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Abstract

The decay of a local spin excitation in an inhomogeneous spin chain is evaluated exactly: (i) It starts quadratically up to a spreading
time tS. (ii) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule. (iii) At longer times, the exponential is
overrun by an inverse power law describing return processes governed by quantum diffusion. At this last transition time tR a survival

collapse becomes possible, bringing the polarization down by several orders of magnitude. We identify this strongly destructive interfer-
ence as an antiresonance in the time domain. These general phenomena are suitable for observation through an NMR experiment.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

A typical quantum exponential decay [1,2] involves a
finite set of states in presence of an ‘environment’, i.e.,
weakly coupled to a set of states whose spectrum is dense.
The decay of these states is usually described with the
Fermi Golden Rule (FGR). However, this description con-
tains approximations [3] that leave aside some intrinsically
quantum behaviors. Various works on models for nuclei,
composite particles [4–6], excited atoms in a free electro-
magnetic field [7] and in photonic lattices [8], and models
for decoherence [9], showed that the exponential decay
has superimposed beats and does not hold for very short
and very long times, compared with the lifetime of the sys-
tem. The short time regime has received recent attention in
connection to the Quantum Zeno Effect [10,11,7,12] and
has been observed in trapped atoms [13]. In contrast,
although different models predict some form of power
law for long times [14–16], the cross-over to this long time
behavior has not been neither experimentally observed nor
physically interpreted.
0009-2614/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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In this Letter, we present a model describing the evolu-
tion of a local excitation in the otherwise homogeneous
polarization of a system of interacting spins. This situation
has two desirable properties: (1) the full dynamics can be
solved analytically and interpreted; (2) an actual nuclear
magnetic resonance (NMR) experiment can be tailored to
observe this dynamics. Specifically, our model describes a
linear chain of nuclear spins interacting under an XY (pla-
nar) interaction. In this situation, the evolution of a local
spin excitation reduces to the dynamics of a localized den-
sity excitation in a system of non-interacting fermions [17–
19]. This excitation decays into a well resolved wave packet
propagating along the spin chain. Such decay could be
observed with NMR because it also describes the dynamics
of a multiple quantum coherence experiment [20] in a chain
of spins with dipolar interactions in the solid state [21].
Furthermore, a full experimental dynamics of an effective
XY Hamiltonian is achieved using NMR pulse sequences
in liquid samples where the spin wave dynamics has been
observed [22].

Based on our model, we are able to quantify the quan-
tum nature of the deviations from the Fermi Golden Rule.
We identify three well defined time regimes: (1) For short
times the decay is quadratic (1 � [tV0/�h]

2), as is expected
when the coupling V0 of the local state with the continuum
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is treated perturbatively. This lasts for a time tS � �hpN 1ðerÞ,
where N 1ðerÞ is the spectral density of the final states at the
resonance energy er. (2) An intermediate regime character-
ized by an exponential behavior, the self-consistent Fermi

Golden Rule (SC-FGR) where the rate, the pre-exponential
factor and the resonance energy are found self-consistently.
(3) A long-time regime in which the exponential law is
overrun by an inverse power law which is identified with
the quantum diffusion in the chain. At this last cross-over,
the oscillations could lead to a dip of several orders of mag-
nitude in the local polarization. This survival collapse is
identified with a destructive interference between the pure

survival amplitude, i.e., the SC-FGR component, and the
return amplitude, associated with higher orders in a pertur-
bation theory. This striking quantum phenomenon can be
seen as a dynamical version of the antiresonance that has
been described for steady-state observables [23–25]. Now,
the destructive interference is also due to the splitting of
the wave among two different families of pathways in
space. However, the interference is now restricted to the
narrow time window when the amplitudes are comparable
and the phases are opposite.
2. Dynamics in a nuclear spins chain

We use the known mapping between spins and fermions
[26] together with a new formulation for spin dynamics
based on the non-equilibrium Keldysh formalism [27]
developed in Refs. [19,28].

