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The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled
by a semi-in�nite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the
dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a
spreading time tS , (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii)
asymptotic behavior governed by quantum di¤usion through the return processes and leading to an
inverse power law decay. At this last cross-over time tR a survival collapse becomes possible. This
could reduce the survival probability by several orders of magnitude. The cross-overs times tS and
tR allow to assess the range of applicability of theFermi Golden Rule and give the conditions for the
observation of the Zeno and Anti-Zeno e¤ect.

PACS numbers:

I. INTRODUCTION

The decay of an unstable local state is usually de-
scribed, within a Markovian approximation, by an ex-
ponential decay with a rate given by the Fermi Golden
Rule (FGR). However, this description contains approx-
imations that leave aside some intrinsically quantum be-
haviors [1]. Indeed, works on models for nuclei, compos-
ite particles [2] and excited atoms [3], predict that the
exponential decay does not hold for very short and very
long times, and this exponential decay may shows super-
imposed beats.
In Ref. [4] we presented an exactly-solvable model de-

scribing the evolution of a surface excitation in a semi-
in�nite chain. Physical realizations of one-dimensional
systems are provided by electron transport in superlat-
tices [5], discrete di¤raction in photonic crystals [6], and
spin excitations in a chain of nuclear spins under an XY
interaction [7] or under double quantum interaction [8].
Here, we quantify and interpret the short and long time
limits, tS and tR, of the FGR. We identify three time
regimes for the survival probability P00(t). Initially the
decay is quadratic and it holds up to a time tS . From tS
to tR it is exponential, and �nally, for long times, it fol-
lows a power law. The time tS gives an upper bound to
the time interval at which repetitive projection measure-
ments could lead to a Quantum Zeno E¤ect ([9], [10]). On
the other hand, at tR, a dip in P00(t) of several orders of
magnitude may occur. This survival collapse is identi�ed
with a destructive interference between the pure survival
amplitude, i.e., an exponential decay amplitude, and a
return amplitude, which is usually neglected because it
arises from memory e¤ects in the environment. This de-
structive interference can be used to obtain an anti-Zeno
e¤ect [11], where the decay rate is strongly enhanced by
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repeated projective measurements with period tR.

II. SURVIVAL PROBABILITY

The evolution of a state j0i weakly coupled to a set of
states which de�nes the �environment�, is described by
the survival probability

P00 (t) = jh0j exp[�iHt=~] j0i � (t)j2 (1)
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����Z d"

2�~
GR00(") exp[�i"t=~]

����2 ; (3)

=

����� (t)Z 1

�1
d" N0 (") exp[�i"t=~]

����2 ; (4)

where GR00 (t) is the retarded single particle Green�s func-
tion and N0 (") is the Local Density of States (LDoS).
This is evaluated expanding the initial condition in the
eigenstates jki of the Hamiltonian H, or by using the
energy representation of the Green�s function GR00 ("),

N0 (") �
X

k
jh0jkij2 � ("� "k) ; (5)

= �1=� ImGR00("): (6)

If the spectrum is bounded, Eq. (4) can be calculated
using the residue theorem with the path shown in Fig. 1.
Resonances appear as poles of the analytical continua-

tion N0(z) � N0("+i"0) in the lower complex semi-plane.
A well de�ned resonance appears when an initially un-
perturbed state of energy "0 = h0jHj0i, far enough from
the band-edge, is weakly coupled to a continuum, i.e.,
the expansion of j0i in terms of the eigenstates has a
small breath �0 around an energy "r = "0 + �0, where
�0 = �(" = "r) is a small shift due to the interaction.
This condition excludes out-of-band resonances, virtual
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FIG. 1: (color online) Local Densities of States (LDoS) in
the complex plane z = " + i"0. "L and "U are the lower and
upper band-edges, respectively. The solid line is N0 (") for a
semi-in�nite chain with a surface impurity. The dotted line
is N (0)

1 (") for a semi-in�nite homogeneous chain, and in the
inset is shown the lower band-edge ofN0 ("). The pole appears
in "r � i�0. The integration path is shown with dashed lines;
it consist of four straight lines and two arcs (which avoid the
band-edges singularities).

states and localized eigenstates [15]. Then,

P00(t) = j a e�(�0+i"r)t=~| {z }
SC�FGR
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return correction from quantum di¤usion
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where a = 2�i limz!"r�i�0 [(z � "r + i�0) N0(z)] is the
pole residue. P00 presents two separate contributions
for the decay. The �rst term (the pole contribution) of
Eq.(7) supersedes the usual FGR approximation since it
has a pre-exponential factor (A � jaj2 & 1) and an exact
rate of decay �0, i.e., this result is a self-consistent Fermi
Golden Rule (SC-FGR). This term is the dominant one
for a wide range of times, leading to

P00 (t) � A exp (�2�0t=~) (8)

By analogy with the self-di¤usion process in a classical
Markov chain, the exponential in Eq. (7) is identi�ed
with a pure survival amplitude. Within the same anal-
ogy, the second term (the integration path contribution)
will be called return amplitude. The �quantum di¤u-
sion� described by this term dominates for long times
and brings out the details of the spectral structure of the
environment.

