COMPACT FLAT MANIFOLDS WITH
HOLONOMY GROUP Z, @ Z, (II)

J. P. ROSSETTI anxp P. A. TIRAO

ABSTRACT. In this paper we give a complete classification of compact flat manifolds
with holonomy group Zg & Zs2, with the property that the holonomy representation
decomposes as a direct sum of indecomposable representations of Z-rank equal to 1
or 2. We exhibit explicit realizations of all the manifolds classified, computing the
first integral homology groups. Finally, we compare the results obtained with the
known results in low dimensions.

INTRODUCTION

It follows from Bieberbach’s work that classifying compact flat manifolds (cfm’s),
up to affine equivalence, is equivalent to classifying their fundamental groups, up
to isomorphism.

In 1965 Charlap (see [3]) gave a general approach to the classification, and
applied it to classify all Z,-manifolds i.e., all cfm’s with cyclic holonomy group of
prime order. To this end, he used Reiner’s results ([10]) on the classification of
integral representations of the group Z,,.

In [4], P. Cobb constructed an infinite family of cfm’s with holonomy Zs® Zs and
first Betti number zero. This family was enlarged in [12], where new infinite families
of such manifolds were constructed by allowing certain integral representations of
non diagonal type in the holonomy representation.

In this paper we shall give a complete classification of compact flat manifolds
with holonomy group Zs ¢ Z5, with the property that the holonomy representation
is a direct sum of Zs @ Zs-indecomposable representations of Z-rank equal to 1
or 2. The cfm’s in this class which have first Betti number zero are exactly those
considered in [12].

In order to obtain this classification we shall develop Charlap’s scheme, showing
that the basic difficulty in this case is to decide when two special classes determine
the same flat manifold. This main step is carried out in Section 5.

Moreover, we shall exhibit explicit realizations of the fundamental groups as
subgroups of I(R™). We summarize the full classification and the first integral
homology groups in the table of Section 7.

Finally we specialize our results for low dimensions, comparing with the known
classification in [1] in the cases of dimension 3 and 4. In particular, we show that
the method constructs all Z, & Zs-compact flat manifolds of dimension 3, and 21
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out of the existing 26, in dimension 4. For dimensions n = 5 and n = 6, we give the
total number of Zs & Zs-manifolds constructed in the paper. The family we study
in this paper includes in dimension 5 (see Remark 7.4), the two isospectral non
homeomorphic cfm’s constructed in [5, p. 496]. We note that a full classification
of all Zy & Zs-manifolds is yet unknown for dimensions n > 5.

1. PRELIMINARIES

Let M be an n-dimensional compact flat manifold with fundamental group T
Then M ~ R™/T', T is torsion-free and, by Bieberbach first theorem, one has a
short exact sequence

0—A—>T—o—1,

where A is free abelian of rank n and ® is a finite group —the holonomy group
of M. This sequence induces an action of ® on A that determines an integral
representation of rank n of ®. Thus A becomes a Z(®)-module, which moreover is
a free abelian group of finite rank. ;From now on, by a ®-module, we will mean a
Z(®)-module which, as a Z-module, is free and of finite rank.

As indicated by Charlap in [2], the classification of all compact flat manifolds
with holonomy group ® can be carried out by the following steps:

1) Find all faithful ®-modules A.

2) Find all extensions of ® by A, i.e., compute H?(®, A).

3) Determine which of these extensions are torsion-free.

4) Determine which of these extensions are isomorphic to each other.

For each subgroup K of ® the inclusion i : K — & induces a restriction
homomorphism resg : H?(®; A) — H2(K; A).

Definition. A class a € H2(®; A) is special if for any cyclic subgroup of ®, K, of
prime order, one has resg (a) # 0.

Step 3) reduces to the determination of the special classes by virtue of the fol-
lowing result.

Lemma 1.1. [3 p.22] Let A be a ®-module. The extension of ® by A corresponding
to a € H2(®; A) is torsion-free if and only if o is special.

We now state some definitions and a main result in [3].

Definition. Let A and A be ®-modules. A semi-linear map from A to A is a pair
(f, A) where f: A — A is a group homomorphism, A € Aut(®), and

flo-X)=A(o)- f(N), for o € ® and X\ € A.

The ®-modules A and A are semi-equivalent if f is a group isomorphism. If A =1
then A and A are equivalent via f.

Let £(®) be the category whose objects are the special pointed ®-modules,
i.e., the pairs (A,«) where A is a faithful ®-module and « is a special class
in H2(®; A) and whose morphisms are the pointed semi-linear maps. That is,
(f,A) is a semilinear map from (A, «) to (A, ) such that f.(a) = A*(0), where
A*(B)(o,7) = B(Ao, AT) for any (o,7) € ® x D.
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Theorem 1.2. [3 p.20] There is a bijection between the isomorphism classes of
the category E(P) and connection preserving diffeomorphism classes of compact flat
manifolds with holonomy group .

We consider F(®), the subcategory of £(®), whose objects are the pointed ®-
modules which decompose as a direct sum of submodules of Z-rank less than or
equal 2 and whose morphisms are the pointed semi-linear maps. It is straightfor-
ward to see that a restricted version of the previous theorem holds for the category
F (D).

Corollary 1.3. There is a bijection between the isomorphism classes of the cate-
gory F(®) and connection preserving diffeomorphism classes of compact flat mani-
folds with holonomy group ® such that the holonomy representation decomposes as
a direct sum of indecomposable summands of rank less than or equal two.

Definition. Two integral representations p and p’ of ® are semi-equivalent if there
exists a unimodular matrix P and an automorphism A of ® such that

Plp()P = p/(A¢),  for ¢ € &.

Let A be a ®-module and A € Aut(®). We denote by A(A) the ®-module which
has A as underlying abelian group, with the action of ® defined by

gA=A(o) - VAeAoeD.

If A and A are semi-equivalent via (f, A), then f : A — A(A) is a ®-isomorphism.
In particular if (A, &) and (A, 8) are isomorphic special pointed ®-modules in F(®),
then A and A are semi-equivalent. The associated representations p and p’ then
satisfy

P~ lp(¢)P = p'(A9), for some unimodular P,
i.e., p and p’ are semi-equivalent.

Therefore, in order to determine the isomorphism classes of F(®), it will suffice
to classify the integral representations involved, up to semi-equivalence.

From now on we will identify integral representations of ® with ®-modules.

2. CLASSIFICATION OF F-REPRESENTATIONS

Every integral representation p of a finite group G decomposes as a direct sum of
indecomposable subrepresentations, but in general, the indecomposable summands
are not uniquely determined by p (see for instance [11]). However in the context
of this paper, the indecomposable summands of an integral representation will be
uniquely determined up to order and equivalence.

By an F-representation we will understand a faithful integral representation of
Z> ® Zsy that decomposes into a direct sum of indecomposable representations of
rank less than or equal 2. In this section we will give a parametrization of the
semi-equivalence classes of F-representations.

It will be convenient to identify a representation p of Zs & Zs with the three
integral matrices in p(Zy @ Zy — {0}), which we will denote by By, By and B3 =
B Bs.

We begin by recalling all the indecomposable integral representations of Zy ® Zo
of rank one and two, up to equivalence.