The two spin correlation function in a system with M
spins 1/2 evolving under a Hamiltonian Ĥ ,

Pf ;iðtÞ ¼
hWeqjŜ

z

f ðtÞŜ
z

i ðt0ÞjWeqi
hWeqjŜ

z

i ðt0ÞŜ
z

iðt0ÞjWeqi
; ð1Þ

gives the amount of the z component of the local polariza-
tion on the site fth at time t, provided that the system was,
at time t0 6 t, in its equilibrium state with a spin ‘up’ added

at the ith site. Here, Ŝ
z

f ðtÞ ¼ eiĤ tŜ
z

f e
�iĤ t is the spin operation

the Heisenberg representation and jWeqi ¼
P

NsN jWðNÞ
eq i is

the many-body equilibrium mixed state constructed by
adding states with different number N of spins up with
the appropriate statistical weights and random phases.
We will assume the high temperature limit, that leads to

equal statistical weights jsN j2 ¼ 1
2M

M
N

� �
. We consider a

linear chain of M spins in an external magnetic field. They
interact with their nearest neighbors at distance a0 through
an XY coupling

Ĥ ¼
XM�1

n¼0

�hXnŜ
z

n �
XM�2

n¼0

1

2
Jnþ1;n Ŝ

x

nþ1Ŝ
x

n þ Ŝ
y

nþ1Ŝ
y

n

h i
; ð2Þ

where Ŝ
u

n ðu ¼ x; y; zÞ represents the Cartesian spin opera-
tor. The first term of this Hamiltonian is the Zeeman en-
ergy, where Xn is the chemical shift precession frequency:
the second term, ĤXY contains the Jn+1,n coupling between
sites n and n + 1. It gives the flip-flop interaction
Ŝ
þ
nþ1Ŝ

�
n þ Ŝ

�
nþ1Ŝ

þ
n in terms of the rising and lowering spin

operator Ŝ
�
n ¼ Ŝ

x

n � iŜ
y

n.
The Jordan–Wigner (J–W) transformation [26] estab-

lishes the relation between spin and fermion operators at
each site n. When Ĥ commutes with the number operator,
the different subspaces N are decoupled. Further simplifica-
tion is obtained for Hamiltonians which are quadratic in the
fermionic operator, as the case of ĤXY, as they can be
reduced to non-interacting fermions. Due to the short range
interaction, after a J–W transformation, the only non-zero
coupling terms are proportional to ĉþnþ1ĉn ¼ Ŝ

þ
nþ1Ŝ

�
n , where

ĉþn and ĉn are the creation and destruction operators for
fermions. The Hamiltonian become

Ĥ ¼
XM�1

n¼0

en ĉþn ĉn �
1

2

� �
�
XM�2

n¼0

V nþ1;n ĉþnþ1ĉn þ c.c.
� �

; ð3Þ

where en ” �hXn are the site energies and V nþ1;n � 1
2
Jnþ1;n are

the hoppings. Each subspace has N non-interacting ferm-
ions. The eigenfunctions jWðNÞ

c i are expressed as a single
Slater determinant built-up upon the single particle wave
functions wk describing a particle of energy ek in a chain.
Under this condition and defining jii � ĉþi j;i, with |;æ the
fermion vacuum, Eq. (1) reduces to

Pf ;iðtÞ ¼ jhf j exp½�iĤ t=�h�jiihðtÞj2; ð4Þ
� �h2jGR

f ;iðtÞj
2
; ð5Þ

where GR
f ;iðtÞ is the retarded Green’s function for a single

fermion.
Therefore, for systems represented by a 1-d chain of

spins with nearest neighbors XY interaction, at high tem-
perature, the dynamics of a local polarization amplitude
corresponds exactly to the wave function of single particle

evolving according to a tight-binding Hamiltonian.