A. Short time regime

The second term of Eq. (7) is fundamental for the
normalization at very short times. Both terms combine
to provide the initial quadratic decay required by the
perturbation theory

P00 (t) = 1�


("� "r)2

�
N0
t2=~2 + � � � ; (9)

where


("� "r)2

�
N0
is the second moment of the LDoS

N0 ("). This expansion holds up to the characteristic time
tS . Let us consider a single state of energy "0 coupled by
V0;j to an environment de�ned by N states of energy "j
spread over a bandwidth B, as shows Fig.(2-a).

FIG. 2: (color online) (a) Single state of energy "0 coupled
by V0j to N states of energy "j , spread over a bandwidth B
with mean-level space of � � 2B=N , that de�nes the envi-
ronment. (b) Equivalent semi-in�nite chain with "0;fV0; e"1;
de�ned in text.

A semi-in�nite chain can be obtained from this system
by using the recursion method [12], a variant of Lanczos
tridiagonalization scheme, as is shown in Fig.(2-b). The
�rst two states are:e"0 = "0; fj0i = j0i ; (10)

e"1 = PN
j=1 Vj;0 "jfV02 ; fj1i = PN

j=1 V0,j jjifV0 ; (11)

fV0 =rXN

j
jV0;j j2: (12)

Here, the local second moment of the Hamiltonian isfV02,
leading to

P00 (t) = 1�fV02t2=~2 + � � � (13)

There is a simple expression extrapolating Eqs. (13) and
(8), [13]:

P00 (t) � exp[
�
1�

p
1 + (t=tS)2

�
2�0tS=~]; (14)

with,

tS = ~
�0fV02 : (15)
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This yields Eq. (13) for t � tS at the lowest order. In
contrast, for t� tS it yields the SC-FGR of Eq. (8), with
A � exp(2�20=eV 20 ) valid for jeV0j � B. Therefore, as was
remarked by Pascazio et al. [10], the upper limit for the
quadratic behavior is not ~=eV0, as one might expect, but
rather the much shorter time tS . A useful interpretation
of tS can be drawn from the Green�s function [14]:

GR00(") =
1

"� "0 � eV 20 GR(0)e1e1 (")
; (16)

where GR(0)e1e1 (") corresponds to a semi-in�nite chain in

absence of 0th-site. Taking GR(0)e1e1 (" = "0) Eq.(16) gives

the FGR: �FGR � �eV 20 N (0)e1 ("0). Replacing it in Eq.
(15), we get

tS � ~�N (0)e1 ("0) ; (17)

only determined by N (0)e1 ("0), the LDoS at the 1st-site of
the unperturbed environment, evaluated at "0. In turns,
~N (0)e1 ("0) represents the time scale [14] at which an ex-
citation built from the decay, decays into the rest of the
environment. Therefore, the return to the 0th-site, re-
quired to build up the quadratic decay, becomes less ap-
preciable than the escape towards the chain, leading to
the fast exponential decay of the survival probability.

B. Long time regime: Survival collapse

For long times, only small values of "0 contribute to the
integral of the second term in Eq.(7). This restricts the
integration to a range near the band-edges. Then, taking
into account Eq.(4) and performing the Fourier transform
retaining only the Van Hove singularities at these edges,
we get the power law decay at long times. This second
term dominates P00 (t) because its decay is slower than
the exponential one. The relative participation on the
LDoS at each edge is � = [("r�"L)2+�20]=[("U�"r)2+�20].
Collecting both edge contributions gives

P00(t) �
�
1 + �2 � 2� cos(Bt=~)

�
�
����Z d"0e�"

0t=~N0("L � i"0)
����2 : (18)

This means that the long time behavior is just the power
law multiplied by a factor containing a modulation with
frequency B=~. Eq. (7) shows that the survival am-
plitude of the local excitation recognizes two alternative
pathways: the pure survival (pole contribution), and the
returning pathways where the excitation has decayed and
explored the environment. Then, there is an interference
term that becomes important when both amplitudes are
of the same order. It is precisely at this cross-over time
tR between the exponential regime and the power law

regime when the interference term can produce a sur-
vival collapse, i.e., P00 (t) nearly cancels out. This e¤ect
is seen as a pronounced dip in Fig. 3.
We also note that if the unperturbed energy state "0

is exactly at the center of the band, � = 1, the pure
return probability presents periodicals zeros barely com-
pensated by the small pure survival probability. This
should not be confused with the survival collapse dis-
cussed above, which may yield an exact zero in P00 (t).

