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Introduction

A crystallographic group is a discrete cocompact subgroup of I(Rn), the isometry
group of Rn. A torsion-free crystallographic group is said to be a Bieberbach
group. These groups arise as the fundamental groups of compact flat Riemannian
manifolds. Furthermore, two such manifolds are diffeomorphic if and only if their
fundamental groups are isomorphic to each other.

The structure of crystallographic groups was determined by Bieberbach in 1910.
Later (see [Ch], 1965), Charlap proposed a scheme for the classification of
Bieberbach groups with a fixed holonomy group8. He gave a full classification
in the case when8 is cyclic of prime order. Currently, there is no other group8
for which the classification is complete. On the other hand, all crystallographic and
Bieberbach groups in dimensionsn 6 4 are known ([BBNWZ]).

In this paper we give a full list, following Charlap’s scheme, of all Bieberbach
groups in dimension 5, havingZ2⊕ Z2 as holonomy group. The Betti numbers of
the corresponding flat manifolds are also computed. This classification is possible,
in this particular case, due mainly to the facts that the Krull–Schmidt property holds
for integral representations ofZ2⊕Z2 and, furthermore, because one can give a list
of all indecomposable representations of rank6 5 by using the methods in [Na].

As we shall see, there are 126 such Bieberbach groups in contrast with the 3 and
26 existing in dimensions 3 and 4, respectively. Out of these there are only 3 having
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150 J. P. ROSSETTI AND PAULO TIRAO

first Betti number zero, while there exists only one such group in dimensions 3
and 4.

1. Preliminaries

If 0 is a crystallographic group, then0 satisfies an exact sequence

0−→ 3
j- 0

π- 8 −→ 1, (1.1)

whereπ is the projection O(n)n Rn −→ O (n) and3 = 0 ∩ Rn. We call8 the
holonomy group of0. By Bieberbach’s first theorem, the holonomy group8 is
finite and3 is a lattice inRn, which is maximal Abelian in0.

Conversely, if0 is an abstract group satisfying an exact sequence as in (1.1),
with 8 finite and3 free Abelian of rankn and maximal Abelian in0, then0 can
be embedded in I(Rn) as a crystallographic group (see [AK]).

Therefore, the classification of all crystallographic groups, in dimensionn, with
holonomy group8, will follow from the classification, up to isomorphism, of
extensions0 of 8 by Zn, having these properties.

The exact sequence (1.1) induces on3 a structure ofZ[8]-module which is
faithful. Moreover, fixing a basis of3, (1.1) induces a faithful integral represent-
ation (of rankn) of 8. We will refer to thoseZ[8]-modules3 which are free
Abelian groups of finite rank, as8-modules.

DEFINITION. Two8-modules3 and3′ are semi-equivalent if there exist aZ-
isomorphismf : 3 −→ 3′ andσ ∈ Aut (8) such that

f (g · λ) = σ (g) · f (λ), ∀ λ ∈ 3 and ∀ g ∈ 8. (1.2)

If 3 is a8-module andσ ∈ Aut (8), we will denote byσ3 the8-module
with Abelian group3 and8-action given byg · λ = σ (g)λ for anyg ∈ 8 and all
λ ∈ 3.

THEOREM (Charlap). Let 0 and 0′ be extensions of8 by 3 and 3′ with
extension classesα ∈ H 2(8;3) andβ ∈ H 2(8;3′) respectively. Then,0 and
0′ are isomorphic if and only if there exists aZ-isomorphismf : 3 −→ 3′ and
σ ∈Aut (8) satisfying(1.2)such that

f∗(α) = σ ∗(β) (1.3)

in H 2(8;σ3), whereσ ∗(β)(g, h) = β(σg, σh).
DEFINITION. A classα ∈ H 2(8;3) is specialif for any cyclic subgroupK of
8 of prime order, resK(α) 6= 0, where resK : H 2(8;3) −→ H 2(K;3) is the
canonical restriction map.

The following proposition due to Charlap characterizes the torsion-free exten-
sions.
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PROPOSITION.Let 0 be an extension of8 by3 and letα ∈ H 2(8;3) be its
extension class. Then,0 is torsion-free if and only ifα is special.

Finally, we note that the classification of all Bieberbach groups in dimensionn,
with holonomy group8, will follow by

(I) determining the semi-equivalence classes of8-modules of rankn;
(II ) determining for each3 in (I), the set of special classes inH 2(8;3), up to the

equivalence relation defined by (1.3).

2. Integral Representations of Z2⊕ Z2

An integral representation of rankn, of a finite group8, is a homomorphism
ρ: 8 −→ GL (n;Z).
DEFINITION. An integral representationρ is decomposable if there exist integral
representationsρ1 andρ2 such thatρ ∼ ρ1⊕ ρ2; ρ is said to be indecomposable if
it is not decomposable.

Every integral representationρ of a finite group8 decomposes as a direct
sum of indecomposable subrepresentations, but in general, the indecomposable
summands are not uniquely determined byρ (see, for instance, [Re2]).

We shall make use of the fact that the Krull–Schmidt property holds for integral
representations ofZ2⊕ Z2 (see [HKO]).

Let8 = Z2 or8 = Z2 ⊕ Z2 and letρ be an integral representation of8. For
each subsetS of 8 consider the group

∩s∈S Ker(ρ(s)∓ I )
∩s∈S Im (ρ(s)± I ) , (2.1)

where the choice of the signs is independent for eachs ∈ S. It is not difficult to see
that if ρ andρ ′ are two equivalent representations, then the associated groups are
isomorphic.

There are only three indecomposable representations ofZ2 (see, for instance,
[Re1]), which are given by

(1); (−1); J =
(

0 1

1 0

)
.

It follows that anyA ∈ GL (n;Z) satisfyingA2 = I , is equivalent to a block

matrix

(
I −I

K

)
, whereI is of rankr, −I of ranks andK is the direct sum of

matricesJ . The ranksr ands are determined by the formulas

Ker(A− I )
Im (A+ I ) ' Zr2 and

Ker(A+ I )
Im (A− I ) ' Zs2 . (2.2)

201299.tex; 23/08/1999; 8:27; p.3



152 J. P. ROSSETTI AND PAULO TIRAO

Indecomposable representations ofZ2⊕ Z2 of rank6 5.
We will identify a representationρ of Z2⊕ Z2 by the matrices

B1 = ρ(1,0), B2 = ρ(0,1), B3 = ρ(1,1).

A complete list of representatives of indecomposable representations of rank 1 and
2 of Z2⊕ Z2 is (see [RT] Lemma 2.1)

B1 B2 B3

χ0 : (1), (1), (1)
χ1 : (1), (−1), (−1)
χ2 : (−1), (1), (−1)
χ3 : (−1), (−1), (1)
τ1 : −I, J, −J
τ2 : J, −I, −J
τ3 : J, −J, −I
ν1 : I, J, J

ν2 : J, I, J

ν3 : J, J, I.

(2.3)

The indecomposable representations ofZ2⊕Z2 were studied by Nazarova in [Na].
Each semi-equivalence class is given by a pair of distinct matricesA andB

satisfyingA2 = I = B2 andAB = BA; each one may split in at most six
equivalence classes, which are given by

A, B, AB

A, AB, B

B, A, AB

B, AB, A

AB, A, B

AB, B, A.

We can proceed in ranks 3, 4 and 5 following ideas in [Na]. But, it is worth
noticing that those representations of rank 3 and 4 must appear in the classification
of all crystallographic groups in dimensions 3 and 4 given in [BBNWZ]. Thus, for
ranks 3 and 4 we shall exhibit both lists, on the left the one from [BBNWZ] and on
the right the corresponding one in Nazarova’s form; besides, we give a unimodular
matrix P which realizes the equivalence and the parametersr ands (computed as
in (2.2)) for each of the matrices involved.