We set J = (?(1)) and I = ((1)(1))
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Lemma 2.1. A complete set of representatives of equivalence classes of indecom-
posable representations of Zo ® Zs of rank less than or equal 2 is given by

B By B3

xo: (1 (1) @
xit (1) (1) (-1)
x2: (=1) (1) (=1)
xs: (=1) (=1) (1)
172 I J J

vy J I J

Vs : J J I

T =1 J —J
To : J -1 —J
T3 J —J -1

Proof. Tt is known that in the only indecomposable representation of rank 2 of Zs,
the generator acts by J (see for instance [9]). Given an indecomposable representa-
tion of Zs @ Zs of rank 2 we may assume that one of the B;’s is J. As the other B;’s
commute with J and satisfy B? = I the only possibilities for these B;’s are I and
+J. We notice that J and —J are conjugate by (é _01). Thus, for example, the

representation —1, J, —J is equivalent to —I, —J, J and I, J, J is equivalent to I,
—J, —J. It is now easy to conclude that the {v;,7; : 1 < i < 3} give a complete
set of representatives for the equivalence classes of indecomposable representations
of rank 2. [

If p is an F-representation, then p is equivalent to

3 3 3
(1) rXo @ Y mixi ® Y Livi &Y ki,
i=1 i=1 i=1

where the non-negative integers r, m;, [; and k; are uniquely determined by p (see
Remark 2.4).

Conversely, given non-negative integers r, m;, l;, k; (1 < i < 3), we associate
to them the representation of rank n = r + m + 21 + 2k, defined by (1), where

3 3 3
m=> . myl=>", lLiand k=3, k.
We now associate to a given p € F the triple

(2) ((m1, 11, k1); (ma, Lo, ka); (ms, I3, ks))
where m;, [; and k; are as in (1). Conversely, for each triple as in (2) and n > m +

2142k we associate the representation constructed as in (1), with r = n—m—2[—2k.
A permutation of the triple (2) is a triple of the form

((ma(l)a la(l)v ka(l))7 (ma(Z)v 10(2)7 ko‘(Q))’ (mo(.?))v lo(S)a ka’(3)))

where o € Ss.
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Proposition 2.2. There is a bijective correspondence between semi-equivalence
classes of F-representations of rank n and triples in the set

{((mthkl); (ma, l2, k2); (ms, I3, k3)) © my, l;, ki € No;my < mg < mg;

m~+ 20+ 2k <n; and k>0 or m; +1; > 0 for at least two indices z}

up to permutation.

Proof. Given an element in a the set, we associate the F-representation constructed
in (1), by taking » = n — m — 2] — 2k. Choosing only one triple in each class (of
the set up to permutation), we built the family § of these representations. Notice
that the last condition in the set ensures that the representations of § are indeed
faithful.

It is clear that every F-representation is semi-equivalent to one in §.

On the other hand if p, p’ € §F are semi-equivalent, we wish to show that p = p'.
Let P be a unimodular n x n matrix and ® an automorphism of Zo @ Zs such
that Pp(g)P~! = p/(®(g)) Vg € Zy @ Zy. Then, there exists o € S such that
PB,P~! = B(’T(i) for 1 < ¢ < 3. By the uniqueness of the parameters mentioned
?Fk})love, it follows that r = ' and (my,l;, k;) = (m;(i),l(’f(i),k;(i)) for 1 <4 < 3.

us

((m17 lla kl); (m27 12’ kQ); (m37 13’ k3)) = ((mlla /17 kll)v (ml27 /27 k;)v (méa lév ké))
up to permutation by o, and so p = p’ as asserted. O

2.8. Notation. We recall that § is the family of representatives of semi-equivalence
classes of F-representations, constructed in the proof of Proposition 2.2.

We denote by §; the subfamily of § of representations having the three elements
in the triple different. We also denote by Fa2 (resp. §3) the subfamily of § of
representations having 2 (resp. 3) elements in the triple equal.

Notice that § is the disjoint union §; U §2 U §3.

2.4 Remark. If A is a subset of (B, Ba) the quotient

Nyea Ker (p(g) — 1)
NyeaIm(p(g) +1)

is an invariant of the equivalence class, [p], of p. By using these quotients one can
show that the integers r,m;,l;, k;, 1 <14 < 3, in (1) are uniquely determined by [p].

For instance, if A; = v; '(J), then one has

ﬂgeAi Ker (p(g) - I) ~ Zr—i—zj;é,i l;
Nyea, Im(p(g) +1) — 77

Also

ﬂge<31,32> Ker (p(g) — 1) Yl
Noe(pi,5y M (p(g) +1) ? .
Hence [; can be determined, for all 7, and r is also determined.

Actually, W. Plesken has told us that the full Krull-Schimdt theorem holds in
the case of integral representations of G = Zs @ Zs. This follows from the fact that
each genus of Z[G]-lattices consisits of just one isomorphism class. This, in turn,
could be proved by using the methods in [9].
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3. SoME GROUP COHOMOLOGY

In this section we shall determine, for each Zs @ Zo-module A in §, the coho-
mology group H?(Zy ® Zy; A), by exhibiting an explicit set of generators.

This computation can be possibly done by other methods, like those in [13], but
we shall take a simple minded approach which only uses the basic definitions.

Since cohomology is additive and two modules corresponding to semi-equivalent
representations have isomorphic cohomology groups, it will suffice to consider four
cases. From now on we shall write Zs & Zo = (B, Bs), and By = By Bs.

CASE 1: H2((By, B2); A), where A is of rank one and the action is trivial.

CASE 11: H?((By1, B2); A), where A is of rank one and B; acts trivially while By acts
by —1I.

CASE 11: H2((By, B2); A), where A is of rank 2 and Bj acts trivially, while By acts
by J = ((1) (1))

CASE 1v: H2((B1, Ba); A), where A is of rank two, By acts by —I and By acts by J.

In all cases we first determine the cocycles C2?(({By, Ba); A), i.e., the functions
h: (B, Bs) x (B1, Bs) — A such that 0h = 0. Recall that

(3) 3h(x,y,z) =T h(y,Z) - h(asy,z) + h(SC,yZ) - h(xay)7 T,Y,z2 € <B13B2>'

By normalizing the cocycle h, we may assume that h(z,I) = h(I,z) = 0, for all
x € <B1, BQ>
Also, it will be useful to recall that the coboundaries are the functions

(3’) 8f(x7y) :If(y)ff(l'y)+f(l’), T,y € <B1,B2>7

where f : (B, Bs) — A is any function.

Thus, evaluating (3) for z,y,z € {B;, Ba, B3} we have a linear system of 27
equations and 9 unknowns, {h(By, B;) : 1 < k,l < 3}, in cases I and 1I; while in
cases 111 and 1V we have 54 equations and 18 unknowns.

We will make use of the following notation. With p, ¢ and r we denote any
element in {Bj, By, B3} acting as I and with ¢ and j any element in the same set
acting as —I. We will also abbreviate h(By, B;) by (k,l) and Oh(By, B, B,,) by
(k,l,m).

CASE 1
The full set of equations is summarized in the following table

(z,y,2) equations # of eq.
(p,p,p) L. (p,p) = (p,p) 3
(r,q,9) 2. (¢,9) = (r,q) + (p,q) 6
(¢,9:p) 3. (¢,9) = (¢,p) + (¢;7) 6
(¢,p,9) 4. (p,q) + (q,7) = (r,9) + (¢, p) 6
(p,q;7) 5. (¢,7) + (p,p) = (r,7) + (, ) 6

Observations: Equations 5 follow from 2 and 3, while equations 2, 3 and 4 are
equivalent to equations 2, 3 and 4’: (p,q) = (¢,p). Equations 3 follow from 2 and
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4’. By the symmetry of r and p in 2 there are three equations left. The same
happens in 4’.
Thus the system 0h = 0, is equivalent to

(1,1) = (2,1) + (3,1); (1,2) = (2,1);
(272) = (172)"_(372); (1’3) = (371)5
(3,3) = (1,3) +(2,3); (3,2) = (2,3);
and so every cocycle h has the following general form,

h B By B3

By a+p a B

By o a+y vy

B; p Y B+

for some «, 3, € Z.