III. SEMI-INFINITE CHAIN: EXACT
SOLUTION

Let us focus on a tight-binding Hamiltonian shown in
Fig. (2-b) with hoppings eV0 = V0, eVj;j+1 = V and site
energies "0 and "j = 2V for j > 0:

H = j0i "0 h0j � (j0iV0 h1j+ c:c:)

+
X
n

(jni 2V hnj � jniV hn+ 1j+ c:c:) : (19)

This de�nes a continuous spectrum ["L = 0; "U = 4V =
B] and a well de�ned resonance for V0 � V . We �rst
summarize the results in Ref. [4]. The LDoS factorizes
as a pure Lorentzian around "r � i�0, and N (0)

1 ("):

N0 (") =
V 2

�c

�0

("r � ")2 + �20
N
(0)
1 ("); (20)

with

N
(0)
1 (") =

16� (")

�B2
� (j"� 2V j) ; � (") =

p
"
p
B � "
2

;

(21)

"r = "0 +�0; �0 =
V 20

V 2 � V 20
"0 � 2V
2

; (22)

�0 =
V 20

V 2 � V 20
�c; �c =

s
V 2 � V 20 �

�
"0 � 2V
2

�2
:

(23)

The solution of Eq.(4) results in:

P00(t) �

8<:
1� (V0t=~)2 ; t < tS

A exp(�2�0t=~); tS < t < tR
C[1� 2�

1+�2 sin (Bt=~)][~=(�("r)t)]
3; tR < t

(24)
with � as de�ned in section 2 and

A =

p
"2r + �

2
0

q
(B � "r)2 + �20
4�2c

; (25)

C =
V 40 V �("r)

3
�
1 + �2

�
4� (V 2 � V 20 )

2
(�20 + "

2
r)
2 : (26)

Notice that the cubic power law decay at long times fol-
lows from the

p
" dependence of the LDoS near the band
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edge (see inset of Fig. (1)). Fig. (3) shows Eq. (24) for
V0=V = 0:4 and "0=V = 1. One obtain an alternative
representation of Eq.(7) by introducing an e¤ective de-
cay rate �e� (t) = �~=(2t) lnP00(t) [10] whose deviation
from �0 is a signature of non-exponential decay. This
is shown in the inset of Fig. (3). There, the survival
collapse is a pronounced peak in �e� (t).

FIG. 3: (color online) Survival probability for a semi-in�nite
chain with "0=V = 1, V0=V = 0:4, that leads to a resonance
in "r=V = 0:9, �0=V = 0:14. The inset shows �eff (t) (solid
line) and �0 (dashed line).

In order to obtain the characteristic time tR in the
weak coupling limit we solve iteratively the equality be-
tween the exponential and the power law decay (aver-
aged in a period), starting with ~=2�0. Since, for "0
close to the center of the band

p
A=C �

p
32�V=�0 and

� ("r) � V , we obtain

t
(0)
R = a1

~
�0
ln

�
a2
B

4�0

�
; (27)

where a1; a2 & 1 are constants that depend on the Van
Hove singularity N0 (") � ("� "L)� and other details of
the model. For a semi-in�nite chain a1 = � + 2 = 5=2

and a2 =
5
p
4� � 1:6. By choosing the parameters V0; "0

as above, this characteristic time results in t(0)R � 41
[~=V ], which is somewhat smaller than the exact time
tR � 62 [~=V ]. Just the next order of iteration gives a
much better approximation t(1)R � 67 [~=V ]. Also, by us-
ing these parameters, Eq. (17) results in tS � 0:8 [~=V ]
which is a good bound for the short time scale.
In the range of quadratic decay, recursive projective

measurement of state j0i at a time interval �� would pro-
duce a deceleration of the decay, i.e., a Quantum Zeno
e¤ect (see, for example, Fig. 1 in [16]). Our results above
provides a convenient upper bound, �� < tS , for this time
scale.
The survival collapse can also occur at the strong

coupling limit at the cross-over between the short time
regime and the power law decay. Fig. (4) shows P00 (t)

and �e� (t) for "0=V = 1:8 and V0=V = 0:77, which yields
to tR � 6:8 [~=V ]. In this case, recursive projective mea-
surement at a time interval �� � tR can make the survival
probability much smaller. Then the survival collapse en-
ables an acceleration of the decay induced by repetitive
observations, i.e., an anti-Zeno e¤ect [10].

FIG. 4: (color online) Survival probability for a semi-in�nite
chain with "0=V = 1:8, V0=V = 0:77. The inset shows �eff (t)
(solid line) and �0 (dashed line).

IV. CONCLUSIONS

We studied the dynamics of a local excitation in a
system in which full memory e¤ects at the environment
are included. We obtain the time limits where the non-
exponential behavior of the survival probability shows
up. The evolution starts with the expected quadratic de-
cay, which holds up to a time tS (Eq. (17)) determined
by the density of the �rst state of the environment in ab-
sence of the initial state. This time gives an upper bound
to the interval at which repetitive projection measure-
ments leads to a Quantum Zeno e¤ect. In the weak cou-
pling limit the decay follows the usual FGR exponential,
but with a corrected rate and a pre-exponential factor,
i.e., the SC-FGR. At long times we get a power law decay
controlled by non-Markovian return processes. We also
visualized a survival collapse at time tR (Eq. (27)) as
a destructive interference between the pure survival am-
plitude and the return amplitude. This last arises from
pathways that explore the environment before returning.
Given that a survival collapse occurs, one can use repet-
itive projective measurements with a period �� � tR to
achieve an anti-Zeno e¤ect.
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