 1 -1
-1 21 2 -1 -1 1 -1
1000
1001
P = 1101 5 (V,S): (1’1)7 (1’1)7 (l’l)
0010

Remark2.2. As inthe case of the representations of rank 3, the following holds
forall u;, 1 < j < 5:foreach pair of matriceB;,, B;, having the same parameters
(r, ), there exists a unimodular matr@;,;, that interchanges,, with B;,. That
is, QilizBil Q;}Z = B,’2 and aISOQilizBizQiz}z = Bil'

We only write down suitable matrice® for the representations, andus, since
it is just in these cases that we will actually need this property.

In the case ofi,, adequate matrices are

1 0 -1 O 1 0 -1 1

01 -1 0 0 0 -1 0

=19 o _1 of 39 Cu=|g 1 _1 1

0 0 0 1 01 0 O

In the case ofis, adequate matrices are

O -1 1 -1 O 1 0 1
, -1 0 0 O , 0O 1 -1 0
Ce=| o o o0 —1| 39 Qu=|_1 1 o 1
O 0 1 o0 0O 0 0 1

RANK 5

It will turn out (see Section 4) that it is only possible to construct a Bieberbach
group from those representations for which the three mat#ge8, and B; have
parameter > 1. Thus, by following Nazarova and taking into account this extra
condition ¢ > 1), one finally gets four semi-equivalence classes of indecompos-
able representations of rank 5. We list them with the corresponding parameters
(r, s) as before.

1 0 1 1 0 0 1 0 1

1 0 O 1 1 0 1 1 0

T - -11 0 -1 0 1 1 -1-1
1 -1 -1

-1 1 -1

(r,s): (1,0); (1,0); (1,0).
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156 J. P. ROSSETTI AND PAULO TIRAO

1 1 1 1 1 1 1

01 0 1 01 1 O 1 -1 1

T . 10-10 10 0 1 11 1
01 0 -1 -1

10 -1 0 -1

1 01 1 10 1 101

010 0 01 10 1 1 0

m3: 100 0 10 10 11 0
1 -1 -1

1 1 -1
(r,s): (L,0); (1,0); (1,0).

1 01 1 10 1 101

010 1 01 10 101 1

T4 100 1 10 1 0 11 1
1 -1 -1

1 1 -1

(r,s): (1,0); (1,0); (2,1).

3. Cohomology Computations

In this section we shall determine the cohomology groHpB&Z, & Z»; A), where
A is anyZ, ® Z,-module of rank 5.

Since cohomology is additive (iA) it suffices to assume that is indecom-
posable. Moreover, semi-equivalent modules have isomorphic cohomology groups,
hence we should only consider thg @ Z,-modules given by the following rep-
resentations (see Section 2):

RANK 1 : xo, X1

RANK 2 : 19, vi;

RANK 3 : o0y, 03, 03, 04 (31)
RANK 4 : w1, p2, M3, M4, Us;

RANK S5 : mq, mp, m3, 74

We regard the cohomology grougs™(Z, & Z,; A) as the homology of the
standard complex of functiosF " (Z, & Z3; A); 9" },>o0.

All of the computations are standard and the results can be achieved by simple
methods. Actually, in the case of rank 1 and rank 2 modules the computations can
be carried out following the definitions; the details may be found in [RT]. In the
cases of higher rank (3, 4 and 5) one can make use of the cohomology long exact
sequence induced by a short exact sequence of modules, plus the results in lower
ranks anchd hocmanipulations in each particular case.
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FIVE-DIMENSIONAL BIEBERBACH GROUPS 157

In Example 3.1 we sketch the computations made in a particular rank 3 module.
All the others are similar. In order not to make this section too long and since only
the results will be used we shall omit proofs. The results are in Proposition 3.2.

Notation We will denote indistinctlyH"(Z, & Z; p) or H"(Z> ® Z5; A),
where(p, A) isaZ, ® Z,-representation.

EXAMPLE 3.1. We sketch how to computé?(Z, & Z»; o1).

Let Ay = (e1 + 2¢,) and setA, = A/A;. It is easy to check thad, is a
Z, @ Zy-submodule ofA = (eq, e5, e3), thus A, is also aZ, & Z,-module. By
inspection one can see that these modules are given byd x3 ® x» (see (2.3))
respectively.

We consider the short exact sequenc& o Z,-modules

O—>A1—j>A—n>A2—>O,

which induces the long exact sequence

!

o HYNZo® 223 A) 2+ HYZ2® Z2; Ap) —2» HXZo ® Zp3 A1) —
HX(Zy®Z2; A) =~ H*(Zo ® Zy; Ay) 2, H3Zo®Z; A1) —> ---

It is a basic (but long) linear algebra exercise to com@itéZ, @ Z,; A) and
HYZ, ® Z5; Ay). One can show thalHY(Z, @ Zo; A) =~ Za ® Zo, HX(Z> @
Zo; Ay) >~ Z5 ® Z, and that the morphism’: HY(Z, ® Z,; A) — HYZ, @
Zy; Ay) is defined byr’(1,0) = 7/(0,1) = (1, 1). Hence the above long exact
sequence turns into

e 74 Ly e 2y B 7, 7,

H*(Zy®Z2; A) =, Z,®Zp —2» H3Z,®Zy; Ay) —> -+

Now one can check, by doing explicit computations, thas injective and that
81 is surjective, from which the result follows.
In the rest of the cases we proceed in the same manner. Precisely, we shoose
a submodule ofA in the most natural possible way and we 8gt= A/A;. Then
we consider the cohomology long exact sequence as in Example 3.1. Finally, by
using this sequence we get all the desired cohomology groups.