After each list we point out, in Remarks 2.1 and 2.2 respectively, how each
semi-equivalence class splits into different equivalence classes. This information
will be useful to understand semi-equivalence among those representations of rank
5, constructed as a direct sum of two or more representations of rank< 5.
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RANK 3

σ1 :
(

0 1 0
1 0 0
−1 −1 −1

)(
0 0 1
−1 −1 −1
1 0 0

)(−1 −1 −1
0 0 1
0 1 0

) (−1 1 0
1 0
−1

)(−1 0 1
−1 0

1

)(
1 −1 −1
−1 0
−1

)

P =
(

1 0 0
1 1 0
1 0 1

)
; (r, s) : (0,1); (0,1); (0,1).

σ2 :
(

0 1 −1
1 0 −1
0 0 −1

)(
0 −1 1
0 −1 0
1 −1 0

)(−1 0 0
−1 0 1
−1 1 0

) (−1 0 0
0 1
1 0

)(−1 1 −1
0 −1
−1 0

)(
1 −1 1
−1 0
−1

)

P =
(

1 −1 0
1 0 0
0 1 −1

)
; (r, s) : (0,1); (0,1); (0,1).

σ3 :
(

0 1 0
1 0 0
−1 −1 −1

)(
0 0 −1
1 1 1
−1 0 0

)(
1 1 1
0 0 −1
0 −1 0

) (
1 1 1
−1 0
−1

)(
1 0 1

1 0
−1

)(
1 1 0
−1 0

1

)

P =
(

1 0 0
0 1 1
−1 0 −1

)
; (r, s) : (0,1); (1,0); (1,0).

σ4 :
(

0 1 −1
1 0 −1
0 0 −1

)(
0 1 −1
0 1 0
−1 1 0

)(
1 0 0
1 0 −1
1 −1 0

) (
1 1 −1
−1 0
−1

)(
1 0 0

0 −1
−1 0

)(
1 1 −1

0 1
1 0

)

P =
(

1 0 −1
−1 1 0
0 0 −1

)
; (r, s) : (0,1); (1,0); (1,0).

Remark 2.1. Forσ3, we haveB2 ∼ B3 6∼ B1. Moreover the unimodular

matrix Q =
(

1
0 1
1 0

)
satisfiesQB2Q

−1 = B3 andQB3Q
−1 = B2, therefore

the representations given byB1, B2, B3 andB1, B3, B2 are equivalent. One can
conclude that the semi-equivalence class ofσ3 splits into three equivalence classes:

σ3 : B1, B2, B3

σ ′3 : B2, B1, B3

σ ′′3 : B2, B3, B1.

The case ofσ4 is completely analogous. In this case, by takingQ =
(

1 0 −1
0 1 0
0 0 −1

)
one can show that there remain three equivalence classes, given byσ4, σ ′4 andσ ′′4 ,
according to the position ofB1.

In the case ofσ1, the situation is even better, since there are matricesQ1 andQ2

that allow us to permuteB1 with B2 andB1 with B3, respectively. Therefore, there
remains only one equivalence class. Suitable matricesQ1 andQ2 are,
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Q1 =
 1

0 1
1 0

 , Q2 =
 1 0 0

2 −1 −1
0 0 1

 .
In the case ofσ2, Q1 =

(
1 0 1
0 1 0
0 0 −1

)
interchangesB1 and B2 while Q2 =(

0 0 1
1 −1 1
1 0 0

)
interchangesB1 andB3. Again, there is only one equivalence class

left.

RANK 4

µ1 :
−1 0 −1 0

−1 0 −1
1 0

1

−1 −1 0 0
1 0 0
−1 −1

1

1 1 1 1
−1 0 −1
−1 −1

1

0 1 −1 0
1 0 0 1

0 1
1 0

0 1
1 0

0 −1
−1 0

1 0 1
1 −1 0
−1 0
0 −1



P =
 1
−1 −1
0 −1 1
0 1 1 1

; (r, s) : (0,0); (0,0); (0,0).

µ2 :
1 0 0 1

1 0 1
−1 0
−1

1 0 0 0
−1 0 −1
−1 −1

1

1 0 0 1
−1 0 0

1 1
−1

1 −1 1
−1 0 0

0 1
1 0

1 0 0
−1 1 −1

0 −1
−1 0

1 −1 1
1 −1 1
−1
−1



P =
 1 0 0 0

0 0 1 0
0 1 0 0
0 1 0 1

; (r, s) : (1,1); (1,1); (1,1).

µ3 :
1 0 0 1

1 0 1
−1 0
−1

0 1 0 1
1 0 0 1

1 1
0 −1

0 1
1 0

−1 −1
1

−1 0 0
1 0 1

1
−1

−1 0 1
1 1 0
−1

1

1 0 −1
1 1 1
−1
−1



P =
 0 0 1 0

0 1 −1 0
1 −1 0 0
0 0 2 1

; (r, s) : (1,1); (0,0); (0,0).

µ4 :
 0 −1
−1 0

1 1
−1

0 1 0 1
1 0 0 1

1 1
0 −1

−1 0 0 −1
−1 0 −1

1 0
−1

1 0 −1
−1 −1 0

1
−1

1 1 0
−1 0 1
−1

1

1 1 −1
1 1 −1
−1
−1



P =
 1 0 −1 0

1 0 0 0
−1 1 0 0
1 1 0 1

; (r, s) : (0,0); (0,0); (1,1).
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µ5 :
1 0 0 1

1 0 1
−1 0
−1

 0 −1 1 0
−1 0 1 0

1 0
−2 −1

0 −1 −1 −1
−1 0 −1 −1

−1 0
2 −1

0 1
1 0

1
−1

0 1 −1 1
1 0 −1 −1
−1

1

1 −1 −1
1 −1 1
−1
−1



P =
 1 0 0 0

1 0 0 1
1 1 0 1
0 0 1 0

; (r, s) : (1,1); (1,1); (1,1).

Remark2.2. As in the case of the representations of rank 3, the following holds
for all µj , 16 j 6 5: for each pair of matricesBi1, Bi2 having the same parameters
(r, s), there exists a unimodular matrixQi1i2 that interchangesBi1 with Bi2. That
is,Qi1i2Bi1Q

−1
i1i2
= Bi2 and alsoQi1i2Bi2Q

−1
i1i2
= Bi1.

We only write down suitable matricesQ for the representationsµ2 andµ5, since
it is just in these cases that we will actually need this property.

In the case ofµ2, adequate matrices are

Q12 =


1 0 −1 0
0 1 −1 0
0 0 −1 0
0 0 0 1

 and Q13 =


1 0 −1 1
0 0 −1 0
0 1 −1 1
0 1 0 0

 .
In the case ofµ5, adequate matrices are

Q′12 =


0 −1 1 −1
−1 0 0 0
0 0 0 −1
0 0 1 0

 and Q′13 =


0 1 0 1
0 1 −1 0
−1 1 0 1
0 0 0 1

 .
RANK 5

It will turn out (see Section 4) that it is only possible to construct a Bieberbach
group from those representations for which the three matricesB1, B2 andB3 have
parameterr > 1. Thus, by following Nazarova and taking into account this extra
condition (r > 1), one finally gets four semi-equivalence classes of indecompos-
able representations of rank 5. We list them with the corresponding parameters
(r, s) as before.

π1 :


1 0 1
1 0 0
−1 1 0

1
−1




1 0 0
1 1 0
−1 0 1
−1

1




1 0 1
1 1 0

1 −1 −1
−1
−1


(r, s) : (1,0); (1,0); (1,0).
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π2 :


1
0 1 0 1
1 0 −1 0

0 1
1 0




1 1 1
0 1 1 0
1 0 0 1

0 −1
−1 0




1 1 1
1 −1 1

1 1 1
−1
−1


(r, s) : (1,0); (1,0); (2,1).