3. Local excitation: the exponential decay and beyond

Let us describe the evolution of a local excitation
j0i � ĉþ0 j;i in a Hamiltonian whose spectrum has a finite
support. This is the case of most excitations in a lattice.
The autocorrelation function is Eq. (4) with |iæ = |fæ = |0æ.
Expanding the initial condition in the eigenstates |wkæ
obtains [3,4]

P 00ðtÞ ¼ hðtÞ
XM
k¼1

jhwkj0ij
2 exp½�iekt=�h�

�����
�����
2

¼ hðtÞ
Z 1

�1
de

XM
k¼1

jhwkj0ij
2dðe� ekÞ

" #
exp½�iet=�h�

�����
�����
2

.

ð6Þ
The term in brackets is the Local Density of States (LDoS)
N0(e) at site 0th. It can be evaluated using the retarded
Green’s function,

N 0ðeÞ ¼ � 1

p
Im

Z
dtGR

00ðtÞeiet;¼ � 1

p
ImGR

00ðeÞ.
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Then, we can express the autocorrelation function as the
Fourier transform of the LDoS

P 00ðtÞ ¼ hðtÞ
Z 1

�1
deN 0ðeÞ exp½�iet=�h�

����
����2. ð7Þ

This expression has numerical and analytical advantages
because the Green’s function can be accurately calculated
in the energy representation, and the integral is limited to
the spectral support. Besides, a clear identification of quan-
tum interferences will be obtained by analyzing the argu-
ment under the modulus operator.

Alternatively, the autocorrelation function can be writ-
ten as

P 00ðtÞ ¼ hðtÞ
Z 1

�1
dxJ0ðxÞ exp½�ixt�; ð8Þ

where the spectral density of the particle excitations at site
0th

J0ðxÞ ¼ �h
Z 1

�1
deN 0ðeÞN 0ðeþ �hxÞ ð9Þ

has a direct physical interpretation and can be easily com-
puted [29].

All the previous equations remain valid when the size of
the system, and hence the dimension of the Hilbert space,
becomes unbounded (M ! 1). In this case, either part
or the whole of the discrete (pure point) spectrum, may
become a continuous energy band of delocalized (extended)
states in the finite range [eL,eU]. If the system does not pres-
ent localized eigenstates [30], N0(e) vanishes outside the
band (Fig. 1). On the other hand, if the initial state |0æ
has a finite weight over one or more localized states its evo-
lution cannot fully decay. Here, we consider cases that
exclude such situation. Hence, if |0æ requires an expansion
in an infinite number of eigenstates, its evolution becomes
an irreversible decay. In particular, the unperturbed state
of energy e0 ¼ h0jĤ j0i becomes a well defined resonance
if |0æ is expanded in terms of the eigenstates within a small
breath C0 around an energy er = e0 + D0, where D0 is a
small shift due to the interaction. Furthermore, the validity
Fig. 1. Local spectrum (LDoS) in the complex plane z = e + ie 0. eL and eU
are the lower and upper band-edges, respectively. e1 and e2 localized states.
The resonance energy is er = e0 � D0 and the pole appears in er � iC0. The
integration path is shown with dotted lines; consist of four straight lines
and two arcs, that avoid the band-edges singularities.
of the Fermi Golden Rule for P00(t) requires [31] that the
state |0æ is similarly coupled to each of the unperturbed
states j/0

ki with energies e0k in a continuum spectrum.
In order to evaluate the local dynamics, we perform the

integral in Eq. (7) using the residue theorem and following
the path shown in Fig. 1. In the analytical continuation
N0(z) ” N0(e + ie 0), resonances appear like poles in the
complex plane. We will consider Hamiltonians where an
initially localized state with energy e0 interacting with a
continuum gives rise to a single resonance, i.e., the LDoS
presents poles at er ± iC0. The van Hove singularities on
the contour are excluded with circle arcs with radii R. Their
contribution to the integral vanish when R! 0, because
the band edges are of the form (e � eL)

m with m > �1. Also,
the integral over the contour z = e � iL; e 2 [eL,eU], vanish
when L ! 1. Then, we obtain