PROPOSITION 3.2.Letp be any of the representations (8.1) and letA be the
correspondingZ, @ Z,-module. Then the cohomology groud(Z, ® Z,; p) are
as inTable 3.3.

3.3. SOME EXPLICIT COHOMOLOGY GENERATORS
All the 2-cocyclesh are normalized, that i8(x,I) = h(I,x) = Oforallx €
Zo® Zo.
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Table 3.3.
Rep. H2(Zy®Zy; A) Extrainformation(*)
X0 Z;®Zy ([h1l], [h2])
X1 ZZ (1)(1)
71 0 -
V] Z; (Lvy)
o1 0 -
lez) Zy for A1 = (e1), j’ is an isomorphism
o3 Zy (1(73>
o4 Zo®Zo for A1 = (eq1), j' is an isomorphism
1 0 -
w2 (Zo®Zo)®Zy for Aq = (eq1, e2), j’ is an isomorphism
u3 Zo for A1 = (e1), j’ is an isomorphism
w4 Zy for A1 = (e1) @ (e2), j'|<e2> is an isomorphism
Us Zy®2Z3 (g1l [g2])
1 Zo®Zo®DZo for A1 = (eq1, e2), j isonto (see 3.36)
T2 Zo®ZryDZo for A1 = (e1, 2, e3), j’ is an isomorphism
3 Zy for A1 = (ep, e3), j’ is an isomorphism
4 Zy for A1 = (ep, e3), j’ is an isomorphism

*For the explicit generators see (3.3).

3.31. HX(Z,® Zy; x0) ~ Z2® Zp = ([ha], [h2]), where

hi | Bi| By | Bs| | ha | Bi| Ba | Bs
B, 0] 0]O Bl 1]0]1
B,| 0|11 B,|o|O|O
B3| 0|11 B3| 1|01

3.32. HX(Z,®Z3; x1) = Zp = ([1,,]), where

3.33. HZ(ZZ DZov)=2Zo= ([1,,1]), where

201299.tex; 23/08/1999;
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1, | B1| B2 | Bs
1|1 o
Bl 1o
B 5] 0] o

3.34. H*(Zy® Z3; 03) >~ Zy = ([1,,]), Where

3.35. H*(Z,® Zy; ps) ~ Zo® Zo = ([g1], [g2]), where

1, B B; Bs
0 0 -1
B; 0 1 1
0 0 0
1 0 0
B> 0 -1 -1
-1 0 -1
-1 -1 -2
B3 0 0 0
1 0 1

159

g1 B B, B3 g2 B B, B3
0 0 0 0 0 0
0 0 0 0 0 0
B1 0 0 0 B1 -1 0 -1
0 1 1 0 0 0
0 0 0 0 0 0
0 1 1 1 0 1
B2 0 0 0 B2 1 0 1
0 -1 1 0 0 0
0 1 1 1 0 1
0 0 0 0 0 0
Bs 0 0 0 Bs 0 0 0
0 0 0 0 0 0

3.36. HZ(ZZ Do) 22D Zr D Zo.
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160 J. P. ROSSETTI AND PAULO TIRAO

Let A; = (e1, e3), then the action ofb = Z, & Z, on A, is given byo;.
Hence, it follows by using the long exact sequence tHat onto. Notice that
H?(®; A1) = H(®; (e1)) & HA(®; (e2)) = ([h1), [h2]) @ ([kal, [k2]), whereh;,
hy, k1 andk, are as in 3.31. In addition one can check tfi@h, + k1]) = 0 and
that(j'([h1+ h2l), j'([k1]), j'([k2])) ~ Zo® Z, @ Z,, therefore the result follows.