π3 :


1 0 1
0 1 0 0
1 0 0 0

1
−1




1 1 0
0 1 1 0
1 0 1 0

−1
1




1 1 1
1 1 0

1 1 0
−1
−1


(r, s) : (1,0); (1,0); (1,0).

π4 :


1 0 1
0 1 0 1
1 0 0 1

1
−1




1 1 0
0 1 1 0
1 0 1 0

−1
1




1 1 1
1 1 1

1 1 1
−1
−1


(r, s) : (1,0); (1,0); (2,1).

3. Cohomology Computations

In this section we shall determine the cohomology groupsH 2(Z2⊕ Z2;3), where
3 is anyZ2⊕ Z2-module of rank 5.

Since cohomology is additive (in3) it suffices to assume that3 is indecom-
posable. Moreover, semi-equivalent modules have isomorphic cohomology groups,
hence we should only consider theZ2 ⊕ Z2-modules given by the following rep-
resentations (see Section 2):

RANK 1 : χ0, χ1;
RANK 2 : τ1, ν1;
RANK 3 : σ1, σ2, σ3, σ4;
RANK 4 : µ1, µ2, µ3, µ4, µ5;
RANK 5 : π1, π2, π3, π4.

(3.1)

We regard the cohomology groupsHn(Z2 ⊕ Z2;3) as the homology of the
standard complex of functions{F n(Z2⊕ Z2;3); ∂n}n>0.

All of the computations are standard and the results can be achieved by simple
methods. Actually, in the case of rank 1 and rank 2 modules the computations can
be carried out following the definitions; the details may be found in [RT]. In the
cases of higher rank (3, 4 and 5) one can make use of the cohomology long exact
sequence induced by a short exact sequence of modules, plus the results in lower
ranks andad hocmanipulations in each particular case.
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In Example 3.1 we sketch the computations made in a particular rank 3 module.
All the others are similar. In order not to make this section too long and since only
the results will be used we shall omit proofs. The results are in Proposition 3.2.

Notation. We will denote indistinctlyHn(Z2 ⊕ Z2;ρ) or Hn(Z2 ⊕ Z2;3),
where(ρ,3) is aZ2⊕ Z2-representation.

EXAMPLE 3.1. We sketch how to computeH 2(Z2⊕ Z2;σ1).

Let 31 = 〈e1 + 2e2〉 and set32 = 3/31. It is easy to check that31 is a
Z2 ⊕ Z2-submodule of3 = 〈e1, e2, e3〉, thus32 is also aZ2 ⊕ Z2-module. By
inspection one can see that these modules are given byχ1 andχ3 ⊕ χ2 (see (2.3))
respectively.

We consider the short exact sequence ofZ2⊕ Z2-modules

0−→ 31
j- 3

π- 32 −→ 0,

which induces the long exact sequence

· · · −→ H 1(Z2⊕ Z2;3) π ′- H 1(Z2⊕ Z2;32)
δ1- H 2(Z2⊕ Z2;31)

j ′-

H 2(Z2⊕ Z2;3) π ′- H 2(Z2⊕ Z2;32)
δ2- H 3(Z2⊕ Z2;31) −→ · · ·

It is a basic (but long) linear algebra exercise to computeH 1(Z2⊕ Z2;3) and
H 1(Z2 ⊕ Z2;32). One can show thatH 1(Z2 ⊕ Z2;3) ' Z4 ⊕ Z2, H 1(Z2 ⊕
Z2;32) ' Z2 ⊕ Z2 and that the morphismπ ′: H 1(Z2 ⊕ Z2;3) −→ H 1(Z2 ⊕
Z2;32) is defined byπ ′(1,0) = π ′(0,1) = (1,1). Hence the above long exact
sequence turns into

· · · −→ Z4⊕ Z2
π ′- Z2⊕ Z2

δ1- Z2
j ′-

H 2(Z2⊕ Z2;3) π ′- Z2⊕ Z2
δ2- H 3(Z2⊕ Z2;31) −→ · · ·

Now one can check, by doing explicit computations, thatδ2 is injective and that
δ1 is surjective, from which the result follows.

In the rest of the cases we proceed in the same manner. Precisely, we choose31

a submodule of3 in the most natural possible way and we set32 = 3/31. Then
we consider the cohomology long exact sequence as in Example 3.1. Finally, by
using this sequence we get all the desired cohomology groups.

PROPOSITION 3.2.Letρ be any of the representations in(3.1)and let3 be the
correspondingZ2⊕Z2-module. Then the cohomology groupsH 2(Z2⊕ Z2;ρ) are
as inTable 3.3.

3.3. SOME EXPLICIT COHOMOLOGY GENERATORS

All the 2-cocyclesh are normalized, that ish(x, I ) = h(I, x) = 0 for all x ∈
Z2⊕ Z2.
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Table 3.3.

Rep. H2(Z2⊕ Z2;3) Extra information(∗)

χ0 Z2⊕ Z2 〈[h1], [h2]〉
χ1 Z2 〈1χ1〉
τ1 0 –

ν1 Z2 〈1ν1〉
σ1 0 –

σ2 Z2 for 31 = 〈e1〉, j ′ is an isomorphism

σ3 Z2 〈1σ3〉
σ4 Z2⊕ Z2 for 31 = 〈e1〉, j ′ is an isomorphism

µ1 0 –

µ2 (Z2⊕ Z2)⊕ Z2 for 31 = 〈e1, e2〉, j ′ is an isomorphism

µ3 Z2 for 31 = 〈e1〉, j ′ is an isomorphism

µ4 Z2 for 31 = 〈e1〉 ⊕ 〈e2〉, j ′|〈e2〉 is an isomorphism

µ5 Z2⊕ Z2 〈[g1], [g2]〉
π1 Z2⊕ Z2⊕ Z2 for 31 = 〈e1, e2〉, j ′ is onto (see 3.36)

π2 Z2⊕ Z2⊕ Z2 for 31 = 〈e1, e2, e3〉, j ′ is an isomorphism

π3 Z2 for 31 = 〈e2, e3〉, j ′ is an isomorphism

π4 Z2 for 31 = 〈e2, e3〉, j ′ is an isomorphism

∗For the explicit generators see (3.3).

3.31. H 2(Z2⊕ Z2;χ0) ' Z2⊕ Z2 = 〈[h1], [h2]〉, where

h1 B1 B2 B3

B1 0 0 0

B2 0 1 1

B3 0 1 1

h2 B1 B2 B3

B1 1 0 1

B2 0 0 0

B3 1 0 1

3.32. H 2(Z2⊕ Z2;χ1) ' Z2 = 〈[1χ1]〉, where

1χ1 B1 B2 B3

B1 −1 −1 0

B2 0 0 0

B3 1 1 0

3.33. H 2(Z2⊕ Z2; ν1) ' Z2 = 〈[1ν1]〉, where
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1ν1 B1 B2 B3

1 1 0
B1 1 1 0

1 1 0
B2 1 1 0

0 0 0
B3 0 0 0

3.34. H 2(Z2⊕ Z2;σ3) ' Z2 = 〈[1σ3]〉, where

1σ3 B1 B2 B3

0 0 −1

B1 0 1 1

0 0 0

1 0 0

B2 0 −1 −1

−1 0 −1

−1 −1 −2

B3 0 0 0

1 0 1

3.35. H 2(Z2⊕ Z2;µ5) ' Z2⊕ Z2 = 〈[g1], [g2]〉, where

g1 B1 B2 B3

0 0 0
0 0 0

B1 0 0 0
0 1 1

0 0 0
0 1 1

B2 0 0 0
0 −1 −1

0 1 1
0 0 0

B3 0 0 0
0 0 0

g2 B1 B2 B3

0 0 0
0 0 0

B1 −1 0 −1
0 0 0

0 0 0
1 0 1

B2 1 0 1
0 0 0

1 0 1
0 0 0

B3 0 0 0
0 0 0

3.36. H 2(Z2⊕ Z2;π1) ' Z2⊕ Z2⊕ Z2.
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Let 31 = 〈e1, e2〉, then the action of8 = Z2 ⊕ Z2 on 32 is given byσ1.
Hence, it follows by using the long exact sequence thatj ′ is onto. Notice that
H 2(8;31) = H 2(8; 〈e1〉)⊕ H 2(8; 〈e2〉) = 〈[h1], [h2]〉 ⊕ 〈[k1], [k2]〉, whereh1,
h2, k1 andk2 are as in 3.31. In addition one can check thatj ′([h2 + k1]) = 0 and
that〈j ′([h1+h2]), j ′([k1]), j ′([k2])〉 ' Z2⊕Z2⊕Z2, therefore the result follows.