P 00ðtÞ ¼ ae�ðC0þierÞt=�h|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
SC-FGR

���������

þ
Z 1

0

de0e�e0t=�h½e�ieLt=�hN 0ðeL � ie0Þ � eieU t=�hN 0ðeU � ie0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
return correction from quantum diffusion

���������

2

;

ð10Þ
where a ¼ limz!er�iC0

½2piðz� er þ iC0ÞN 0ðzÞ� and t P 0. If
we approximate the LDoS by a Lorentzian function that
jumps to zero outside the band, we can see that

A � jaj2 ’ 1þ d; ð11Þ
where

0 < d ¼ 2

p
C0

ðer � eLÞ
ðeU � eLÞ
ðeU � erÞ

� 1. ð12Þ

The first term of Eq. (10) already supersedes the usual Fer-
mi Golden Rule approximation since it has a pre-exponen-
tial factor (A J 1) and the exact rate of decay C0. This
result is the self-consistent Fermi Golden Rule (SC-FGR).
By analogy with a classical Markov chain, this exponential
term is identified with a ‘pure survival’ amplitude. Within
the same analogy, the second term will be called ‘return’
amplitude, as it is fed upon the initial decay. The first is
the dominant one for a wide range of times, while the dif-
fusive decay of the second, dominates for long times and
brings out the details of the spectral structure of the system.
In the quantum case, the second term is also fundamental
for the normalization at very short times where the most
excited energy states of the whole system can be virtually
explored. Both terms combine to provide the initial qua-
dratic decay (Quantum Zeno regime) required by the per-
turbation theory:

P 00ðtÞ ¼ 1� t2

�h2
hðe� erÞ2iN0

þ � � � ð13Þ

¼ 1� t2

2!
hx2iJ0 þ � � � ð14Þ



Fig. 2. Local polarization, in a semilogarithmic scale, as a function of
time. We consider an unperturbed energy of e0/V = 1 and interaction
strength V0/V = 0.4 that leads to a resonance energy er/V = 0.9 and an
exponential rate C0/V = 0.14. This is the case that we consider in Fig. 1.
The decay exhibits: (1) The quadratic perturbative regime, which is shown
amplified in the upper inset. (2) The exponential behavior as described by
the self-consistent Fermi Golden Rule. (3) An asymptotic cubic power law
decay, where b = C/C(er)

3 (Eq. (34)). The lower inset shows the oscillation
that modulates this decay. The cross-over time tR when the survival
collapse takes place is indicated.
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Here hðe� erÞ2iN0
and hx2iJ0 are the energy and frequency

second moments of the densities N0(e) and J0ðxÞ, respec-
tively. This expansion holds for a time shorter than the
spreading time tS of the wave packet formed by the decay.
In other systems, the divergence of the second moment
leads to different short time decays [32].

For long times, the behavior of P00(t) is governed by the
slowly decaying second term in Eq. (10). Only small values
of e 0 contribute to the integral. In turn this restricts the
integration of the LDoS to a range near the band-edges.

Then, one can go back to Eq. (7) and retain only the van
Hove singularities of the Local Density of States at these
edges (e.g., N0(e) � h(e � eL)(e � eL)

m which implies [29]
J0ðxÞ / hðxÞx2mþ1). Each singularity would contribute to
the slow decay at long times (P00(t) � |t|�2(m+1)). The rela-
tive participation of the energy states at each edge of the
LDoS is given by the relative weight of the Lorentzian tails
at these edges

b ¼ ðer � eLÞ2 þ C2
0

ðeU � erÞ2 þ C2
0

. ð15Þ

Then, the polarization for long times is

P 00ðtÞ � ½1þ b2 � 2b cosðBt=�hÞ�
Z

de0 e�e0t=�hN 0ðeL � ie0Þ
����

����2;
ð16Þ

where B = eU � eL. This means that the long time behavior
is just the power law decay of the integral multiplied by a
factor having a modulation with frequency B/�h.
4. Survival collapse