4. Classification

In this section we develop the last step of the classification scheme mentioned at
the end of Section 1, that is, we shall find all special classes and the equivalences
among them. This will be a rather technical section. A summary of the results can
be found in the tables in Section 5.
Throughout this sectio® will denoteZ, & Z,. We shall consider separately
the representations having an indecomposable direct summand of rank 3, 4 or 5.
The representations that decompose as a direct sum of representations of rank 1
and 2 were called -representations in [RT]. The Bieberbach groups constructed
from F -representations were classified in [RT], for any dimension. A complete list
containing the five-dimensional members of this family, will be given in Section 5.
We include now theestriction functiongorresponding to the cohomology of
representations of rank 1 and 2, since they will be used frequently. Recall that
for any subgroupk of @ the restriction homomorphism res H?(®; A) —
H?(K; A) is defined by reg ([g]) = [glkx«x] . Also, recall that for anyk =~ 7
one has that ([Ch], p. 26)

Z>, if Ais trivial of rank 1
H?(K;A)~{ 0, if K acts by(—1) on A (of rank 1) (4.1)
0, if K acts byJ on A (of rank 2)

where the generator in the first case is the normalized co&cleK — Z such
that(1, 1) — 1.
The next cases correspond to the first cases of Table 3.3. By 3.31 and (4.1),

reS<Bj)[h,'] = 1- (S,’j. (42)
res;g,[1,1 = 6. (4.3)
rES<Bj>[lv,.] = (S,'j. (44)

Note. In order to determine when two special classes are equivalent (see (1.3)
in Section 1) it will be useful, in several cases, to know how some of the indecom-
posable representations in Section 2 diagonalize Qver

It follows from Charlap’s theorem (Section 1) that special classes corresponding
to representations which are not semi-equivalent cannot be equivalent. Since we
shall deal with representations which are not semi-equivalent, then the only special
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FIVE-DIMENSIONAL BIEBERBACH GROUPS 161

classes (abbreviated s.c., from now on) that could be equivalent are those which
arise from the same representation.

Remark 4.1. We have seen in Remarks 2.1 and 2.2 that, for instance;
(B1, B>, B3) is equivalent to5z = (By, B3z, Bo). Then it is clear thats @ p is
equivalent tasz @ p, for all p. Sincess @ x3 ~ 03 ® x», it follows thatos @ x3 ~
03D x2. Also o3 ® vz ~ 03 P vy, etc. The same occurs with the other equivalences
shown in the mentioned remarks.

Now we state a series of lemmas which will be helpful later in this section.

LEMMA 4.2. If a, B € H?*(®; A) are equivalent¢ ~ g), then the number of
subgroupg B;) such that the restriction af to (B;) does not vanish is equal to the
number of subgroup&B;) such that the restriction g8 to (B;) does not vanish.
Proof. By (1.3) in Section 1¢ ~ g implies that there exist Z-isomorphism
fi A — A ando € Aut(®) satisfying (1.2) and such thgi (o) = o*(B), i.e.,
foa=po(o,0). Thenresg)(B) = [Blpxp] =[Bo (0 x ) o-1B)xo-181 =
Lf oalo-1(8;)xo-18,]1 = 1€S(5-15,) ([ f 0 a]) = fi(reS,-15,) (). The last equality
is due to the fact thay, and res, -1z, commute. Sincef, is an isomorphism,
then resg, (B) = 0 if and only if res, 14, (o) = 0, and the lemma is proveda

LEMMA 4.3. LetA; = &' Ze; and A = @, Ze; be ®-modules. If the inclu-
sion j: A; —> A induces an isomorphisni in cohomology, then the following
diagram commutes

H2(®, A) —2% H?((g), A)

GH7t J’

reng)

H3(®, A1) —= H?((g), A1)

Proof. If [a] € H?(®, A), then there existg8] € H?(®, A1) such thatj’[f] =
[«] and the lask —k coordinates of o 8 are zero. Thug;j” o rest, o (GH Hlal =

(J" o resty))[B] = (regg)[(B, 0, ..., 0)] = (regg) (J'[B]) = (regg))[al. O

n—k

LEMMA 4.4. Letp = (By, By, B3) be an integral representation @fon A = 2"
and[g] € H?(p, A). Suppose that there exigt 1 < j < 3, ande; such that
Bje; = ¢; and there is a sub-latticéB;)-invariant, W, such thatA = Ze; @ W.

(a) If the ith coordinate ofg(B;, B;) is £1, thenres[g] # 0.
(b) If the ith coordinate ofg(B;, B;) isOand H?((B;), W) = 0, thenres; )[g] =
0.
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Proof. The proof of (b) is trivial. For (a), clearly there is an ordered basis,

O, of A with first vectore; such thaf{B;]o = ( é S) and the first coordinate of

ress;)[g]in O is £1. By additivity of the cohomology, one can show that se$g]
does not vanish i#2((B,), Ze;) =~ Z>. O

LEMMA 4.5. (i) If (f,1d): (A, p) — (Z, x;) is a linear homomorphism of
®-modules and Az, ®;.;x;) is a submodule ofA, p), then f|,, = 0.

(i) If 0+ [h] € H?(®, A) is the class corresponding to a functian: & x
& — A, withim(h) € Ax € A, andp|s, = ®;-jxi, then there does not exist a
linear homomorphisnif, Id): (A, p) — (Z, x;) such thatf,([a]) = 1,;.

Proof. (ii) follows as a direct consequence of (i).

To prove (i), letv, € Az such thate(g)va = xi(g)va. Thus, x;(g) - f(v2) =
f(p(g) -v2) = f(xi(g) - v2) = xi(g) f (v2). The last equality holds becaugg(g)
is a scalar. By taking € & such thaty;(g) = —x;(g) it follows that f(v2) =
— f(v2), and sof (v2) = 0. By linearity of f one has thaf|,, = 0. O

The following Lemma can be obtained from [RT, Lemma 5.1].