4. Classification

In this section we develop the last step of the classification scheme mentioned at
the end of Section 1, that is, we shall find all special classes and the equivalences
among them. This will be a rather technical section. A summary of the results can
be found in the tables in Section 5.

Throughout this section8 will denoteZ2 ⊕ Z2. We shall consider separately
the representations having an indecomposable direct summand of rank 3, 4 or 5.
The representations that decompose as a direct sum of representations of rank 1
and 2 were calledF -representations in [RT]. The Bieberbach groups constructed
from F -representations were classified in [RT], for any dimension. A complete list
containing the five-dimensional members of this family, will be given in Section 5.

We include now therestriction functionscorresponding to the cohomology of
representations of rank 1 and 2, since they will be used frequently. Recall that
for any subgroupK of 8 the restriction homomorphism resK : H 2(8;3) −→
H 2(K;3) is defined by resK

([g]) = [g|K×K] . Also, recall that for anyK ' Z2

one has that ([Ch], p. 26)

H 2(K;3) '


Z2, if 3 is trivial of rank 1;
0, if K acts by(−1) on3 (of rank 1);
0, if K acts byJ on3 (of rank 2),

(4.1)

where the generator in the first case is the normalized cocycleK ×K → Z such
that(1,1) 7→ 1.

The next cases correspond to the first cases of Table 3.3. By 3.31 and (4.1),

res〈Bj 〉[hi] = 1− δij . (4.2)

res〈Bj 〉[1χi ] = δij . (4.3)

res〈Bj 〉[1νi ] = δij . (4.4)

Note. In order to determine when two special classes are equivalent (see (1.3)
in Section 1) it will be useful, in several cases, to know how some of the indecom-
posable representations in Section 2 diagonalize overQ.

It follows from Charlap’s theorem (Section 1) that special classes corresponding
to representations which are not semi-equivalent cannot be equivalent. Since we
shall deal with representations which are not semi-equivalent, then the only special
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classes (abbreviated s.c., from now on) that could be equivalent are those which
arise from the same representation.

Remark 4.1. We have seen in Remarks 2.1 and 2.2 that, for instance,σ3 =
(B1, B2, B3) is equivalent toσ̃3 = (B1, B3, B2). Then it is clear thatσ3 ⊕ ρ is
equivalent tõσ3⊕ ρ, for all ρ. Sinceσ̃3⊕ χ3 ∼ σ3⊕ χ2, it follows thatσ3⊕ χ3 ∼
σ3⊕ χ2. Alsoσ3⊕ ν3 ∼ σ3⊕ ν2, etc. The same occurs with the other equivalences
shown in the mentioned remarks.

Now we state a series of lemmas which will be helpful later in this section.

LEMMA 4.2. If α, β ∈ H 2(8;3) are equivalent (α ∼ β), then the number of
subgroups〈Bi〉 such that the restriction ofα to 〈Bi〉 does not vanish is equal to the
number of subgroups〈Bi〉 such that the restriction ofβ to 〈Bi〉 does not vanish.

Proof. By (1.3) in Section 1,α ∼ β implies that there exist aZ-isomorphism
f : 3 −→ 3 andσ ∈ Aut (8) satisfying (1.2) and such thatf∗(α) = σ ∗(β), i.e.,
f ◦ α = β ◦ (σ, σ ). Then res〈Bi〉(β) = [β|Bi×Bi ] = [β ◦ (σ × σ )|σ−1(Bi)×σ−1Bi

] =
[f ◦ α|σ−1(Bi)×σ−1Bi

] = res〈σ−1(Bi)〉([f ◦ α]) = f∗(res〈σ−1(Bi)〉(α). The last equality
is due to the fact thatf∗ and res〈σ−1(Bi)〉 commute. Sincef∗ is an isomorphism,
then res〈Bi 〉(β) = 0 if and only if res〈σ−1(Bi)〉(α) = 0, and the lemma is proved.2
LEMMA 4.3. Let31 = ⊕ki=1Zei and3 = ⊕ni=1Zei be8-modules. If the inclu-
sion j : 31 −→ 3 induces an isomorphismj ′ in cohomology, then the following
diagram commutes

H 2(8,3)
res〈g〉- H 2(〈g〉,3)

H 2(8,31)

(j ′)−1

?
rest〈g〉- H 2(〈g〉,31)

6

j ′′

Proof. If [α] ∈ H 2(8,3), then there exists[β] ∈ H 2(8,31) such thatj ′[β] =
[α] and the lastn−k coordinates ofj ◦β are zero. Thus(j ′′ ◦ rest〈g〉 ◦ (j ′)−1)[α] =
(j ′′ ◦ rest〈g〉)[β] = (res〈g〉)[(β,0, . . . ,0︸ ︷︷ ︸

n−k
)] = (res〈g〉)(j ′[β]) = (res〈g〉)[α]. 2

LEMMA 4.4. Letρ = (B1, B2, B3) be an integral representation of8 on3 = Zn

and [g] ∈ H 2(ρ,3). Suppose that there existj, 1 6 j 6 3, and ei such that
Bjei = ei and there is a sub-lattice〈Bj 〉-invariant,W , such that3 = Zei ⊕W .

(a) If the ith coordinate ofg(Bj , Bj ) is±1, thenres〈Bj 〉[g] 6= 0.

(b) If the ith coordinate ofg(Bj , Bj ) is 0 andH 2(〈Bj 〉,W) = 0, thenres〈Bj 〉[g] =
0.
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Proof. The proof of (b) is trivial. For (a), clearly there is an ordered basis,

O, of 3 with first vectorei such that[Bj ]O =
(

1 0
0 ∗

)
and the first coordinate of

res〈Bj 〉[g] in O is±1. By additivity of the cohomology, one can show that res〈Bj 〉[g]
does not vanish inH 2(〈Bj 〉,Zei) ' Z2. 2
LEMMA 4.5. (i) If (f, Id): (3, ρ) −→ (Z, χj ) is a linear homomorphism of
8-modules and(32,⊕i 6=jχi) is a submodule of(3, ρ), thenf |32 ≡ 0.

(ii) If 0 6= [h] ∈ H 2(8,3) is the class corresponding to a functionh : 8 ×
8 −→ 3, with Im(h) ⊆ 32 ⊆ 3, andρ|32 = ⊕i 6=jχi , then there does not exist a
linear homomorphism(f, Id): (3, ρ) −→ (Z, χj ) such thatf∗([h]) = 1χj .