Let hy (resp. hg and h,) be the cocycle obtained by letting a =1, 8=v=0
(tesp. 8 =1, a =y =0and vy = 1, « = § = 0). Then H?((By, Bo);A) =
([ha), [Rg], [hy]). Finally to determine the cohomology group, we write down the
coboundary 9f, where f : (B, Ba) — Z is any function such that f(I) =0. If we
let ¢, = f(By) we have

of B B, Bs

B1 2t1 t1 +1ty —t3 t1 — 1o+ t3
By i1+t —t3 2to —t1 +t2 + 13
Bs i1 —ta+ 13 —t1 +ta+ 13 2t3

It follows that hy o4 0, hg o 0, hy o 0 and furthermore ho —hg % 0, ho —hy # 0,
hg — hy o 0 and finally 2h, ~ 2hg ~ 2h, ~ 0. Hence

H?((By, Ba); ) ~ Zy @ Zy =~ ([ha), [h5]).

CASE 11

As in Case I, the system of 27 equations can be reduced. It is sufficient to
consider only the triples (i,4,4), (i,4,5), (,7,4) and (p,p,7), from which one can
conclude that the set of linearly independent equations is:

(27 2) 07
(3,3) =0,
(1,1) = (1,2) + (1,3).

Thus, in this case, every cocycle h has the form

(2’3) = (27 1)’ (273) = _(173)7
(372) = (37 1)7 (372) = _(172)7

h Bl B2 BS
By —(a+ ) -3 —a
By «Q 0 «
Bs B 3 0
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for some «, B € Z.
Let h, and hg be as before. It is not difficult to see that ho ~ hg, hq 7 0 and
2ho ~ 0. Thus

H?((B1, B2); A) = Zo = ([hal) = ([hg])-

In cases 111 and IV we just give the general form of a cocycle h, and the re-
lations satisfied by the generators of C2((By, Bo);A). Recall that h : (B, By) x
(B1, By) — Z2. We shall write the second coordinate of h below the first one.

CASE III

h B, By B3
By a+28—-2yv—e—96 a+pB—v—056—¢€ 08—
a+e—9 a—fFB+e 06—06

By a—90 a vy

a—9 @ )

B3 € —B+v+d+e€ I}
206—0—7v—c¢€ 0 —¢ Ié)

for some «, (3, v, § and € € Z.
The generators satisfy hg ~ hy ~ 0, hoq ~ he ~ hs 94 0 and 2h, ~ 0. Thus we
have
H?((B1, Ba); A) = Zy = ([ha]) = ([h]) = ([hs])-

CASE IV

h B By By

By 0 b—a—p0 0 —a—
0 B+y—« B+y—«

By ¥ @ a—9
6 @ a—7

B3 - B—3é B
= -1 9

for some «, 3, v and § € Z.
It is straightforward to verify that hy ~ hg ~ h, ~ hs ~ 0, and thus

H?((B1, Bs); A) = 0.

4. RESTRICTION FUNCTIONS

To carry out the third step in the classification scheme outlined in Section 1, in
the light of Lemma 1.1, it is necessary to investigate the restriction functions to
determine the special classes in the cohomology groups.

Since resg : H?((B1, Ba); A) — H?(K; A) and any cyclic subgroup of (B, Bs) is
isomorphic to Z we need to determine the groups H?(Zs; A) for the three indecom-
posable Zs-modules, namely, those modules for which the action of the generator
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of Zs is given respectively by (1), (-1) and ((1) é) In the first case we have that

H?(Zo; A) ~ Zs, with generator given by

1, if (z,y) = (1,1);

4 T,y) =
W 10 ={5 o2
whereas in the second and third cases we have H?(Zg; A) = 0.

We next study the restriction functions for each of the cases in Section 3.

CASE 1

Let hy = [ha + hgl, ha = [hg] and hy = [ha] in H2((By, Ba); A). Consider the
subgroup K = (B;) of (Bi, Ba). If [h] € H*((B1, B2); A) then resk[h] = [h [kx k]
Defining fx : K X K — Z by fx(z,y) = 1if (z,y) = (B, B;) and fg(z,y) =0 if
(z,y) # (Bi, B;), we obtain

fK7 le :2,3;
UM+%HMK={O L
fr, ifi=1,3;
he rKXK(:E’y)_{o ifi =2
ho Tk xK (%y):{o i3
Summing up
fispl i #j;
ves(s,) (ha) = { 0< ’ ifi = ;.

CASE 1II
As before K = (B;). If B; = By or B; = B3 then H2((B;); A) = 0, thus we only
need to consider the case when K = (B;). We have
_]-7 if ($7y):(BlvBl);
0, if (z,y) # (B1, B1).

Notice that ha [(B,)yx(B,)~ f (With f as defined in (4)). Thus

idzZ, if BZ = Bl;
res =
B = o, if B, = By, Bs.

ha T(Byx(B)) (T,Y) = {

CASE III

Ifi = 2o0ri =3, H3((B;); A) = 0, thus we only need to consider the case K = Bj.
We have H?((B1); A) ~ H?((B1); (e1)) @H?((Ba); {e2)) = ([i) &([f2]) , with f; = f.
By this isomorphism the element [f;] + [f2] corresponds to [h] € H?((B1); A) where

if (z,y) = (B1, B1);

),
M%”‘{ it (2,9) # (B1, B).

(0,0),
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On the other hand
ha T(Byx(By) (T,9) = { (1,1), ?f (z,y) = (B1, B1);
(0,0), if (z,y) # (B, B1).
Notice that he [(B,)x(B,)= h. Hence, it follows that

A, lfB,:Bl7
FSBY T 0, if B = By, By

where A : Zy — Zs @ Z5 is the homomorphism defined by A(1) = (1,1).

CASE IV
Since H2((B1, B2); A) = 0, there is nothing to be done in this case.

5. ISOMORPHISM CLASSES IN F(Zg @ Zs)

It follows from the discussions in Section 1 that we can view the objects in
F(Zy ® Z2) as the set of special classes in H?(Zy @ Zo; A) where A is a Zy @ Zo-
module as above.

If @ and 3 are in F(Zo®Zs), where o € H?(Zo ®Zo; A) and 3 € H2(Zy® Zo; A),
then « ~ (3 if there exists a semi-linear map (f, A) such that f.ao = A*G. In this
case, A and A’ are semi-equivalent, therefore each isomorphism class of F(Zo & Zs)
is contained in H?(Zy ® Zo;A), for some module A in §. Moreover if a and 3
are in H?(Zy ® Zo; A) and o ~ 3, then the associated representation p satisfies
p(9) = p(A(g)) Yg € Zs @ Zs, and consequently for p in F1, A must be the identity
automorphism.

For each representation p € §, we consider the matrices By, By and B3 acting on
A = {e1,...,en). Thus A is the direct sum of indecomposable submodules, of the
ten classes listed in Lemma 2.1. Let A; be, for : = 0,1,...,9, the submodules that
are direct sum of indecomposable submodules all of them equivalent, in the order
considered in Section 2. Thus Ag has rank r and is the sum of trivial submodules;
Ay has rank mq, Ay has rank mao,...,Ag has rank 2ks.