LEMMA 4.6. (i) In H?(®, xo ® xo), ifi # j,then(h;, h;) ~ (hy, hp) »= (h;, 0).
iy If « e H*®,p), then («,0,...,0) ~ (@, 810a,...,8 1) in
N e’
k—1
H3(®,p®...® p), wheres; =0or1,forl <i<k—1.
N e’
k

Representations containirg, 1 <i < 4.
We shall now consider those representations containing an indecomposable
subrepresentation of rank 3, henceg = o;, for some 1< i < 4.

CASEo = 01.

The representations of rank 5 haviagas a direct summand that can be con-
structed using the indecomposable representations in Sectiond are;, o1 ® v;
for1<i < 3ando @ x; ® x; for 0 < i, j < 3. However, sincéf?(®; o1) = 0,
it is clear that some of these will not admit any special class. Thus, there remains
to be considered only; ® xo @ x; for 0 < i < 3. Moreover,o, @ xo ® x; are
semi-equivalent for 1< i < 3 (see Remark 2.1). Therefore, we should consider
only o1 @ xo ® xo ando1 @ xo ® x1.

e In H?(®; 01® x0® xo) there is just one special class (up to equivalence) given
by (O, [h1], [h2]), since INH?(P; xo @ xo) we have([h;], [7;]) ~ ([h1], [h2])
forall i # j (Lemma 4.6(i)).

e Itis clear that the unique special classHR (®; o1 B xo ® x1) is (0, [A1], 1.

Therefore, in this case there aBmonisomorphic Bieberbach groups.
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CASEo = o».
Reasoning as in the previous case and observingdR&tB,; ); Z3) = 0 for 1 <
i < 3, we conclude that there are two semi-equivalence classes of representations
havingo, as a direct summand. They correspond4e xo @ xo ando, ® xo D x1.
Associated to each of these representations there can remain at most two non-
equivalent special classes. Precisdly], [k1], [#2]) and(0, [k1], [h>]) for the first
one and([4], [h4], 1,,) and (0, [h4], 1,,) for the second, wherig:] is the generator
of H*(®; 0y) ~ Z,.
Regarding; as aQ-representation we have that ~q x1 D x2 @ xs. It follows
that the special classes corresponding to the first representation are not equivalent
to each other. On the other hand, far ® xo ® x1, taking the semi-linear map
(f,1d) defined byf: Z5 — Z5 f(e;)) = e;, if i # 5 andf(es) = ey + es, it
is not difficult to see thatf,.(0, [h1], 1,,) = ([A], [h1l, 1,,) = 1d*([k], [A1], 1,).
Thus(0, [h1], 1) ~ ([A], [h1], 1,)).
Therefore, ife = o, there are3 nonisomorphic Bieberbach groups.

CASEo = 03.
Let us consider the quotients (as in (2.1)) éar

Ker(B, — I)NKer(B, — I)NKer(Bz — 1) e1)

ImBy+I)NIm(Ba+ 1) NIm(B3+ 1) e1)

Ker(By — I)NKer(B,+I)NKer(Bs+1) = 0;

Ker(By+ ) NKer(B, — ) NKer(Bs+ 1)  (ex—2e5) (4.5)
IMBi—DNIMBa+DNIMBs—1)  (e1—2e3)

Ker(B, + I)NKer(B, +1)NKer(Bz — 1) B (e1 — 2e3) —0
IMBy— ) NIMB,—HNIM(Bs+1) (e —2e3)

From the numerators one can deduce &hatq xo D x2 D x3.

Remark4.7. If A is ap-module andf is ap-automorphism of\, then it is not
difficult to see that the class afand that off (1) in any quotient as in (4.5) must
both be zero or nonzero simultaneously.

It will be useful for us to introduce the following terminology.

DEFINITION. Given classea € H?(®, p1) andp € H?(®, p,), B # 0, we will
say thatr yields 8 (notationallya > B) if («, 0) ~ (a, B) in H?(®, p1 & p2).

Observation 4.8. For each charactey;, exactly one of the four quotients
computed fows is different from zero, more precisely, it is isomorphiczga

Let us now consider these quotients foe= o3 ® x; @ x; and letf: 2° — Z°
be ap-automorphism. We notice that the canonical vectgrsl < i < 3, vanishin
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the four quotients while, andes do not vanish in one quotient. Hence, by Remark
4.7, it must happen that( @3, Ze;) € @3 ,Ze; @ Ay, whereA, = (2eq, 2¢5).
Every element in the cohomologies computed in Section 3 has order two. Thus, if
[g] € H*(®, p) and Im(g) € A, then[g] = 0. Hence 1, does not yield any other
class inH?(®,03® x; ® x;), YO0 <i,j<3.