Proof. (ii) follows as a direct consequence of (i).
To prove (i), letv2 ∈ 32 such thatρ(g)v2 = χi(g)v2. Thus,χj(g) · f (v2) =

f (ρ(g) · v2) = f (χi(g) · v2) = χi(g)f (v2). The last equality holds becauseχi(g)
is a scalar. By takingg ∈ 8 such thatχi(g) = −χj (g) it follows that f (v2) =
−f (v2), and sof (v2) = 0. By linearity off one has thatf |32 ≡ 0. 2
The following Lemma can be obtained from [RT, Lemma 5.1].

LEMMA 4.6. (i) In H 2(8, χ0⊕ χ0), if i 6= j , then(hi, hj ) ∼ (h1, h2) � (hi,0).
(ii) If α ∈ H 2(8, ρ), then (α,0, . . . ,0︸ ︷︷ ︸

k−1

) ∼ (α, δ1α, . . . , δk−1α) in

H 2(8, ρ ⊕ . . .⊕ ρ︸ ︷︷ ︸
k

), whereδi = 0 or 1, for 16 i 6 k − 1.

Representations containingσi, 16 i 6 4.
We shall now consider those representations containing an indecomposable

subrepresentationσ of rank 3, hence,σ = σi, for some 16 i 6 4.

CASEσ = σ1.
The representations of rank 5 havingσ1 as a direct summand that can be con-

structed using the indecomposable representations in Section 2 are:σ1⊕ τi, σ1⊕νi
for 1 6 i 6 3 andσ ⊕ χi ⊕ χj for 0 6 i, j 6 3. However, sinceH 2(8;σ1) = 0,
it is clear that some of these will not admit any special class. Thus, there remains
to be considered onlyσ1 ⊕ χ0 ⊕ χi for 0 6 i 6 3. Moreover,σ1 ⊕ χ0 ⊕ χi are
semi-equivalent for 16 i 6 3 (see Remark 2.1). Therefore, we should consider
only σ1⊕ χ0 ⊕ χ0 andσ1⊕ χ0⊕ χ1.

• InH 2(8;σ1⊕χ0⊕χ0) there is just one special class (up to equivalence) given
by (0, [h1], [h2]), since inH 2(8;χ0 ⊕ χ0) we have([hi], [hj ]) ∼ ([h1], [h2])
for all i 6= j (Lemma 4.6(i)).

• It is clear that the unique special class inH 2(8;σ1⊕χ0⊕χ1) is (0, [h1],1χ1).

Therefore, in this case there are2 nonisomorphic Bieberbach groups.
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CASEσ = σ2.
Reasoning as in the previous case and observing thatH 2(〈Bi〉;Z3) = 0 for 16

i 6 3, we conclude that there are two semi-equivalence classes of representations
havingσ2 as a direct summand. They correspond toσ2⊕χ0⊕χ0 andσ2⊕χ0⊕χ1.

Associated to each of these representations there can remain at most two non-
equivalent special classes. Precisely,([h], [h1], [h2]) and(0, [h1], [h2]) for the first
one and([h], [h1],1χ1) and(0, [h1],1χ1) for the second, where[h] is the generator
of H 2(8;σ2) ' Z2.

Regardingσ2 as aQ-representation we have thatσ2 ∼Q χ1⊕χ2⊕χ3. It follows
that the special classes corresponding to the first representation are not equivalent
to each other. On the other hand, forσ2 ⊕ χ0 ⊕ χ1, taking the semi-linear map
(f, Id) defined byf : Z5 −→ Z5, f (ei) = ei , if i 6= 5 andf (e5) = e1 + e5, it
is not difficult to see thatf∗(0, [h1],1χ1) = ([h], [h1],1χ1) = Id∗([h], [h1],1χ1).
Thus(0, [h1],1χ1) ∼ ([h], [h1],1χ1).

Therefore, ifσ = σ2, there are3 nonisomorphic Bieberbach groups.

CASEσ = σ3.
Let us consider the quotients (as in (2.1)) forσ3

Ker(B1− I ) ∩ Ker(B2− I ) ∩ Ker(B3− I )
Im(B1+ I ) ∩ Im(B2+ I ) ∩ Im(B3+ I ) = 〈e1〉

〈e1〉 = 0;

Ker(B1− I ) ∩ Ker(B2+ I ) ∩ Ker(B3+ I ) = 0;
Ker(B1+ I ) ∩ Ker(B2− I ) ∩ Ker(B3+ I )
Im(B1− I ) ∩ Im(B2+ I ) ∩ Im(B3− I ) = 〈e1 − 2e2〉

〈e1 − 2e2〉 = 0;

Ker(B1+ I ) ∩ Ker(B2+ I ) ∩ Ker(B3− I )
Im(B1− I ) ∩ Im(B2− I ) ∩ Im(B3+ I ) = 〈e1 − 2e3〉

〈e1 − 2e3〉 = 0.

(4.5)

From the numerators one can deduce thatσ3 ∼Q χ0 ⊕ χ2⊕ χ3.

Remark4.7. If3 is aρ-module andf is aρ-automorphism of3, then it is not
difficult to see that the class ofλ and that off (λ) in any quotient as in (4.5) must
both be zero or nonzero simultaneously.

It will be useful for us to introduce the following terminology.

DEFINITION. Given classesα ∈ H 2(8, ρ1) andβ ∈ H 2(8, ρ2), β 6= 0, we will
say thatα yieldsβ (notationallyα � β) if (α,0) ∼ (α, β) in H 2(8, ρ1⊕ ρ2).

Observation 4.8. For each characterχi, exactly one of the four quotients
computed forσ3 is different from zero, more precisely, it is isomorphic toZ2.

Let us now consider these quotients forρ = σ3⊕χi⊕χj and letf : Z5 −→ Z5

be aρ-automorphism. We notice that the canonical vectorsei, 16 i 6 3, vanish in
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the four quotients whilee4 ande5 do not vanish in one quotient. Hence, by Remark
4.7, it must happen thatf

( ⊕3
i=1 Zei

) ⊆ ⊕3
i=1Zei ⊕ 3̃2, where3̃2 = 〈2e4,2e5〉.

Every element in the cohomologies computed in Section 3 has order two. Thus, if
[g] ∈ H 2(8, ρ) and Im(g) ⊆ 3̃2 then[g] = 0. Hence 1σ3 does not yield any other
class inH 2(8, σ3⊕ χi ⊕ χj ), ∀ 06 i, j 6 3.

On the other hand,H 2(8, σ3) = 〈1σ3〉 ' Z2, and, by applying Lemma 4.4 it
follows that res〈Bi 〉1σ3 = 1− δi1 for 16 i 6 3.

Let us see that when consideringσ3 ⊕ χi the cohomology class 1χi does not
yield any nonzero class inH 2(8;σ3).

We write the general form of a coboundary∂g in H 2(8;σ3), where

g(B1) =
 r1

r2

r3

 ; g(B2) =
 s1

s2

s3

 ; g(B3) =
 t1

t2

t3

 ;

∂g B1 B2 B3

2r1 + r2 + r3 r1 − t1+ s1+ s2 + s3 r1 − s1+ t1+ t2 + t3
B1 0 r2− s2− t2 r2− s2− t2

0 r3− s3− t3 r3− s3− t3
r1+ r3+ s1 − t1 2s1 + s3 −r1+ s1 + t1+ t3

B2 r2+ s2− t2 2s2 −r − 2+ s2+ t2
r3+ s3− t3 0 −r3+ s3− t3

r1+ r2− s1 + t1 −r1+ s1 + s2+ t1 2t1 + t2
B3 −r2− s2+ t2 −r2− s2+ t2 0

r3− s3+ t3 −r3+ s3+ t3 2t3

In the case ofσ3 ⊕ χ0, sinceσ3 acts trivially only onZe1, if (f, I ) is a semi-
linear automorphism (ofZ4 with the action given byσ3⊕χ0), thenf (e4) ∈ 〈e1, e4〉.
However, for

f (ei) =
{
ei, if i 6= 4;
e1+ e4, if i = 4,

it holds thatf∗(0, [hi]) = (0, [hi]), because the canonical projection over⊕3
i=1Zei

of f∗(0, [hi]) is equal to∂g by takingg defined as above withr1 = s1 = t1 = 1
andr2 = r3 = −1 the nonzero values forh1 andr2 = t2 = 1 the nonzero values
for h2.