In steady-state transport [23] as well as in dynamical
electron transfer [25] there are situations when a particle
can reach the final state following two alternative path-
ways. Since each of them collects a different phase, this
allows a destructive interference blocking the final state.
This phenomenon has been dubbed antiresonance [23,25],
It extends the Fano resonances describing the anomalous
ionization cross-section [24]. In the present case, the sur-
vival of the local excitation also recognizes two alternative
pathways: the pure survival amplitude which is typically
described by the Fermi Golden Rule, and the paths where
the excitation has decayed, explored the environment, and
then returns. These two alternatives can interfere. We
rewrite Eq. (10) to emphasize that the local polarization
P00(t) is the result of two different contributions:

P 00ðtÞ ¼ jWS þWRj2; ð17Þ
¼ jWSj2 þ jWRj2 þ 2Re½W	

SWR�; ð18Þ

where the phase in WR arise from the exponentials with eL
and eU (the LDoS is real for any argument). Hence,

WSðtÞ ¼ jaje�i/ae�C0t=�he�iðer�eLÞt=�h; ð19Þ
WRðtÞ ¼ jWRðtÞjei/ðtÞ; ð20Þ
/ðtÞ ¼ arctan
b sinðBt=�hÞ

1� b cosðBt=�hÞ

� �
; ð21Þ

where Eq. (21) results using the long time limit of Eq. (16).
While the interference term in P00(t) is present along the

whole exponential regime, it becomes important when
both, the pure survival amplitude and the return contribu-
tion, are of the same order. This occurs at the cross-over
time tR between the exponential regime and the power
law. The interference term can produce a survival collapse,
i.e., a pronounced dip that takes P00(t) close to zero (see
Fig. 2). In order to obtain a full collapse, two simultaneous
conditions are needed:

jWSðtRÞj ¼ jWRðtRÞj and ð22Þ
ðer � eLÞtR=�h� /ðtRÞ ¼ ðp� /aÞ þ 2pn; n integer, ð23Þ

which are satisfied with a fair precision because

jðer � eLÞ=�hj 
 C0=�h > 2p=tR P j/ðtRÞj=tR; ð24Þ
i.e., while the return amplitude has a phase with a slow var-
iation, the pure survival term oscillates rapidly. When both
amplitudes are of the same order, the destructive interfer-
ence will be noticeable.
5. Decay in a semi-infinite chain

Now we focus on a specific case of Eq. (7) that can be
achieved experimentally and has simple analytical proper-
ties. We consider the Hamiltonian of Eq. (3) with the 0th
site (spin) in the chain different from the others sites in both
site energy (chemical shift) and hopping (J-coupling), i.e.,
e0 6¼ en ” 2V and V0,1 = V0 < Vn,n+1 ” V for n > 0. This
defines a continuous spectrum in the range [0,B ” 4V]
which, in the lower edge, describes a particle of mass m

in the continuum with V ¼ �h2=ð2ma20Þ. Our model presents
a resonance provided that the site energy is not to close to
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the band edge, i.e., je0 � 2V j < 2V � V 2
0=V . Otherwise, |0æ

would give rise to a localized state [33]. The LDoS for this
problem is evaluated using the Dyson equation

GR
0;0ðeÞ

h i�1

¼ G
R

0;0ðeÞ
h i�1

þ V 0;1G
R

1;1ðeÞV 1;0; ð25Þ

following the general continued fraction procedure de-
scribed in Ref. [33]:

N 0ðeÞ ¼
1

2p

�
hðeÞhð4V � eÞ V 0

V

	 
2 ffiffi
e

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V � e

p

e� e0 � V 0

V

	 
2 e�2V
2

	 
2h i2
þ V 0

V

	 
4
V 2 þ e�2V

2

	 
2h i .
ð26Þ

Note that, because of surface effects in the semi-infinite d-
dimensional space, the LDoS has van Hove singularities
of the form N