On the other handd?(®, 03) = (1,,) =~ Z,, and, by applying Lemma 4.4 it
follows that resg, )15, = 1 — &1 for 1 <i < 3.

Let us see that when considering @ x; the cohomology class,1does not
yield any nonzero class iH?(®; 03).

We write the general form of a cobounday in H?(®; o3), where

r1 S1 I
gB1)=|r2|; g(B2) = | s2 |; gB3)=| 1 |;
r3 53 13
ag Bl Bz B3
2ritrptry |ri—ti+s1+s2+s3 | n—s1it+h+h+
B 0 ro — So — o ro — So — o
0 r3 —S3— 13 r3 —S3— 13
rit+ra3+si—t 251 + 53 —ri+s1+6+13
B> r2+s2—1 252 —r—2+4+s5+10n
r3+s3—13 0 —r3+ 5853 — 13
rtrp—si+n —ri+si1+s2+n 2t + 1
B3| —ra—s2+t —rp—S2+ 12 0
r3—s3+13 —r3+s3+13 213

In the case ob3 @ o, Sinceos acts trivially only onZey, if (f, I) is a semi-
linear automorphism (a* with the action given byz@® xo), thenf (es) € (e1, es).
However, for

é;, if i #4,

(e;) = .
/ e1 + eq, if i =4,
it holds thatf. (0, [#;]) = (O, [k;]), because the canonical projection o@ilzei
of £.(0, [h;]) is equal todg by takingg defined as above withy = 51 =1, =1
andr, = r3 = —1 the nonzero values fdr; andr, = 1, = 1 the nonzero values
for ho.

In the case ob3 @ 1, itis clear by Lemma 4.5 that 1 1,..

In the casess @ x;, 2 < j < 3, the way for the generato&jlto yield 1,, is
via a semi-linear automorphisny, 1) of Z* defined byf(e;) = ¢; for 1 <i < 3,
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fles) = es+ (ex — 2ep) if j = 2 andf(es) = eq + (e1 — 2e3) if j = 3. Butin
these caseg.(0, 1,,) = ([dgl. 1,,) = (0, 1,,) by taking the coboundargg with
r, = s, = 1 andr, = r3 = s3 = —1 the nonzero values @gf whenj = 2 and
ri =tz = 1 andr, = r3 = r, = —1 the nonzero values gfwhen; = 3.

With all this information we are in a condition to determine the equivalence
classes of special classes wheg= o3.

The representations having at least one s.c. in this casesaeyo ® xo; 03 ®
X0 ® X1; 03D X0 D x2; 03D X1 D X1; 03D X1 @ X2 andos @ v1. We will often
denote’; instead off;], the class it represents.

e Corresponding te3 ® xo® xo there are exactly 3 classes of s.c. corresponding
to: (0, h1, h2); (L5, h1, ko) and (1,,, h2, 0). The last two are not equivalent
because of Lemma 4.6 and Observation 4.8.

Observation 4.9. Notice that(1,,, i3, 0) ~ (14, A2, 0), defining the semi-
linear homomorphisng f, A), with f: Z5 — Z5 by A(1,0) = (1,0), A(0, 1) =
L, D)andf = Q01,0 = (l ; ) (see Remark 2.1), it follows tha (1, /2, 0)
= (Q41oy, h2,0) = (A*L,;, A3, 0) = A* (1, h3, 0).

e Corresponding t@s @ xo @ x1 there are exactly 5 classes of s.c. given hy:
(o, P2, 1y,); (O, A1, 1y)); (Qogs B2, 1y); (165, B2, 0) @nd (1,5, 0, 1,,). We no-
tice that the third s.c. is equivalent ¢h,,, 23, 1,,) and the fourth is equivalent
to (1,,, /3, 0) by an analogous argument to that in Observation 4.9.

e Corresponding t@s @ xo ® x» there are also 5 classes of s@,, /2, 1,,);
0, h,1,,); (1sg, h2,0); (1s,, k3, 1,,) and (1,,, k3, 0). We notice that since
03® oD x3 ~ 03D X0 D x2, the classes correspondinga®d xo ® xz are
already considered here.

e Corresponding te; @ x1 @ x1 there is only one class, corresponding1g,,
1,,,0). From Lemma 4.6 it follows that this s.c. is equivalentig,, 1,,, 1,,).

e Corresponding tes @ x1 @ x2 there are only two classeél,,, 1,,, 1,,) and
(165, 1,,. 0). They are not equivalent because of Observation 4.8.

e Corresponding tos @ v, there is only one(1,,, 1,,).

Summing up, there ark7 Bieberbach groups, up to isomorphism, correspond-
ing to representations having; as a direct summand.

CASEo = 04.