In the case ofσ3⊕ χ1, it is clear by Lemma 4.5 that 1χ1 � 1σ3.
In the casesσ3 ⊕ χj , 2 6 j 6 3, the way for the generator 1χj to yield 1σ3 is

via a semi-linear automorphism(f, I ) of Z4 defined byf (ei) = ei for 1 6 i 6 3,
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f (e4) = e4 + (e1 − 2e2) if j = 2 andf (e4) = e4 + (e1 − 2e3) if j = 3. But in
these casesf∗(0,1χj ) = ([∂g],1χj ) = (0,1χj ) by taking the coboundary∂g with
r1 = s2 = 1 andr2 = r3 = s3 = −1 the nonzero values ofg whenj = 2 and
r1 = t3 = 1 andr2 = r3 = t2 = −1 the nonzero values ofg whenj = 3.

With all this information we are in a condition to determine the equivalence
classes of special classes whenσ = σ3.

The representations having at least one s.c. in this case are:σ3⊕ χ0⊕ χ0; σ3⊕
χ0 ⊕ χ1; σ3 ⊕ χ0 ⊕ χ2; σ3 ⊕ χ1 ⊕ χ1; σ3 ⊕ χ1 ⊕ χ2 andσ3 ⊕ ν1. We will often
denotehi instead of[hi], the class it represents.

• Corresponding toσ3⊕χ0⊕χ0 there are exactly 3 classes of s.c. corresponding
to: (0, h1, h2); (1σ3, h1, h2) and (1σ3, h2,0). The last two are not equivalent
because of Lemma 4.6 and Observation 4.8.

Observation 4.9. Notice that(1σ3, h3,0) ∼ (1σ3, h2,0), defining the semi-
linear homomorphism(f,A), with f : Z5 −→ Z5, byA(1,0) = (1,0), A(0,1) =
(1,1) andf = Q⊕I ,Q =

(
1

J

)
(see Remark 2.1), it follows thatf∗(1σ3, h2,0)

= (Q∗1σ3, h2,0) = (A∗1σ3, A
∗h3,0) = A∗(1σ3, h3,0).

• Corresponding toσ3 ⊕ χ0 ⊕ χ1 there are exactly 5 classes of s.c. given by:
(1σ3, h1,1χ1); (0, h1,1χ1); (1σ3, h2,1χ1); (1σ3, h2,0) and(1σ3,0,1χ1). We no-
tice that the third s.c. is equivalent to(1σ3, h3,1χ1) and the fourth is equivalent
to (1σ3, h3,0) by an analogous argument to that in Observation 4.9.
• Corresponding toσ3 ⊕ χ0 ⊕ χ2 there are also 5 classes of s.c.:(1σ3, h2,1χ2);
(0, h2,1χ2); (1σ3, h2,0); (1σ3, h3,1χ2) and (1σ3, h3,0). We notice that since
σ3⊕ χ0 ⊕ χ3 ∼ σ3 ⊕ χ0 ⊕ χ2, the classes corresponding toσ3 ⊕ χ0 ⊕ χ3 are
already considered here.
• Corresponding toσ3⊕ χ1 ⊕ χ1 there is only one class, corresponding to(1σ3,

1χ1,0). From Lemma 4.6 it follows that this s.c. is equivalent to(1σ3,1χ1,1χ1).
• Corresponding toσ3 ⊕ χ1 ⊕ χ2 there are only two classes:(1σ3,1χ1,1χ2) and
(1σ3,1χ1,0). They are not equivalent because of Observation 4.8.
• Corresponding toσ3⊕ ν1 there is only one:(1σ3,1ν1).

Summing up, there are17 Bieberbach groups, up to isomorphism, correspond-
ing to representations havingσ3 as a direct summand.

CASEσ = σ4.
The representationσ4 diagonalizes overQ asχ0⊕χ2⊕χ3, in the ordered basis

{e1, e1 − e2+ e3, e2 + e3}.
Let us investigate the restriction functions fromH 2(8;σ4) = 〈h̃1, h̃2〉 ' Z2 ⊕

Z2 to H 2(〈Bk〉;Z3), 1 6 k 6 3, whereh̃i = j ′(hi), for 1 6 i 6 3, andj ′
is as in Section 3. SinceH 2(〈B1〉;Z3) = 0, we have to consider only〈B2〉 and
〈B3〉. By Lemma 4.4, it follows that the restrictions of̃h1 and h̃3 do not vanish
in H 2(〈B2〉;Z3); while the restriction of̃h2 vanishes. Similarly, since〈e1〉 is also a
direct summand in the decomposition ofB3 as an integral representation ofZ2⊕Z2,
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whereB3 acts trivially, then, the restrictions of̃h1 andh̃2 to 〈B3〉 do not vanish, but
the restriction of̃h3 vanishes.

Besides, we notice that inH 2(8;σ4 ⊕ χ0), (0, hi) ∼ (h̃i, hi), for 1 6 i 6 3,
via the linear isomorphismf : Z4 −→ Z4 defined by

f (ei) =
{
e1+ e4, if i = 4,

ei, if i 6= 4,

(and the automorphism of8 is the identity).
Also, inH 2(8;σ4⊕ χ2), defining

f (ei) =
{
e1− e2+ e3 + e4, if i = 4,

ei, if i 6= 4,

it turns out thatf∗(0,1χ2) = (h̃3,1χ2). We shall omit the verification of this fact.
Thus 1χ2 � h̃3. In the same way 1χ3 � h̃2.

LEMMA 4.10. If α ∈ H 2(8, σ4) andβ ∈ H 2(8, χj ),06 j 6 3 thenα � β.
Proof. It is clear, by virtue of Lemma 4.2, that̃h2 � hi and h̃3 � hi for

1 6 i 6 3. By Lemma 4.5(ii), it follows that̃hi � χj for everyi, j , 16 i, j 6 3.
It remains only to prove that̃h1 � hi for 1 6 i 6 3. Letf be an automorphism of
(Z4, σ4⊕ χ0). Thenf (e1)must be in〈e1, e4〉. Setf (e1) = ae1+ be4 andf (e3) =∑4

i=1 ciei. Sincef is a morphism,f (B1 · e3) = B1 · f (e3), henceb = −2c4. The
proof is complete sinceH 2(8, χ0) has order two. 2

Now we are in a condition to describe the equivalence classes of s.c. in this case.

• Corresponding toσ4⊕ ν1 there is just one class of s.c. given by(h̃1,1ν1).• Corresponding toσ4 ⊕ χ0 ⊕ χ0 there are exactly two classes of s.c. They are
(0, h1, h2) and(h̃1, h2,0). Note that the first one is equivalent to(h̃3, h1, h2)

and the second to(h̃3, h2,0). The last equivalence is becauseh2 � h̃2 and
h̃1+ h̃2 = h̃3. Also, (h̃1, h3,0) ∼ (h̃1, h2,0) via the equivalence mentioned in
Observation 4.9 withQ23 as in Remark 2.1 andA ∈ Aut(8), the permutation
B2↔ B3.
• Corresponding toσ4⊕ χ0 ⊕ χ1 there are five classes of s.c. They are given by
(h̃2, h1,1χ1); (0, h1,1χ1); (h̃1, h2,1χ1); (h̃1,0,1χ1) and(h̃1, h2,0).
• Corresponding toσ4 ⊕ χ0 ⊕ χ2, there are four classes of s.c. which are given

by (0, h2,1χ2); (h̃1, h2,0); (h̃1, h3,1χ2) and(h̃1, h3,0).
• Corresponding toσ4⊕χ1⊕χ1 there is only one class of s.c. given by(h̃1,1χ1,0).• Corresponding toσ4 ⊕ χ1 ⊕ χ2 there are exactly two classes of s.c. given by
(h̃1,1χ1,1χ2) and(h̃1,1χ1,0).