It follows that

H?((B1, Bo); A) = ©7_oH?((B1, B2); M)
~(Zy® L) BL GBI B L B ZY @ 2 & 7Y

It will be convenient to make use of the following notation. Given
a € H2((By, B2));A), we will write o = (vo,v1,...,vs) With vy € (Zo @ Zo)",

vy € Zy", ... v € Zl23. In the coordinates of vy we will identify (1,0) with Ay,
(0,1) with A and (1, 1) with hs (Section 4, Case 1). Finally if § € {0, 1} we will set
5 = (4,0,...,0) € Z% where t could be equal to my,ma, m3, 11,1z or 3.

Lemma 5.1. For every a € H?((B1, Ba);A), a = (vo,v1,...,v6), let §; = 1 if
v; # 0, §; = 0 otherwise. In H*((By, Ba); A) the following equivalences hold:

if the non zero coordinates in vy, if any,
are all equal to h;;

CJ[N((;O}LJ‘,O,...,O,E,...,%)
————

o~ (hl,hg,O,...,O,E,...,%)
—————

T

if there are at least two different h;’s in vg,
for1<¢<3.
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Proof. To prove the lemma we will construct a linear isomorphism f : A — A

such that f.(doh;,0,...,0,61,...,06) = c in the first case and
—— ——
fe(h1,h2,0,...,0,01,...,86) = a in the second.
— ——

We will define f in each submodule A;. We start with A1, Ao and A3. Recall
that Ay = (er41,---y€rpm,). vy =0 define f [o,=1. Ifvg = (v1,...,0m,) #0
with v; € {0, 1}, let jo be the first j such that v; # 0. We define

Fen €, if i # 7+ jos
€; =
! lee\ll Erij, ifi=r +j()§

for r+1 < i < r+mq, where ¥ = {1 < j < my; : v; # 0}. Notice that
(f FAl)*(O,...,O,l,O, ...,0) = vy, where 1 is in the jo-th position. By defining
fia= fo Tr+1,r+jo,» Where 7; ; is the transposition interchanging e; and e;, we
have that (f a,), (1,0,...,0) = v;. Finally we notice that f [o,: Ay — Ay is a
linear isomorphism. In a similar way we define f [, and f [a,.

Consider now the submodules Ay, A5 and Ag. If vy = 0 define f [p,= I. If
vy = (v1,...,v,) # 0, with v; € {0,1}, let jo be the first j such that v; # 0. We
define

€, ifi£r4+m+2j—1, r+m+ 2jo;
fle)) = Xjewerimtzj—1, ifi=r4+m+2j—1;
Zjell ertm+2;s ifi=r+m+ 2jy;

forr+m+1<i<r+m+2l, where ¥ = {1 < j <1l : v; # 0}. As before, if
[ 1as= foTrtmt1,r+m+2jo—1°Tr+m+2,r+m+2j, it follows that (f [a,), (1,0,...,0) =
vg. Again f [a,: Ay — A4 is a linear isomorphism. For As and Ag the definition
of f is analogous.

On the submodules A7, Ag and Ag we define f to be the identity.

We now define f [,. This is the most complicated situation. If vg = 0 let
f Ta,= 1. If vy # 0, we distinguish two cases depending on whether the nonzero
coordinates of vy are all equal, or whether there are at least two different nonzero
coordinates. In the first situation, defining f [5, in a way similar to f [A, it
follows that (f [a,), (R5,0,...,0) =vo. In the second situation, if vg = (v1,...,1p),
where v; € {0,h1,ho,h3}, let ji be the first index j such that v; # 0 and let
j2 be the first index j greater than j; such that v; # 0 and v; # v;,. Thus
Vo = (O, ey O, Vi s Vji4+1s e+ 9 Vo s Vijo b1y - o oy I/.,-), with Vi, = hi17 Vi, = hiz and Vi = 0
or v; = hy, if j1 < j < j2. Thus we define

€ O F J1, J2;
f(ei) = Zjetlll €j, = Ju;
Yjew, €r 1= J2
where Uy = {1<j<r: yvj=hyorvj=h; +h,tand ¥o={1<j<r: vy, =
hi, or v; = hi, + kg, )
Hence (fo Tij, © Tg’j2)* (hiy s hiy,0,...,0) = v9. We notice that f is a linear

isomorphism.
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To finish the proof we only need to show that (h;,, hi,,0,...,0) is equivalent to
(h1, h2,0,...,0).

By applying 71 2, if necessary, we may assume that 7; < i5. Thus, we have to
consider the cases (h;,, hi,) = (h1, h3) or (hy,, hi,) = (he, h3).

By taking
. €, 1> 3;
€is > 2 ,
ole;) = . or  ole) =% e tey i=2
€1 +es, 1= ].; )
ez, t=1;
in the first and second cases respectively, it turns out that o.(hq, hs,0,...,0) =

(hiys hiy,0,...,0). Both o’s are linear isomorphisms. Finally by taking f [s,=

foTij oTaj, 00 we obtain the required f. O
It is now convenient to characterize the special classes in H?((B1, Ba2); A).

Lemma 5.2.

(a) A class of the form (0,...,0,61,...,06) is special if and only if
(51+51+321f07"1§2§3

r

(b) For each 1 < j <3, (h;,0,...,0,01,...,06) is special if and only if
RT’_/ 5j + 5j+3 > 1.
(c) The classes (hy,hs,0,...,0,01,...,0¢) are always special.
——— —

s

Proof. The lemma follows directly from the results in sections 4 and 3. [
In the sequel we will determine the equivalences among these special classes.

Lemma 5.3. In H?>((Bi, B); A) we have the following equivalences:

(UQ,T,E,E,G,E,%) ~ (’UQ,T,E,E,T,@,%);
(U(),E7 Tu gv 6747 67 %) ~ (’U()aa7 T? gv av IJ %)7
(U07E7$7T76745g76) ~ (UO;E7572717Ea£7T)'

Proof. Let f: A — A be the linear isomorphism defined by

flei) = Cr1 F (erpme1 — Cremy2), P=1+1
Z “ i#r+1.

It is straightforward to verify that f satisfies fi(vo,1, 02, 63,0, 85, 06)
= (vo, 1, 02,03, 1,95, 0g), thus proving the first relation. The remaining two follow
in a completely similar way. [

Lemma 5.4. In H?({By, B3); A) the following equivalences hold:

t
(a) (hlaoa .. 'JLE?E, 6375436a6) ~ (hlaoa s 70761762763754365756);
—— ——

T T

T T
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T T
(d) (h17h2707~'~707Ea$7£767676) ~ (h17h2707'"707?1757%)&7%)%)'
—— —— —— —

Proof. (a) Let f be the linear isomorphism defined by

€1+ 0s5(ertmaat,+1 + €ramt21,+2)
fle:) = +06(€rtmt2l+21o+1 + Erpm2l,+20542), &= 1;
€, ) 7£ 1.