The representatiosy, diagonalizes ove® asxo ® x2 D 3, in the ordered basis
{e1,e1 — €2 + €3, €2 + e3}. o

Let us investigate the restriction functions fradt (®; 04) = (h, hy) =~ Z,
Z,t0o H?((By);Z%, 1 < k < 3, whereh; = j'(h;), for 1 < i < 3, andj’
is as in Section 3. Sinc&?((B1); Z%) = 0, we have to consider onlyB,) and
(B3). By Lemma 4.4, it follows that the restrictions #f and 3 do not vanish
in H2((B,); Z3); while the restriction ofz, vanishes. Similarly, sincé&;,) is also a
direct summand in the decompositionRy as an integral representation&f® Z,,
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whereB;3 acts trivially, then, the restrictions éﬁ andh~2 to (B3) do not vanish, but
the restriction ofi3 vanishes. _

Besides, we notice that iH?(®; o4 ® xo), (0, h;) ~ (hi, h;), for1 < i < 3,
via the linear isomorphisnf: Z* — Z* defined by

e1+ ey, if i =4,

e ) =

Jeen {e,-, if i #£4,

(and the automorphism @ is the identity).
Also, in H?(®; 04 ® x»), defining

©) e1 — es+ ez + ey, if i =4,

€i) = .

! e, if i £4,

it turns out thatf,.(0, 1,,) = (}73, 1,,). We shall omit the verification of this fact.
Thus 1, > hs. Inthe same way 1 > h».

LEMMA 4.10. If o € H3(®, 04) andB € H*(®, x;),0 < j < 3thena 3 B.
Proof. It is clear, by virtue of Lemma 4.2, thatty e h and /3 ¥ h; for
1<i <3.ByLemma 4.5(iQ, it follows thab; # x; for everyi, j, 1< i, j < 3.
It remains only to prove that; * h; for 1 <i < 3. Let f be an automorphism of
(Z%, 04 ® x0). Then £ (e1) must be in(eq, es). Setf(er) = aer + bey and f(e3) =
Zj‘zl cie;. Sincef is a morphism,f(By - e3) = By - f(e3), henceb = —2¢4. The
proof is complete sincél?(®, xo) has order two. a
Now we are in a condition to describe the equivalence classes of s.c. in this case.

e Corresponding to, @ v, there is just one class of s.c. given @At;i 1,).

e Corresponding t@, & xo ® xo there are exactly two classes of s.c. They are
(0, ha, hp) and (hy, hy, 0). Note that the first one is equivalent ths, /1, h2)
and the second tdl:g, h2, 0). The last equivalence is becausg > hz and
hl + hz = h3 Also, (hl, h3, 0) ~ (hl, h», 0) via the equivalence mentioned in
Observation 4.9 withQ,3 as in Remark 2.1 and € Aut(®), the permutation
132 <> 133

e Corresponding to, & xo @ x1 there are five classes of s.c. They are given by
(2, h1, 1,); (0, h1, 1,,); (ha, ha, 1,); (R, O, 1,,) and (hy, hy, 0).

e Corresponding t@4 @ xo ® x2, there are four classes of s.c. which are given
by (0, h2, 1,,); (1, ha, 0); (i, b3, 1,,) and(hy, hs, 0).

e Corresponding te4® x1® x1 there is only one class of s.c. given @y, 1X1, 0).

e Corresponding toy © x1 © x2 there are exactly two classes of s.c. given by
(h1,1,,,1,,) and(hy, 1,,, 0).

Therefore, there ard5 Bieberbach groups corresponding to representations
havingo, as a direct summand.
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Summing up, corresponding to indecomposable representations a3 rdrdee
are exactly2 + 3+ 17 + 15 =37 nonisomorphic Bieberbach groups.

Representations containing, 1 <i <5.

We shall now consider those representations containing an indecomposable sub-
representatiom of rank 4, hencey = u;, for some 1< i < 5. Here, each; can
be combined with eacly;, 0 < j < 3, to construct a faithful representation of
Z>® Z, of rank 5.

CASEuU = u1.
In this case eaclB;, 1 < i < 3 is conjugate by a matrix in GH4, Z) to the

matrix( ) thereforeHz(( ) A) =0for1<i < 3. Since thereisno s.c. in
H?(®, x;), then it is clear thathere is no Bieberbach group in this case.

CASEu = 2. "

In this case we shall use the notatibp = (1,0,0); h2 = (0,1,0); 1, =
(0,0,1) in H3(®, 112).

The representatiop, diagonalizes ove® as xo @ x1 @ x2 D x3 in the basis
{e1, e3 + e4, e1 + €2 + e3 — e, e2}. If we consider the same quotients asdgi(see
(4.5)), it holds that; does not vanish in the first one, neitlegrt ¢4 in the second,
neithere; + e> + ez — e4 in the third, neither, in the fourth. On the other hand
Ker(B; — I)/Im(B; + 1) >~ Z, for 1 < i < 3 with e; the generator in the cases
i = 1andi = 2, ande; or e, the generator in the case= 3. One can make use
of Lemma 4.3 in the casés= 1 and 2 and Lemma 4.4 fa#; (by taking(e;) and,
for instance,W = (e1 + e2, e3, e4)) to show that the restrictions &f to (B;) are
1-4;, 1<, j <3, and the restriction of,, to (B3) does not vanish but the
restriction to(B1) and(B,) vanishes. o