Therefore, there are15 Bieberbach groups corresponding to representations
havingσ4 as a direct summand.
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Summing up, corresponding to indecomposable representations of rank3, there
are exactly2+ 3+ 17+ 15=37 nonisomorphic Bieberbach groups.

Representations containingµi, 16 i 6 5.
We shall now consider those representations containing an indecomposable sub-

representationµ of rank 4, hence,µ = µi , for some 16 i 6 5. Here, eachµi can
be combined with eachχj , 0 6 j 6 3, to construct a faithful representation of
Z2⊕ Z2 of rank 5.

CASEµ = µ1.
In this case eachBi, 1 6 i 6 3 is conjugate by a matrix in GL(4,Z) to the

matrix
(
J

J

)
, thereforeH 2(〈Bi〉,3) = 0 for 16 i 6 3. Since there is no s.c. in

H 2(8, χi), then it is clear thatthere is no Bieberbach group in this case.

CASEµ = µ2.
In this case we shall use the notatioñh1 = (1,0,0); h̃2 = (0,1,0); 1̃χ3 =

(0,0,1) in H 2(8,µ2).
The representationµ2 diagonalizes overQ asχ0 ⊕ χ1 ⊕ χ2 ⊕ χ3 in the basis

{e1, e3+ e4, e1+ e2+ e3− e4, e2}. If we consider the same quotients as forσ3 (see
(4.5)), it holds thate1 does not vanish in the first one, neithere3+ e4 in the second,
neithere1 + e2 + e3 − e4 in the third, neithere2 in the fourth. On the other hand
Ker(Bi − I )/Im (Bi + I ) ' Z2 for 1 6 i 6 3 with e1 the generator in the cases
i = 1 andi = 2, ande1 or e2 the generator in the casei = 3. One can make use
of Lemma 4.3 in the casesi = 1 and 2 and Lemma 4.4 forB3 (by taking〈e1〉 and,
for instance,W = 〈e1 + e2, e3, e4〉) to show that the restrictions of̃hi to 〈Bj 〉 are
1− δij , 1 6 i, j 6 3, and the restriction of̃1χ3 to 〈B3〉 does not vanish but the
restriction to〈B1〉 and〈B2〉 vanishes.

Hence, one out of the 8 classes inH 2(8,µ2) is s.c. It ish̃3 + 1̃χ3(' (1,1,1)).
Also, by looking at the cohomology ofµ2, it is clear that the classhi in H 2(8, χ0)

yields the class̃hi in H 2(8,µ2), 1 6 i 6 3, via 〈e1〉, and 1χ3 � 1̃χ3 via 〈e2〉. By
a similar calculation to that made at the end of the proof of Lemma 4.10, one can
show that̃hi � hi, 16 i 6 3, andh̃2+ 1̃χ3 � 1χ1. With all this information we are
in a condition to obtain the list of classes of s.c. in caseµ2.

• Corresponding toµ2⊕χ0 there are three classes of s.c. given by:(h̃3+ 1̃χ3,0);
(h̃2 + 1̃χ3, h1) and (h̃2, h1). We notice that the classes of the form(∗, h2) or
(∗, h3) are equivalent to classes of the form(∗, h1) via the equivalence given
byB1↔ B2 or B1↔ B3 respectively (see Remark 2.2 and Observation 4.9).

• Corresponding toµ2 ⊕ χ1 there are two classes of s.c. given by(h̃1,1χ1) and
(h̃3+1̃χ3,0). The first one is equivalent to(h̃3+1̃χ3,1χ1) because 1χ1 � h̃2+1̃χ3

andh̃1+ h̃2+ 1̃χ3 ∼ h̃3+ 1̃χ3.

Hence there are5 Bieberbach groups in this case.
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CASEµ = µ3.

In this caseBi ∼
(
J

J

)
, for i = 2,3. Thus,H 2(〈Bi〉,Z4) = 0 for i = 2,3.

By virtue of Lemma 4.3 it follows that the generatorj ′(1χ3) of H 2(8,µ3) ' Z2

restricts to〈B1〉 as 1χ3 does (sinceB1 is a block matrix of the form
(

1 0
0 ∗

)
).

Thus the restriction of the cohomology class ofH 2(8,µ3) to 〈Bi〉 vanishes for
16 i 6 3.

Hence, it is not possible to construct a Bieberbach group of rank 5 using the
representationµ3.

CASEµ = µ4.
In this caseH 2(〈Bi〉,3) = 0, for i = 1,2. Also Ker(B3 − I )/Im (B3 + I ) =

〈e1, e2〉/〈e1 + e2,2e1,2e2〉 ' Z2, thuse1 and e2 do not vanish in this quotient.
The generator ofH 2(8,µ4) (denoted by 1µ4) restricted to〈B3〉 does not vanish,
because according to Table 3.3, it comes from 1χ3 in the second coordinate, so it
becomes a 1 in the second coordinate of〈B3〉 × 〈B3〉, i.e. in Ze2, and Lemma 4.4
holds by takingW = 〈e1 + e2, e3, e4〉.

Hence there is onlyoneway to add a one-dimensional representation toµ4 to
obtain a s.c.It is µ4⊕ χ0 with the s.c.(1µ4, h1).

CASEµ = µ5.
Let us see how the restrictions to〈Bi〉 of the generatorsg1 andg2 are. It is clear

that res〈B1〉(g1) = 0 (see 3.35). In turn, res〈B2〉(g1) =
 0

1
0
−1

 is different from zero

in H 2(〈B2〉,3). This is because if we takeg: 〈B2〉 −→ 3, g(B2) =
 s1

s2
s3
s4

, then

∂g(B2, B2) =
 s1 + s2 − s3 + s4

s1 + s2 − s3 − s4
0

2s4

, and clearlyg1 6= ∂g, ∀g. Also, res〈B3〉(g1) = 1
0
0
0

 does not vanish inH 2(〈B3〉,3), by virtue of Lemma 4.4, taking〈e1〉 and

W = 〈e1 + e3,−e1 + e2, e4〉. Similarly, it is not difficult to see that res〈Bi 〉(g2) is{
0, if i = 2;
6= 0, if i = 1, 3.

Now we will combineµ5 with χ0 andχ1. It is not necessary to considerµ5⊕χi ,
i = 2,3, since these last two representations are semi-equivalent toµ5 ⊕ χ1 (see
Remark 4.1).

• Corresponding toµ5 ⊕ χ0, the s.c.(g1, h2) and (g1, h3) are equivalent via a
linear isomorphism similar to that indicated in Observation 4.9, taking into
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account Remark 2.2. Similarly(g2, h1) ∼ (g1, h2); (g2, h3) ∼ (g1, h3); etc.
Therefore, there is only one s.c. (up to equivalence) in this case.
• Corresponding toµ5⊕ χ1, there is only one possible s.c.:(g1,1χ1).

Hence, corresponding toµ5, there are exactly2 Bieberbach groups.
Summing up, corresponding to indecomposable representations of rank 4, there

are0+ 5+ 0+ 1+ 2=8 nonisomorphic Bieberbach groups.

Representations of rank 5.