To understand the effect of applying f. we will restrict our attention to

A = (€1, €rtmt2ly+15 €rtmt20y+25 Crtm+2ly+2l+15 Crtm+20 +205+2) -

We now recall the general form of the cocycles of Case 111 in Section 3 and the
facts that hg ~ 0, hq ~ he 4 0, when B; acts as I and By and Bs act as J. Since
on {€rtm+2l,+1, €r+mt2i,+2) B1 acts as J and By as I while By and By act by J
ON (€4 m42ly+2l5-+1s Crtm+t2l;+2lo+2), We must interpret properly the table in Case
111. Hence

(f 1a), (h1,0,0)) = (h1,85[hs + he], 66[ha]) = (1,05, 06)

The proofs of (b) and (c) are analogous to the proof of (a).
The proof of (d) can be obtained from (a) and a statement as (b) with hg in the
second coordinate, in place of the first. Thus, by taking

e1 + O5(ertmtat+1 + €rtmt21,+2)
+06(ertm+21,+2041 + €rtmi2n, +21,42), 1= 1

e2 + 04(erimt1 + €rimr2), 1=2;

€;, 1> 3;

fle) =

(d) follows. 0O

By using the above results we can now give an upper bound on the number of
equivalence classes of special classes in H2((By, Ba); A).

We begin by considering the classes with vg = 0. Thus §;+3d;,3 > 1,for1 <i <3
and by Lemma 5.3 it suffices to consider the classes with §; +d;4.3 = 1, for 1 <i < 3.
Therefore, if vg = 0, there are at most 22 = 8 equivalence classes, corresponding to
all possible choices of pairs (41, d4), (62,95) and (3, dg).

In the cases when vy = (h;,0,...,0) for some 1 < j < 3, we will only analize the
case j = 1, since the remaining two are similar. Thus §; + d4 > 1, and as before, it
suffices to consider those classes with §; + 04 = 1. By Lemma 5.4 we may assume
05 = d¢ = 0. Hence there are at most 8 equivalence classes with vy = (hq,0,...,0),
and consequently, if we include the cases with j = 2 or j = 3, there are at most
3 x 8 = 24 classes of this type.

Finally if vg = (h1,h2,0,...,0) we may assume by Lemma 5.4 that d, = 05 =
d¢ = 0, hence there are most 8 equivalence classes of this type.

If we take into account all three types, we see that there are at most 40 equiva-
lence classes of special classes in H2((Bj, Ba); A).
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We see next that if p is in the subfamilies §2 or §3 of § (see 2.3), there are some
new equivalences among the special classes described above.

Recall that two classes a and 3 in H?({By, Ba); A) are equivalent if f.a = A*j,
with (f, A) a semi-linear map. At the beginning of the section we pointed out
that for representations in §; the automorphism A should be the identity. For
representations in §o either A = I or A is the automorphism that permutes the
two elements having the same associated triple (see Section 2) and fixing the third
non trivial element. In this case f can be chosen to interchange suitably the Als in
order to make (f, A) a semi-linear map. On the other hand, for representations in
§3 the automorphism A can be arbitrary and f should be chosen so that (f, A) is
semi-linear.

Example. If A permutes B; and Bs then we choose f mapping isomorphically
Ay & Ag, Ay — A5, A7 — Ag, f being the identity on Ag, Az, Ag and Ag. Notice
that in this case, pairwise, A1 and A, A4 and As5, and A7 and Ag are of the same
rank. Indeed we define f(e;) = e;j1m, for e; € A1, f(€itm,) = €; for €;4m, € A,
etc.

When considering special classes in H2({By, Bz); A), with A in §2 or §3 the pos-
sibility of choosing A to be a non trivial automorphism produces more equivalences.
These will be listed in Lemmas 5.5 and 5.6.

Remark. Let By, By, B3 be a representation in §» having the first and third as-
sociated triples equal and the second one different (see Proposition 2.2). Then
my = mz and since m; < mg < mg we have m; = mo = m3. Thus the represen-
tation given by By, B3, By is semi-equivalent to By, By, B3 and has the first and
second associated triples equal. Therefore we may assume that the family §s is
the disjoint union of two subfamilies of representations, those having the first and
second triples equal (§2,1) and those with the second and third triples equal (F2,2).
Thus §2 = §2,1 US2,2.

Lemma 5.5. Let A € §o. In H*((By, Ba); A) we have:

for A € §a1,
(a‘) (07 30715677376aia76) ~ (05 7056>T773ai>6776)7
N—— N——
T T
(b) (h2507 70761a62763a0a6576) ~ (hl,o,-~-,0,@,&,%,&,676);
(C) (h?noa 70a156,73a67677)'\‘ (h3a05 a0567T773)67677)7
(d) (h1,hs,0,...,0,1,0,03,0,0,0) ~ (h1,h2,0,...,0,0,1,63,0,0,0);
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Jor A € §a 2,
(a7) (07"'307571367747631) ~ (07"'70757136’T76743176);
~—— S——
(b7) (h370 "707571787576767%)N(h270 "7076717$7572a67%76);
(C’) (hlaoa"' ,0,5,1,675,676) ~ (h1707'"70767%6,175747676);
N——— ———

(d’) (h17h2707"'707a517070a0’0) ~ (h17h2707"'7O7Oaa707170a070)'
—_— —— — ——

T T

Proof. (a), (b) and (c) follow by choosing (f, A) with A permuting B; and Bs and
f as in the example.
(d) follows by taking (f, A) as before, except that f(e;) = e3 and f(e2) = €.
The proofs of (a’)-(d’) are similar. O

Lemma 5.6. In H?((By, Bs); A), with A € 3, we have:

(a) Two classes of the form (0,...,0,01,02,03,1 — 01,1 — 3,1 — d3) having the
——

same sum 01 + 02 + 03 are equivalent.
(b) Every class of the form (h;,0,...,0,01,02,03,04,05,06) with j = 2,3 is equiv-
————

alent to one of the form (h1,0,...,0,01,02,03,064,0,0).
———
(C) (hl,O,...,O,E,iﬁ,l—51,6,6) ~ (h1,07...,07671,6,i71 76176,6).
—_——— ———

(d) Two classes of the form (hy,ha,0,...,0,81,02,03,0,0,0) having the same
—_—————

T
sum 61 + 9o + 03 are equivalent.

Proof. (a) If 61 + d2 + 03 equals 0 or 3, there is nothing to prove.

Given two classes a and [ with 6; + 2 4+ 3 =1, suppose §; = 1 in awand §; =1
in 8. By taking A the automorphism that permutes B; and B; and f the linear
isomorphism that maps A; < Aj, Ajy3 < A3 and Aj16 < Aj6 one checks that
fea=A"0.

(b) By taking A to be the automorphism that permutes By and B; and choosing
a suitable f, we see that the given class is equivalent to one of the form

(h1,0,...,0,01,02,03,04,05,06). Thus by Lemma 5.4 (a), (b) follows.
—_——

(¢) It follows by choosing (f, A), where A permutes By and Bs and f is as in the
example before Lemma 5.5.

(d) Having in mind that the vector vo = (hi,h2,0,...,0) is transformed into
A*vg by any semi-linear map (f, A), it is possible to obtain all the classes with the
same sum 61 + J2 + 03, and having A*vg in the first r coordinates. Therefore, by
Lemma 5.1, (d) follows. O

Putting together the results in Lemmas 5.1-5.6, we give in €;, €, and €3, a
complete set of representatives of the equivalence classes of special classes corre-
sponding to representations in §1, §2 and §3 respectively. Later we shall prove that
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in fact two classes in the same set are not equivalent (except for the equivalences
stated on the right of each line).

¢

(07"'307E7$7g71 - 6171 - 5271 - 53),
——

(h1,0,...,0,01,02,03,1 —01,0,0);
—_———

I

(h2707 <. '70761752753767 1— 5276)7
———
(h370a .. '70a61752a637676a 1- 53)7
————

s

(h17h2703 cee 703E7$a£767676)'
———

M
There are 8 classes of each type, hence at most 40 classes for a representation in
the family §;.