Hence, one out of the 8 classesHf (P, uy) is s.c. It ishs + 1.(=(1,11).
Also, by looking at the cohomology afz, itis clear that the clagl; in H?(®, xo0)
yields the clas#; in H2(®, up), 1 < i < 3, via(ey), and 1, > 1X3 via (e,). By
a similar calculation to that made at the end of the proof of Lemma 4.10, one can
show thath; # h;, 1 <i < 3,andh+1,, * 1,,. With all this information we are
in a condition to obtain the list of classes of s.c. in case

o Corresponding ta.; @ xo there are three classes of s.c. glvenm+ 1X3, 0);
(ha +1,,, h1) and (h, h1). We notice that the classes of the form 4,) or
(x, h3) are equivalent to classes of the fofm h1) via the equivalence given
by B, <> B, or B; <> Bz respectively (see Remark 2.2 and Observation 4.9).

e Corresponding teu, & i there are two classes of s.c. glven(lby 1,,) and
(h3+1X3, 0). The first one is equivalent @s+1,,,1,,) because ] >~ h2+1X3
andhl + ]’lz + 1X3 h3 =+ 1)(3

Hence there ar® Bieberbach groups in this case.
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CASE U = 3.

In this caseB; ~ (’ p ) fori = 2, 3. Thus,H2((B;),Z% = 0 fori = 2, 3.
By virtue of Lemma 4.3 it follows that the generatg1,.) of H3(®, uz) ~ Z;
restricts to(B;) as 1, does (sinceB; is a block matrix of the forrr(é 0)).

*
Thus the restriction of the cohomology class@f(®, 13) to (B;) vanishes for
1<i<3.
Hence, it is not possible to construct a Bieberbach group of rank 5 using the
representationus.

CASE U = ug4.

In this caseH?((B;), A) = 0, fori = 1, 2. Also Ker(Bz — I)/Im (B3 + I) =
(e1, e2)/{e1 + ez, 2e1, 2¢5) >~ Zy, thuse; ande, do not vanish in this quotient.
The generator of/2(®, 114) (denoted by 1,) restricted to(B3) does not vanish,
because according to Table 3.3, it comes fromif the second coordinate, so it
becomes a 1 in the second coordinaté B) x (B3), i.e. inZe,, and Lemma 4.4
holds by takingW = (e; + e, e3, e4).

Hence there is onlpneway to add a one-dimensional representationutoto
obtain a s.c.lItis w4 @ xo with the s.c(1,,, h1).

CASE U = us.
Let us see how the restrictions {8;) of the generatorg; andg; are. It is clear
0
that res,)(g1) = 0 (see 3.35). Inturn, reg,,(g1) = é is different from zero

1
51
in H?((By), A). This is because if we takg (B,) — A, g(Bo) = | 2 |, then

53
S4
§1+ 82 — 853+ 84

9g(Ba, By) = | +72 7% |, and clearlyg; # dg., Vg. Also, resp,(g1) =
254
1
8 does not vanish itH2((Bs), A), by virtue of Lemma 4.4, takinge;) and
0

W = (e1 + e3, —e1 + ez, e4). Similarly, it is not difficult to see that reg,,(g2) is
0, ifi=2
{ £0, if i=13
Now we will combineus with xo andy;. Itis not necessary to consideg® x;,
i = 2,3, since these last two representations are semi-equivalenrtdy, (see

Remark 4.1).

e Corresponding tqus @ xo, the s.c.(g1, h2) and (g1, h3) are equivalent via a
linear isomorphism similar to that indicated in Observation 4.9, taking into
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account Remark 2.2. Similarl§go, h1) ~ (g1, ho); (g2, h3) ~ (g1, h3); etc.
Therefore, there is only one s.c. (up to equivalence) in this case.
e Corresponding tgs @ x1, there is only one possible s.¢g, 1,,).

Hence, corresponding tes, there are exactl Bieberbach groups.
Summing up, corresponding to indecomposable representations of rank 4, there
are0+ 5+ 0+ 1+ 2 =8 nonisomorphic Bieberbach groups.

Representations of rank 5.

CASE 3.

In order to analyze the restrictions of the cohomology classéB o we point
out thatH?((B;), A) ~ Z,, for 1 < j < 3. Also we observe thaB; acts by the
identity on the submodulée,) when j = 1 and on{e;) whenj = 2, and these
submodules have a direct summand\iin which the cohomology ofB;) is zero
there. Finally,A = (¢;) ® W, 1 < i < 3, whereW = (e; — e5, e, — e3, €4, €5) iS
Bs-invariant. Thus, by 3.36 and Lemma 4.4, it follows that

resg, j' ([h1]) is 0 hi=1 resz,j ([h2]) is 0 hi=12
B/ £0, if i=23; i 2 £0, ifi=3;

res s, j'([k1]) is 0 fi=12 ress,j ([kz2l) is O’ hi=2
(] T £0, ifi=3 (B0 12 £0, ifi=13

Thus, there are two classes of s.c., correspondififiite- k3] and[A3 + k3], but in
fact, they are equal (sincg([k, + k1]) = 0, see 3.36).
Hence, there is onlgne Bieberbach group in this case.