CASEπ1.
In order to analyze the restrictions of the cohomology classes to〈Bj 〉, we point

out thatH 2(〈Bj 〉,3) ' Z2, for 1 6 j 6 3. Also we observe thatBj acts by the
identity on the submodule〈e2〉 whenj = 1 and on〈e1〉 whenj = 2, and these
submodules have a direct summand in3 in which the cohomology of〈Bj 〉 is zero
there. Finally,3 = 〈ei〉 ⊕W , 1 6 i 6 3, whereW = 〈e1 − e2, e2 − e3, e4, e5〉 is
B3-invariant. Thus, by 3.36 and Lemma 4.4, it follows that

res〈Bi〉j
′([h1]) is

{
0, if i = 1;
6= 0, if i = 2,3; res〈Bi 〉j

′([h2]) is

{
0, if i = 1,2;
6= 0, if i = 3;

res〈Bi〉j
′([k1]) is

{
0, if i = 1,2;
6= 0, if i = 3; res〈Bi 〉j

′([k2]) is

{
0, if i = 2;
6= 0, if i = 1,3.

Thus, there are two classes of s.c., corresponding to[h1+ k3] and[h3+ k2], but in
fact, they are equal (sincej ′([h2+ k1]) = 0, see 3.36).

Hence, there is onlyoneBieberbach group in this case.

CASEπ2.

In this caseB1 has the block form
(

1 0
0 ∗

)
, thus it is easy, using Lemma 4.4,

to compute the restrictions of the cohomology classes to〈B1〉. ForB2 andB3 we
write the general form of a coboundary.

If g(Bi) =


s1
s2
s3
s4
s5

, i = 2,3, then∂g(B2, B2) =


2s1 + s4 − s5
s2 + s3 + s4
s2 + s3
s4 − s5
−s4+ s5

, and∂g(B3, B3) =


2s1 + s4 + s5
2s2 − s4 + s5
2s3 + s4 + s5

0
0

.

If s4 ± s5 = 0 then the first coordinate of∂g is even in both cases,B2 and
B3. Hence res〈Bi 〉j ′(h̃k) = 1− δik . If one interchanges the roles ofB1 andB3 in
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3.33 it follows that res〈B1〉j ′(1̃ν3) = 0. By taking s2 = 1 and the remainingsi
zero,∂g(B2, B2) = res〈B2〉j ′(1̃ν3). In return there is nog such that∂g(B3, B3) =
res〈B3〉j ′(1̃ν3), since the parity of the first three coordinates of∂g(B3, B3) are the
same.Hence the only s.c. in this case isj ′(h̃3+ 1̃ν3).

CASESπ3 andπ4.
There are no Bieberbach groups in these cases because the restriction to〈B1〉

of the unique nonzero cohomology class vanishes in both cases. This is clear by
observing 3.33 (interchanging the roles ofB1 andB3) and (4.4), since the generator
of H 2(8,Z5) is j ′(1ν3).

Summing up, there are2 nonisomorphic Bieberbach groups corresponding to
indecomposable representations of rank 5.

5. Conclusions

By following the steps in Section 6 of [RT] one can obtain explicit realizations for
the Bieberbach groups0 as subgroups of I(Rn) corresponding to the s.c. obtained
in Section 4. Using such a realization, it is not difficult to computeH1(M,Z) '
0/[0,0], forM ' Rn/0.

We will give now the Betti numbers,βi,1 6 i 6 5, of the manifolds classified,
which depend only on theQ-class of the holonomy representation (see [Hi]). We
have to compute just 8 cases of the formχi1 ⊕ χi2 ⊕ χi3 ⊕ χi4 ⊕ χi5.

Case Representation β1 β2 β3 β4 β5

A χ0⊕ χ0⊕ χ0 ⊕ χi ⊕ χj 3 3 1 0 0

B χ0⊕ χ0⊕ χi ⊕ χi ⊕ χj 2 2 2 1 0

C χ0⊕ χ0⊕ χ1 ⊕ χ2 ⊕ χ3 2 1 1 2 1

D χ0⊕ χi ⊕ χi ⊕ χi ⊕ χj 1 3 3 0 0

E χ0⊕ χi ⊕ χi ⊕ χj ⊕ χj 1 2 2 1 1

F χ0⊕ χi ⊕ χi ⊕ χj ⊕ χk 1 1 3 2 0

G χi ⊕ χi ⊕ χi ⊕ χj ⊕ χk 0 3 3 0 1

H χi ⊕ χi ⊕ χj ⊕ χj ⊕ χk 0 2 4 1 0

Here 16 i, j, k 6 3 and in each casei, j andk are different from each other.
We now give a table which summarizes our result on the classification of

Bieberbach groups of dimension 5. In the second column we put the number
(#) of nonisomorphic Bieberbach groups corresponding to the representation
beside.
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Repres. # β

σ1⊕ χ2
0 1 C

σ1⊕ χ0⊕ χ1 1 F

σ2⊕ χ2
0 2 C

σ2⊕ χ0⊕ χ1 1 F

σ3⊕ χ2
0 3 A

σ3⊕ χ0⊕ χ1 5 C

σ3⊕ χ0⊕ χ2 5 B

σ3⊕ χ2
1 1 F

σ3⊕ χ1⊕ χ2 2 F
σ3⊕ ν1 1 C

σ4⊕ χ2
0 2 A

σ4⊕ χ0⊕ χ1 5 C

σ4⊕ χ0⊕ χ2 4 B

σ4⊕ χ2
1 1 F

σ4⊕ χ1⊕ χ2 2 F

σ4⊕ ν1 1 C

µ2 ⊕ χ0 3 C

µ2 ⊕ χ1 2 F

µ4 ⊕ χ0 1 C

µ5 ⊕ χ0 1 C

µ5 ⊕ χ1 1 F

π1 1 C

π2 1 C

χ3
0 ⊕ χ2⊕ χ3 5 A

χ2
0 ⊕ χ1⊕ χ2⊕ χ3 8 C

Repres. # β

χ2
0 ⊕ χ2⊕ χ2

3 8 B

χ0 ⊕ χ2
2 ⊕ χ2

3 2 E

χ0 ⊕ χ2⊕ χ3
3 4 D

χ0 ⊕ χ1⊕ χ2⊕ χ2
3 8 F

χ1 ⊕ χ2⊕ χ3
3 1 G

χ1 ⊕ χ2
2 ⊕ χ2

3 1 H

χ0 ⊕ ν1⊕ ν2 1 A

χ3 ⊕ ν1⊕ ν2 1 C

χ2
0 ⊕ χ3⊕ ν2 5 A

χ0 ⊕ χ2⊕ χ3⊕ ν1 6 C

χ0 ⊕ χ2⊕ χ3⊕ ν2 6 B

χ0 ⊕ χ2
3 ⊕ ν2 3 B

χ2 ⊕ χ2
3 ⊕ ν1 1 F

χ1 ⊕ χ2⊕ χ3⊕ ν1 2 F

χ0 ⊕ ν1⊕ τ1 1 C

χ0 ⊕ ν1⊕ τ2 1 B

χ3
0 ⊕ τ1 1 A

χ2
0 ⊕ χ3⊕ τ1 3 B

χ2
0 ⊕ χ3⊕ τ3 3 C

χ0 ⊕ χ2
3 ⊕ τ1 1 D

χ0 ⊕ χ2
3 ⊕ τ3 1 F

χ0 ⊕ χ2⊕ χ3⊕ τ1 2 E

χ0 ⊕ χ2⊕ χ3⊕ τ3 3 F

χ1 ⊕ χ2⊕ χ3⊕ τ1 1 H

We note that the table on the right lists the groups already treated in [RT]. In
total there are 49 representations, up to semi-equivalence. Out of these 23 contain a
direct summand of rank> 3. The Bieberbach groups are 126, up to isomorphism.
Hence there are exactly 126 five-dimensional compact flat Riemannian manifolds
with holonomy groupZ2⊕ Z2.
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