¢yt

two classes having the same sum,

(Oa"'70a61752a6371 - 6171 - 6271 - 63)7 51 +62, are equivalent;

(hlvoa"'voaa7$ag7l - 617676);
—_———
(h3,0,...,0,01,02,03,0,0,1 — d3),
——
(h17h270a"'7Oaa7$7$7676a6)5
— ——

T
Hence there are at most 26 classes for a representation in the family §s.

two classes having the same sum, §; +
b2, are equivalent;

two classes having the same sum 61 4 do
are equivalent.

¢3

two classes having the same sum,

(Oa e '707517527637 1- 617 1- 627 1- 63)7 51+ 69 + 53, are equivalent;

(h17--~707a,g7£,1 - 517676)a
———

(h17h270a-'-7Oaa>$7$7676a6)5
—_———

two classes having the same sum, o + 93,
are equivalent;

two classes having the same sum, é; +
do + 03, are equivalent.

M
Hence there are at most 14 classes for a representation in the family Fs.

Now we will show that within each set, the special classes are inequivalent. For
this, we notice two facts about a p-isomorphism f from A to A:

TThis set is built up considering representations in $2,1. There is an analogous set for repre-
sentations in F2 2
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5.7. The action of p on A is Q-diagonalizable. Thus p is Q-equivalent to a
direct sum of Q-characters. Since f is a p-morphism, if p acts on Ay by a certain
character, then p acts on f(\g) by the same character.

5.8. By considering p as an integral representation (not as a Q-representation)
the following condition can be obtained.

Lemma 5.8. If f : A — A is a p-automorphism, then for any subset S of Zo®Zs,
f induces an automorphism of abelian groups

Nyes Ker(plg) =) (yes Kerlplg) — 1)
Nges Im(p(g) +1) Nges Im(p(g) +1)°

The proof of this lemma is not difficult and we shall omit it.
In order to show how one can use the conditions imposed on a p-automorphism
we give an illustrative example.

Example. Let p be the representation of Zy @ Zy on Z> given by

Bl:<1 I)’BF(l J)’B3:<1 J)’

1 0), and let f be a p-automorphism of Z3. By 5.7 it follows that

f(ea+es) € (e1,ea+e3). Moreover, by Lemma 5.8, f(ea+e3) € (2e1, ea+e3), since
T (B}
this quotient. Since H?(xo; Ze1) has order two, i.e., 2a =0 Va € H?(xo; Ze1) (see
Section 3), it follows that f.(0,d) = (0,4"). The important thing here is that from
(0,9), it is impossible to obtain (1,8"), for 8,8’ € H2(vy; Zeo ® Zes). In other words,
the classes (1,0) and (0,d’) are not equivalent.

where J = (

the class of e; in does not vanish, while the class of es + e3 vanishes in

Lemma 5.9. Two special classes in € which are of two different types are not
equivalent.

Proof. The only possible semi-linear maps in this family are of the form (f, I). Since
I*(h;) = h; Vi, then it is not possible to change the type of the special class. O

Lemma 5.10. The classes in &1 are inequivalent.

Proof. The classes (hy, h,0,...,0,01,02,03,0,0,0) are not equivalent to each other
N ———

because of the restrictions in 5.7.
For the classes (h1,0,...,0,01,02,03,1 — d1,0,0), we can say that two of them
N———

s
are not equivalent when they have distinct do or ds, by 5.7. When they have the
same Jo and the same d3 but different §; they are inequivalent by 5.8. The proofs
for the types with ho or h3 in place of h; are similar.

Finally, for the classes (0,...,0,d1,02,93,1 — 1,1 — 02,1 — 03) the inequivalence
———

T
follows from the fact that two classes having different §; for some 7 are inequivalent
by 5.8. O

5.11. In the cases of the sets €5 and €3, the inequivalence of all special classes
listed is proved by entirely similar arguments.
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Remark 5.12. For a representation p with parameters r > 2, m; > 1 and I; > 1 for
1 <4 < 3 there exist exactly:

40 inequivalent special classes if p is in 1,

26 inequivalent special classes if p is in §2 and

14 inequivalent special classes if p is in §3.
The lowest ranks in which such a p exists are: 11 for §3, 12 for §2 and 14 for §;.

6. EXPLICIT REALIZATION AND INTEGRAL HOMOLOGY

In this section we will give an explicit realization of the Bieberbach groups I'
corresponding to the special classes classified in Section 5, as subgroups of isometries
of R", i.e.,, I' = O(n) x R™. To do this we begin by considering a representation p
in § and Bj, By the matrices associated to p. We note that B; and B, are in the
orthogonal group O(n).

If v € R", let L, denote the translation by v. Often we will identify A with
L in what follows. For each one of the special classes o € H?((By, Ba); A) listed
in the previous section, we will determine b; and b, in R™ in such a way that the
subgroup of I(R™)

I'=(B1Ly,, BaLy,, A),

is an extension of (B1, Ba) by A, with extension class «.

We recall that given I" an extension of (B1, B2) by A, the corresponding extension
class is determined as follows. Fix a section s : (By,Bs) — I' and define the
function f : (B, Bs) x (B1,B2) — A by f(X,Y) = s(X)s(Y)s(XY)~!. The
extension class of T is given by [f] € H2((Bi, B2); A).

Hereafter we pick the following section:

s(I)=1; s(B1)=BiLy,; s(Ba2)= BaLs,;

S(BlBQ) = BlLblBQLbQ = BlB2L32b1+b2.

Notice that, with this definition, the corresponding f satisfies f(x,I) = f(I,xz) =0
for any x € (B, Ba).

Since the cohomology is additive, it suffices to consider the four indecomposable
cases, as in Section 3. So we will consider the function f : (By, B2)x (B, Ba) — A/,
where A’ is indecomposable of rank 1 or 2.

In each case we will calculate the values of f in (z,y) for z,y € {Bi, Ba, B3},
and we will list them in a table, as in Section 3. It will be easy to figure out the
class [f] € H2({By, Ba); "), for different choices of by and bs.

We observe that f(B1,Bz2) = 0 in all cases, because s(Bs) = s(By)s(Bz). In
general f(B;, B;) = s(B;)s(B;) = Lp,p,+b,- The other values of f are obtained

similarly.

CASE 1
Recall that the action of (By, Bs) is trivial. The values of f are

f B, By Bs
B, 2b1 0 2b,
By 0 2by 2by
B3 2b1 2bs 2(b1 + bg)
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Notice that b; and by must be in %Z. We conclude that,

0, if by = by = 0
hi, if by =0, by = 3;

1= hs, it by =1, by =0;
hy+hy =hg, if by =by=1.

(Here hq and hs are as in Section 4.)

CASE 1II
Recall that By = 1, By = B3 = —1. The values of f are

f Bl BQ Bg
Bl 2bl 0 2b1
B2 721)1 0 72b1
Bs 0 0 0
We get that,
O7 if bl = 0;
[f] = g
17 lf bl =35

The cases when By, =1, By = Bg = —1 and B3 =1, By = By = —1 are similar.