ðdÞ
1 ðeÞ / ed=2, which differ from those in the

bulk N(d)(e) � e(d� 2)/2. Fig. 1 shows N0(e) for V0/V = 0.4
and e0/V = 1. The resonant state (the poles of the LDoS)
appears in er ± iC0, where

er ¼ e0 þ D0; D0 ¼
V 2

0

V 2 � V 2
0

e0 � 2V
2

; ð27Þ

C0 ¼
V 2

0

V 2 � V 2
0

Cc; Cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2 � V 2

0 �
e0 � 2V

2

� �2
s

. ð28Þ

Identifying the local density of states at the first site in ab-
sence of interactions with the 0-site as

N 1ðeÞ ¼ � 1

p
ImG

R

1;1ðeÞ

¼ 16

p
1

B2

1

2

ffiffi
e

p ffiffiffiffiffiffiffiffiffiffiffi
B� e

p� �
hðeÞhðB� eÞ

¼ 16

p
1

B2
CðeÞ. ð29Þ

Note that a0C(e)/�h is the group velocity of a wave packet
with energy e and Cc . C(e0). One realizes that the expres-
sion (26) factorizes as a pure Lorentzian and N 1ðeÞ

N 0ðeÞ ¼
V 2

2Cc

C0

ðer � eÞ2 þ C2
0

N 1ðeÞ. ð30Þ

Then, applying the convolution theorem to Eq. (7) we get a
convolution integral of two functions in the time domain
with well characterized time dependence

GR
00ðtÞ ¼

�i

�h
V 2

2Cc

hðtÞ
Z 1

�1
e�C0jt0 j=�he�iert0=�hgðt � t0Þdt0. ð31Þ

The first factor inside the integral is the renormalized sur-
vival amplitude as described by the SC-FGR. The second
factor is the return amplitude to site 1 in a semi-infinite
chain where site 0 is missing. It is expressed in term of
the Bessel function of the first kind as g(t) = 2e�i2Vt/�h

J1(2Vt/�h)/(2Vt/�h), which shows fast oscillations and decays
with the power law t�3/2. This describes the quantum diffu-
sion in the chain [34,28]. It appears convoluted with an
exponential kernel whose oscillation and decay have a
longer time scale. For positive times g(t) coincides with
the response function. This knowledge allows us to solve
the integral in the different time regimes (short, exponential
and long time). After some algebra we get:

P 00ðtÞ �

1� ðV 0t=�hÞ2; t < tS;

A expð�2C0t=�hÞ; tS < t < tR;

C 1� 2b
1þb2

sinðBt=�hÞ
h i

�h
CðerÞt

� 3

; tR < t;

8>><
>>:

ð32Þ
where tS is the cross-over time from the short time regime
to the exponential SC-FGR, and time tR separates the
SC-FGR and the power law regime. Also,

A ¼ 1

4C2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r þ C2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB� erÞ2 þ C2

0

q
J 1; ð33Þ

C ¼ CðerÞ3V
4pC2

c

C2
0

ðC2
0 þ e2r Þ

2
½1þ b2�

’ 1

4p
V 0

e0

� �2 C0

er

� �
ð34Þ

and b was defined in Eq. (15). Here, we used V0 � V and
e0 ’ er þ OðV 2

0=V Þ in Eq. (28) to obtain C0 ’ pV 2
0N 1ðerÞ

which coincides with the SC-FGR. Near the band edge
C0 ’ 8V 2

0=B
ffiffiffiffiffiffiffiffiffi
er=B

p
, and CðerÞ ’ Cc ’

ffiffiffiffiffiffiffi
V er

p
. For long

times, and averaging in a period, one gets

P 00ðtÞ ’
V 0

e0

� �2
1

4p
C0

er

� �
�h

CðerÞt

� �3

. ð35Þ

At long times, the probability of finding the particle at site
0 is proportional to the probability of finding it at site 1,
i.e., P00(t). (V0/e0)

2P01(t). Hence, the factor gives the
probability of tunneling back to |0æ. It measures how the
component of the band edge (that determine the long time
behavior) over the surface state |1æ mixes with state |0æ. The
assignation of a time scale to the return probability in the
last term is arbitrary. We choose C(er), the dominant group
velocity of propagating wave packet of energy er. Hence,
the second factor becomes the inverse of the number of cy-
cles within the main decay.