CASE 5.
In this caseB; has the block fom(é S) thus it is easy, using Lemma 4.4,

to compute the restrictions of the cohomology classeBi9. For B, and Bz we
write the general form of a coboundary.

51 251+ 54— 55
52 . §2 + 83+ 54
If g(B;) = s3 |,i=2,3, thenag(Bz, By) = 52+ 53 ,andag(Bg, B3) =
54 54— 55
S5 —54 + 55
251+ 54+ 55
259 — $4+ S5
253 + 54 + 55
0
0

If 54 £ 55 = 0O then the first coordinate dfg is even in both cased;, and
Bs. Hence resg,) j'(hy) = 1 — §;. If one interchanges the roles 8f and Bz in
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3.33 it follows that fe$31>j/(i:v;) = 0. By takings, = 1 and the remaining;
zero,dg(By, B2) = resg, j'(1,,). In return there is ng such thatg(Bs, Bs) =
resz,) j'(L,,), since the parity of the first three coordinatesigf B3, B3) are the
sameHence the only s.c. in this caseji$hs + 1,,).

CASESm3 andm,.

There are no Bieberbach groups in these cases because the restri¢iah to
of the unique nonzero cohomology class vanishes in both cases. This is clear by
observing 3.33 (interchanging the rolesRifand B3) and (4.4), since the generator
of H(®, 25 is j'(1,,).

Summing up, there ar2 nonisomorphic Bieberbach groups corresponding to
indecomposable representations of rank 5.

5. Conclusions

By following the steps in Section 6 of [RT] one can obtain explicit realizations for
the Bieberbach grouds as subgroups of(R") corresponding to the s.c. obtained
in Section 4. Using such a realization, it is not difficult to compitgM, Z) ~
r/[[,T],forM ~R"/T.

We will give now the Betti numberg;, 1 < i < 5, of the manifolds classified,
which depend only on th€-class of the holonomy representation (see [Hi]). We
have to compute just 8 cases of the foxme® xi, ® xi; ® xi, @ Xis-

Case| Representation B1 B2
X0D X0 D X0 D Xi D X; 3
X0D x0® Xi ® Xi @ x;
XD X0 D X1 D X2D X3
X0D Xi D Xi ®Xi @ X
X0 Xi ©Xi D x; D X
X0D Xi @ Xi D x; D Xk
XiDXxXi® Xxi®X; D Xk
XiDXiDX; D X; D xu

=
w
=
~

Ps
0

IO Mmool o>
olo|r|r|lkr|NN W
NIWIFRLINWELIDN
AW WIN WOIEFRINE
Rlo| Nk oMk o
olr|o|r|o|r|o

Here 1< i, j, k < 3 and in each case j andk are different from each other.

We now give a table which summarizes our result on the classification of
Bieberbach groups of dimension 5. In the second column we put the number
(#) of nonisomorphic Bieberbach groups corresponding to the representation
beside.
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Repres. #| 8 Repres. #| B
o1 ® x§ 1|C XED x2® %3 8|B
01D x0 D xa 11F XoD x5 D x3 2| E
02 ® X4 2|C X0 D X2 ® x3 4D
92D X0 ® X1 1|F XoDX1Dx2Dx3 | 8|F
2
73 & x4 3|A X190 x2 D X3 1|6
5
739 X0 & X1 < XD X2 x2 1|H
03D xo0 D x2 5B X0 ® v, @ 17 1A
2
03 ® xi 1|F X3 D v1 D vy 1|C
03@ 1@ x2 2| F KD X ® v 5| A
o3 1 1|C
© 12 > | A XD x2@ x3®vy |6 |C
o.
469X069 s c XD x2@ x3®v2 | 6| B
0. X0 X
: - X0 ® 1 @ v 3|B
04D X0 D x2 4| B 020 e
v
(7469)(12 11 E X2 D X3 1
X1D 2@ xadv1 | 2| F
04® X190 x2 2| F
XoPvidn 1|C
04D V1 1|C S s 1B
X0 V1D 12
12 @ Xxo 3|C 3 A
H2 @ xa 2 F X ®n
11 ® X0 1lc XD x3® T 3B
Us @D Xxo 1(C Xg@m@fs 3|C
s @ x1 1|F XD XD T 1|D
1 1/¢C X0® x5 D3 1 F
T 1|C X0@ 2@ x3®dt1 | 2| E
XD XD X3 5|A XD x2P x3®tws |3|F
XeDx1®x2®x3|8|C X1Dx2®@x3®tn |1|H

We note that the table on the right lists the groups already treated in [RT]. In
total there are 49 representations, up to semi-equivalence. Out of these 23 contain a
direct summand of rank 3. The Bieberbach groups are 126, up to isomorphism.
Hence there are exactly 126 five-dimensional compact flat Riemannian manifolds
with holonomy grouZ, @ Z,.
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