CASE III

In thiscase By = I = (é?),Bz =B3=J= (?(l))vbl = (Zi;) and by = (ZZ)
The values of f are

h Bl B2 BS
Bl 2b11 0 2b11
2b12 0 2b12
By —b11 + b2 ba1 + baso —b11 + b12 + ba1 + bao
—bi2 + b1y ba1 + bao —b12 + b11 4 ba1 + boo
Bs b11 + b12 ba1 + bao b11 + b12 + ba1 + bao
b11 + bi2 ba1 + bao b11 + b12 + ba1 + bao
We conclude that,
0, 1fb1=b2:(g);

[f] = ([hg] = 0 and [h] = 1)

lhs+h] =1, ifb = @),@: (0)

0

In the case when By = I, By = By = J, it can be deduced that [f] is equal to
the previous [f].

Finally when By = I, B; = B3 = J it can be deduced that [f] is the same as in
the previous cases but interchanging the roles of b; and bs.

CASE 1V
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There is nothing to be done, since the cohomology vanishes in this case.
Now, with this information, it is straightforward to determine b; and be, for any

given special class a. We shall now exhibit, for each special class in Section 5, some
suitable b; and by. For a € H?({By, Ba); A) with A € §1, we have:

(l) @ = (0""7()’5,%’%,1 _6171 _6271 _63)a
——

by =(0,...,0,161,0,...,0,2685,0,...,0,2(1 = 61), (1 — 61),0,...,0,0,...,0,
N——

N—_——
T mi+mo ms3 214 2l
$(1=63),3(1 —d3),0,...,0);
2(I3+k)
by =(0,...,0,265,0,...,0,0,...,0,2(1 = 85), 3(1 — 62),0,...,0,0,...,0).
— ———— —— N——
r+mq mo m3—+2l, 215 2(l3+k)

(i) a = (h1,0,...,0,61,09,03,1 — 61,0,0);
N———’

by =(0,...,0,61,0,...,0,305,0,...,0,2(1 = 01),5(1 — 61),0,...,0, 0,...,0 );
N——

——
T mi+mo ms 211 2(l2+1l3+k)
1 1
by =(1,0,...,0,0,...,0,18,,0,...,0,0,...... ,0).
—_—
r mi mo maz+2(l+k)

Remark. If hy appears in the first coordinate of a (resp. h3) in place of hy, we let
the first coordinate of by equal 1 (resp. 1) and that of by equal 0 (resp. 1).

(iii) a = (hy, h2,0,...,0,81,62,03,0,0,0);
N———

T

b =(0,4,0,...,0,361,0,...,0,0,...,0,203,0...,0,0,...... ,0);
\“,_/%/_/\—,_/
r mi mo ms3 2(l4+-k)
by = (3,0,...,0,0,...,0,28,,0,...,0,0,...... ,0).
—_— W — Y
r miy mo m3+2(l+k)

For the classes a € H?((B1, Ba);A), A € §2 UJ3, by and by are chosen in a
completely analogous way. In any event we will give explicitly b; and by in all
cases, in the next section.

Remark. We now restrict ourselves, within the manifolds M studied above, to those
having first Betti number zero (51 (M) = 0).

It is well known that £ (M) = rank A“, where A“ is the submodule fixed by G.
Furthermore, it is not hard to check that for any p € §, p acts without fixed points
if and only if » = 0 and [ = 0. Thus, the corresponding cohomology classes have

the form (01, d2,03). By Lemma 5.2 there is only one special class of that type, the
class (1,1,1). This means that for each F-representation of rank n with r = 0 and
[ =0, all choices of by, by € R™ such that I' = (B; Ly, , B2Ly,) is torsion-free, yield
isomorphic Bieberbach groups. This generalizes the uniqueness result proved by
an elementary method in [12] (see Lemma 2.2 in [12]), for F-representations with
r=0,1=0and k =0, ie., those representations considered by Cobb in [4]. We

state this result in the following
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Proposition 6.1. Let M and M’ be compact flat manifolds with first Betti number
zero and holonomy group Zg & Zo such that the holonomy representations p and p’
are F-representations. Hence, M and M’ are affinely equivalent if and only if p
and p' are semi-equivalent.

Remark 6.2. As mentioned above, Proposition 6.1 includes a uniqueness assertion
for the manifolds in the family constructed by Cobb. It was suggested in [7] that
this family might exhaust the Zs ® Zs-manifolds with first Betti number zero,
however we have seen in [12] that this is far from being the case. On the other
hand the family in [12] does not yet exhaust this class as can be seen already in
dimension 6, by using the integral representation y; ® x2 ® x3 ® p where p is one
of the two indecomposable representations of Zy & Zs of rank 3, having no fixed
vector.

In order to obtain a full classification of all Zy @ Zs-manifolds (with arbitrary
first Betti number) one should consider all direct sums of indecomposable Zg & Zo-
representations (we recall that Krull-Schmidt theorem holds in this case). We
note that a full classification of indecomposable representations was obtained by
Nazarova (see [8]). Also, Heisler [6] has computed the cohomology groups of the
representations in the first list, out of the two, given by Nazarova.

Integral Homology.

For each special class in sets €;—€3 we have constructed a group I', hence a
compact flat manifold, M ~ R™/T". In this part of the section we shall use the
realizations obtained to determine the first integral homology group of all these
manifolds.

It is well known that Hy (M;Z) ~ =

- [I.I]
We consider I" = (y1,72,A), where v1 = B1Ly,, 2 = BaLp, and A = (eq, ..., e,)
= ®)_,A;, where Ag = (e1,...,¢e:), A = (€r11,--.,€rtm,) etc., as defined in
Section 5.

It is clear, for j = 1 and j = 2, that

[Vjs Le;] = LB,e;—e; fori=1,...,n;

(Y1, 72] = L(B, —Ba)by+(Bs—Ba)bs
2

Vi = LBjb+b; -

We first introduce some notation. Let R = {i: e; € Ao}, M; = {i: e; € A},
Lj = {’L e € Aj+3} and Kj = {Z L6 € Aj+6} for 1 <5 <3 Let M = UM]‘,
L =ULj; and K = UK. Notice that R ={1,...,r}, My = {r+1,...,r+m1}, etc.

For each 7 such that r +m < ¢ < n, we let ¢ be the index 7+ 1 or ¢ — 1 with the
property that (e;, e;/) is an indecomposable submodule of A. Namely

. {z’—i—l, if i — (r+m) is odd;
1 =

i—1, if i —(r+m) iseven.

Notice that [vy;, L.,] does not depend on the choices of o or by and by. Moreover,

we have:
—2¢;,  if i € My, M3, Ky;

(Y1, Le,) = § e —ei, if i € Ly, L3, Ko, K3;
0, if’iGR,M17L1;
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—261', if i ¢ Ml,Mg,KQ;
€ir — €4, if’L'ELl,Lg,,Kl;
[7271’61'] = AP
—(eir +e;), if i€ Ks;
0, if i € R, My, Lo.
We denote (0;,9;) = (67,0;,0,0,...,0,0).
21

If « is as in (i) it follows that:

’}/% = (O,...,O7 1,6,6,6,1 —52,1 —52,1 —53,1 —53,6,6,6);

——
Y2 = (07 e 707657276767 1- 627 1- 6276a65676)'
——
Summarizing, I' = (y1, 2, €1,...,€,) and

.1 = ({2ei}iens, {er — eitier, {es — ei e + eitiek, v),
where v = 1,41 — 02€rtmy+1 — 03€r+my+my+1-
Hence
VARG AR if &, + 0y + 03 = 0;
yARREGY AR if 01 4+02+03=1;
ZH @ ZyR T o Zy, if 6y 4 0o + 03 = 2
ZH e Z0 TP @ 23, if 0y + 0y + 03 = 3;