It is important to note that the cubic power law decay
obtained for long times is a consequence of the

ffiffi
e

p
depen-

dence of the LDoS, i.e., this power law is consistent with
Eq. (16) taken together with Eq. (26). Notice also that
the short time scale, �h/V0, can also be obtained from the
local second moment of the Hamiltonian.

From the analytical result given in Eq. (32), we get the
characteristic times tS and tR. A good estimate of tS is
obtained from the minimal distance between the short time
decay and the exponential

d

dt
½1� ðV 0t=�hÞ2 � A expð�2C0t=�hÞ�jt¼tS

¼ 0. ð36Þ

Expanding the exponential in its Taylor series, we get:



Fig. 3. Local polarization, in a semilogarithmic scale, as a function of
time, in units of �h/V, for e0/V = 1.3, V0/V = 0.75, that leads to a resonance
energy er/V = 0.85 and a SC-FGR exponential, shown with a dotted line,
with rate C0/V = 0.72 and pre-exponential factor A = 2.86. The ‘environ-
ment’ has M � 1 = 19 spins. The decay exhibits a noticeable survival
collapse followed by a cubic power law modulated with a well defined
frequency. At later times, the mesoscopic echo shows up.
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tS ¼
�hC0A

V 2
0 þ 2C2

0A
; ð37Þ

’ �hpN 1ðerÞ ’
8�h
B

ffiffiffiffi
er
B

r
for er � 2V . ð38Þ

Here, we see that in this parametric regime the short time
cross-over is only determined by N 1ðerÞ, the local density
of states at the first site of the chain.

We may invoke the optical theorem [33], to interpret
N 1ðerÞ as the time scale at which a wave packet with energy
er escapes from the 1st site region, i.e., the excitation build
from the decay, preventing the return to the original 0th
site [33,35].

The time tR is obtained from the cross-over between the
exponential regime and the power law decay

A expð�2C0tR=�hÞ ¼ C
�h

CðerÞtR

� �3

. ð39Þ

We can use
ffiffiffiffiffiffiffiffiffi
A=C

p
’ 2

ffiffiffi
p

p
e0=V 0

ffiffiffiffiffiffiffiffiffiffiffi
er=C0

p
and solve itera-

tively the transcendental equation, i.e.,

tð0ÞR ¼ �h
C0

ln 2
ffiffiffi
p

p e0
V 0

ffiffiffiffiffi
er
C0

r� �
;

tðnþ1Þ
R ¼ �h

C0

ln 2
ffiffiffi
p

p e0
V 0

ffiffiffiffiffi
er
C0

r� �
þ 3�h
2C0

ln
CðerÞ
�h

tðnÞR

� �
.

ð40Þ

Already in the third order we get a very good agreement
with the cross-over observed in the exact dynamics.
6. Numerical verification

We verify the above results following two independent
procedures. Since one has a closed analytical expression
for N0(e), the numerical Fourier transform is straightfor-
ward. Alternatively, we find the dynamics from the numer-
ical eigenvalues and eigenvectors of the finite system with
M sites. Both of them coincide as long as M is big enough
so that the finite system effects become negligible. This
requires that the mesoscopic echo [18], arising at a time
tME � �hM/B, appears well beyond the cross-over time tR.
Both procedures provide perfect agreement with the ana-
lytical results. In Fig. 2 we show P00(t) in a semilogarithmic
scale. The exact decay confirms the time dependences
exhibited by the analytical approximation of Eq. (32).
The initial quadratic decay is amplified in the upper inset.
Then, the curve is followed by the exponential SC-FGR.
Finally, it presents a cross-over at tR to the asymptotic
power law decay. This time-scale is easily identified
through the survival collapse shown as a dip in the survival
probability. There, the polarization suddenly decreases
from its average by almost three orders of magnitude.
The inset on the bottom shows the small oscillation that
modulates the power law.

Since the model solved in the previous section could be
applied to spins in a molecule or excitations in a designed
nanostructure, both of which have finite size, it is interest-
ing to verify that the main features discussed also could be
observed in such situations. In Fig. 3, we show the dynam-
ics of one spin in presence of an ‘environment’ consisting
on a chain of 19 identical 1/2 spins. The three regimes just
discussed are clearly manifested. Later on, it appears a
mesoscopic echo at tV/�h P 20. Note that already at
tR � 6�h/V the magnetization decreases in seven orders of
magnitude. For a brief period around tR coherent interfer-
ence ensure an almost complete depolarization of the sur-
face site that could not be achieved through decoherent
decay.

7. Conclusions

In the present work we have discussed the exact dynam-
ics of a local excitation that decays through the interaction
with a continuum spectrum with finite support that acts as
an ‘environment’. Our approach goes beyond the usual
Markovian approximation that uses the Fermi Golden
Rule to describe these environmental interactions. Within
a simple, yet realistic model of a linear chain of nuclear
spins with XY interaction, we found the exact behavior
of the autocorrelation function for all times. The evolution
starts with the expected quadratic decay. Then, it follows
the usual exponential FGR regime, but with a corrected
rate and a pre-exponential factor, i.e., the SC-FGR.
Finally, we get the long time regime, that consists of a cubic
power law decay modulated by oscillations whose fre-
quency is determined by the bandwidth. This power law
decay is a consequence of the

ffiffi
e

p
behavior of the LDoS

in the band-edge (Eq. (16)). A similar result is obtained
in models for unstable nuclei [4–6], an atomic excitation in
the free space [7], and interacting with a photonic band
[8]. In those cases, the decay law is the regular van Hove
singularity of the free space. Here, the surface modifies
the singularity and hence, the time decay. Also, we found
the analytical expressions for the cross-over times tS and
tR of Eq. (32) enabling us to assert the range of validity
of each regime.



E.R. Fiori, H.M. Pastawski / Chemical Physics Letters 420 (2006) 35–41 41
Finally, we find and quantify the survival collapse. This
effect, hinted but not explained in previous works, is visu-
alized as the destructive interference between the pure sur-
vival amplitude and the return amplitude that arises from
pathways that have already explored the rest of the system.
This non-Markovian result fully considers the memory
effects to infinite order.

In summary, through the exhaustive solution of a
particular model, we made a conceptual analysis of a gen-
eral quantum decay process applicable to the great variety
of systems where a quantum exponential decay is observed.
Besides this generality, what gives a particular interest to
our model is its suitability for an experimental test. This
would imply the same procedure devised [22] to test the
mesoscopic echoes [17,18]. In order to tailor an XY Ham-
iltonian in an NMR experiment, it uses a radio frequency
pulse sequence that produces the truncation of the natural
Heisenberg (J-coupling) Hamiltonian. Alternatively, using
the relationship between the dynamics described by an
XY Hamiltonian and multiple quantum dynamics [21],
the dynamics of our model could be observed with multi-
ple-quantum experiments in solid state NMR [20]. The
application of one of the above procedures to relatively
small linear molecules would enable the observation of
the survival collapse. One could freeze the dynamics at this
time obtaining an almost null survival of the local excita-
tion. Since the survival collapse depends critically on the
cooperative coherence, of the whole system it, would be
quite sensitive to decoherent processes and hence it could
be applied to evaluate them.
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