Hy(M,Z) ~

— gl ® Zg@+k+2—6—v @ ZZ

where § = 01 + 02 + 03 and v = max (0,6 — 1).
If o is as in (ii), then [y1,72] is the same as in the previous case and

r

Hence
VARE (&%) ZSTJrk, if 4 =0 and ds + 63 >1

orif 61 =1 and do + 03 = 0;
ZH @ Zy P2 @ Zy, if 6, =1 and dy + 53 > 1;
Zrtt @ Zm if 6 =0 and dy + d3 = 0;

Hy(M,Z) ~

_ ZT+[ @ Z727’L+k+(1+51)(1—52)(1—53)—251 EB Zil(l_(1_62)(1_63)).
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If v is as in (iii) then [y1,72] is the same as in the previous case; also

s
Hence

AR &) Zgl+k, if 61 + 6o + 93 = 0;
Hi(M,Z) ~ i mtk—1 .
VARRNCW /S , if 01+ 02+ 03 > 1;

el Fh—14(1=81)(1—62) (1—5:
=zt g Z;’l ( )( ) 3)

7. TABLE

In this section we condense the information obtained in sections 5 and 6 in a
table. This table will be useful to visualize in some manner all the cfm’s with
holonomy group Zs ® Zs, with the property that the holonomy representation is
an JF-representation.

For each p in the parametrization given in Proposition 2.2, there are as many
cfm’s as inequivalent special classes corresponding to p. We recall that two cfm’s
corresponding to different representations in § are not homeomorphic. Also not all
representations of Proposition 2.2 produce the same number of cfm’s. In fact, some
of them do not produce any. This can be understood by looking at the possible
special classes for a given p. We will come back to this in Remark 7.1.

In the first column of the table we give the characterization of the special class,
as in the sets €;—C3.

In the second column we put the number (#) of non-homeomorphic cfm’s for
the different selections of §; = 0 or §; = 1, writing at the top (resp. middle, bottom)
the number corresponding to representations in §; (resp. 3271T, 5s3).

In the third column we write down the vectors b; and by in R™ as computed in
Section 6. The last 2k coordinates of both vectors will be omitted since they are
always zero.

In the last column we list the torsion part of the first integral homology group of
these manifolds. The free part will left out, since we know it is always isomorphic
to Z7 .

TThe case correponding to representations in $2,2 is completely similar and it is omitted in
this table.
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Characterization of # b1 and torsion part of
the special class bo H1(M,Z)
8 | (©.451.0.435.5(1-61).4(1-61).0.0) z;"*’k‘*'z—';—”f@zz
(0,81,62,63,1—61,1—85,1—33) | 6 (0,0,455,0,0, 5 (1-62), 3 (1-62),0) where §=81 4854683
4 and y=max(0,6—1)
e — - 1 k 51)(1—63)(1—63)—26
8 | @.4500.455.5(-01).2(1-61).0.0) | zpThTOHFI0A=82)0-03)=25
(71,31.35.,33.1-37,0,0) 8 (1,5,45;,0.0.0.0) ez 1 (1= (1702)(1=93))
6
T 1— 1— =~ k 52)(1—61)(1—383)—26
] (1,457.0,455.0.0.0) z;"* +(1462)(1-681)(1-683) =252
(F2,37.53,33,0,1=53,0) 8 (©.6,153,0,0,3 (1-62), 1 (1-62.0) @z 2(1-(=)-93)
6
e 53)(1—61)(1—62)—26
8 | (3.151.0,455.0.0.1(1—55). L(1—63)) | zy TETUH3)(1=61)(1=02)=235
- Tel—ree T T 53(1—(1—61)(1—8
(R3,51,52,53,0,0,1-33) 6 | (10.455000.L(1-03).5(1-03)) @z (1 -7 (1=02)
6
8 (0,%,0,...,0,457,0,455,0,0,0)
(h1.h2,0,...,0,51,32,55,0,0,0) | 6 (1.,0,...,0,5,155,0.6,0.0) zp PRI (m02) (1-03)
4

Remark 7.1. If we have a representation p with » = 0, we only need to consider the
first type of special classes in the table. Also we observe that in order to have at
least one cfm associated to this p, necessarily m; > 1 orl; > 1, forall 1 <:¢ < 3.
This is so because ¢; and 1 — §; in the table can not both vanish simultaneously.

Remark 7.2. We note that for the families §2,; and §3, by adding the number of all
cfm’s in the table we obtain a number which is bigger than the actual number given
in Remark 5.12. This discrepancy is due to some repetitions that occur. Indeed,
for §3 the classes of type (hg,...) and (hs,...) are isomorphic to the classes of
type (hy,...) according to Lemma 5.6 (b). Similarly, for representations in §a 1
the classes of type (hs,...) are isomorphic to those of type (hi,...) according to
Lemma 5.5 (b).

Remark 7.3. We now indicate a series of steps one can follow, given a manifold
of the kind treated in this paper, to find the homeomorphic manifold in the table
above. If M ~ R"/T" with I'" = (B Ly, B3Ly,,A’), then one first should change
M to the form M ~ R"™/T where I' = (B1Ls,, BoLy,,A) with By and By so
that the associated representation p is in §. Now, using the section defined at the
beginning of Section 6 one finds the corresponding special class. Finally one applies,
if necessary, Lemmas 5.1, 5.3 and 5.4 to transform the resulting special class into
an equivalent one in €;, 1 <4 < 3. When p is in §2 (resp. §3) one may also have to
apply Lemma 5.5 (resp. Lemma 5.6). At this point, one is in a position to identify
the original manifold M with the one diffeomorphic in the above table.

Remark 7.4. We observe that among the F-manifolds classified are included the two
isospectral non homeomorphic manifolds of dimension 5 introduced in [5]. Indeed
they correspond respectively to the parameters r = 1,m3 = 2,k3 = 1, and my
mo = mg = 1,13 = 1. Both representations lie in §2, with associated special classes
(h1,1,0) and (1,1,1,0), respectively.

Remark 7.5. By a computation we find that, for low dimensions, the total number
of F-manifolds (classified in this paper) is as follows.
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dim JF-manifolds 61=0 Z3-manifolds B61=0
3 3 1 3 1
4 21 1 26 1
5 79 3 unknown unknown
6 239 5 unknown unknown

We observe that the three existing 3-dimensional Zsy & Zs-manifolds are obtained
by considering the following representations in the family § and the corresponding
special classes:

corresponding special class

m1:m2:m3:1 (1,1,1)

corresponding special classes (hQa 17 0)
r=1 meo=mzg=1

(hQa 17 1)

The first one is the Hantzsche-Wendt manifold.

In dimension 4, the list in [1] gives 26 manifolds. Out of these, 21 correspond
to F-representations, studied in this paper. In the five remaining manifolds, the
decomposition of the holonomy representation involves indecomposable representa-
tions of rank 3 (in four cases) and 4 (the remaining case).

We conclude by listing the parameters of the 21 F-manifolds of dimension 4
obtained. They can be easily identified with corresponding Bieberbach groups in
the tables in [1].

Parameters Family F-manifolds
m2:m3:l1:1 52 1
m1:m2:1,m3:2 52 1
r=mz=1, 11 =1orly=1 F1 3
r:mgzl,klzlorkgzl %1 1
r:m3:k3:1 52 1
r:m1:m2:m3:1 53 4
r=mg=1, mg=2 F1 4
r=2 k=1 Fo 1
r:2,m2:m3=1 32 5

We note that for dimension n > 5, the total number of Zs & Zs-manifolds is not
known.
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