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A suitable NMR experiment in a one-dimensional dipolar coupled spin system allows one to reduce the
natural many-body dynamics into effective one-body dynamics. We verify this in a polycrystalline sample of
hydroxyapatite �HAp� by monitoring the excitation of NMR many-body superposition states: the multiple-
quantum coherences. The observed effective one-dimensionality of HAp relies on the quasi-one-dimensional
structure of the dipolar coupled network that, as we show here, is dynamically enhanced by the quantum Zeno
effect. Decoherence is also probed through a Loschmidt echo experiment, where the time reversal is imple-
mented on the double-quantum Hamiltonian, HDQ� Ii

+Ij
++ Ii

−Ij
−. We contrast the decoherence of adamantane, a

standard three-dimensional system, with that of HAp. While the first shows an abrupt Fermi-type decay, HAp
presents a smooth exponential law.
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I. INTRODUCTION

The new developments in nanodevices �1,2�, spintronics
�3�, and quantum information processing �4� critically rely
on the control of quantum dynamics. This control is chal-
lenging because the manipulation of quantum states �5� is
crucially limited by decoherence �6,7�. In this sense, much
can be learned from nuclear magnetic resonance �8,9�, which
offers the opportunity to tailor the interactions, and thus the
time scales, and to quantify decoherence by implementing
Loschmidt echoes �10�.

The control of interaction anisotropy, e.g., the switch from
a dipolar to an XY �planar� interaction, provides a tool for
enhancing the transfer of quantum information �11,12�. In
particular, the interactions can be sequentially turned on and
off to prune some branches in real space so that an excitation
is directed to a desired target through a specific pathway
�13�. By exploiting the mapping between spins and fermions,
spin state transfer in linear spin chains and rings coupled by
XY interaction was proposed �14� and observed in liquid-
state NMR �15�. Moreover, new suggestions that improve
state transfer have been reported �16–18�. The structurally
quasi-one-dimensional spin systems of hydroxyapatite �Hap�
and fluorapatite have been proposed as candidates for imple-
menting quantum information processing in solid-state NMR
�19�. In these systems, universal control has been achieved
by implementing collective control together with suitable
spin manipulation at the chain ends �20,21�. All these fine
control attempts might be frustrated by decoherence �22–24�.
Thus, the dependence of decoherence on nuclear-spin net-
work topology becomes an important issue.

In this work, we tailor the interactions in a one-
dimensional �1D� dipolar coupled spin system to transform
its natural many-body dynamics into effective one-body dy-
namics. The difference in dynamics is observed through the

excitation of NMR many-body superposition states: the
multiple-quantum coherences �25�. Each M-quantum coher-
ence �M-QC� collects all the superpositions between two
Zeeman states whose difference in total magnetic moment is
the integer M. M-QC intensities are tested in solid-state
NMR through phase codification techniques that allow one
to follow the superposition weights as they are being created
�26�.

In a homogeneous one-dimensional chain of nuclear spin
1/2, all spin sites have the same energy and couplings. If the
spins are coupled under double-quantum interactions, HDQ
� Ii

+Ij
++ Ii

−Ij
−, restricted to nearest neighbors �NNs�, analytical

methods give closed expressions for the intensities of the
multiple-quantum coherences �27�. Although HDQ acting on
a thermal equilibrium state excites all even-order coherences,
it can be proved that in a one-dimensional system only zero-
and second-order coherences are allowed �27�. The results of
this model are compared with numerical calculations that
include more realistic interactions and with NMR experi-
ments in a polcrystalline sample of HAp. HAp behaves as a
quasi-one-dimensional spin chain due to its dipolar coupled
network structure �28,29�. We show that this anisotropy is
further enhanced by a dynamical quantum Zeno effect
�QZE�.

Decoherence is tested experimentally in HAp through a
Loschmidt echo variant �10� based on HDQ and its reversal.
The same experiment is performed in adamantane, a typical
three-dimensional �3D� system, allowing us to contrast the
effect of the coupling network.

This paper is organized as follows. Section II discusses
the multiple-quantum coherences as well as the double-
quantum Hamiltonian. Here, the theoretical basis that allows
one to obtain the effective one-body dynamics is summa-
rized. Section III describes the crystallographic and dynami-
cal properties of HAp which make it an effective one-
dimensional system. Section IV describes the experimental
methods. Sections V and VI respectively present numerical
and experimental results for the M-QC dynamics. Section
VII is devoted to the conclusions.*patricia@famaf.unc.edu.ar

PHYSICAL REVIEW A 79, 032324 �2009�

1050-2947/2009/79�3�/032324�8� ©2009 The American Physical Society032324-1

http://dx.doi.org/10.1103/PhysRevA.79.032324


II. MULTIPLE-QUANTUM COHERENCE AND EFFECTIVE
ONE-BODY DYNAMICS

In a typical solid-state NMR experiment on a system of N
identical spins 1/2, the main interaction can be described by
a dipolar Hamiltonian truncated with respect to the dominant
Zeeman interaction �30�:

HZZ = �
i,j

dij

2
�2Ii

zIj
z − Ii

xIj
x − Ii

yIj
y� �1�

=�
i,j

dij

2
�2Ii

zIj
z −

Ii
+Ij

− + Ii
−Ij

+

2
� , �2�

where dij = ��2�2 / �2rij
3 ���3 cos2��ij�−1� are the dipolar cou-

plings, with �ij as the angle between the internuclear vector
rij and the external magnetic field, and � as the gyromagnetic
ratio. Ii

z are the z components of the spin operators defined by
the direction of the static magnetic field, and Ii

+ and Ii
− are the

raising and lowering operators. In dipolar coupled spin sys-
tems at high magnetic field, the off-diagonal elements of the
density matrix in the z basis, i.e., the coherences �rs
= �r	�	s
, can be labeled by the difference in the total mag-
netic quantum numbers between the states involved in the
transition, M =mr−ms, where Iz	s
=ms	s
, with Iz=�iIi

z. All
the elements of the density matrix that connect two states
whose difference in total magnetic moment is M contribute
to the intensity of an M-QC �24�. Although only single-
quantum coherences �M = �1� are directly observed by
NMR, phase codification techniques �25� allow one to obtain
information on the multiple-quantum coherences.

In order to create coherences from an initial thermal equi-
librium state, a Hamiltonian which does not commute with
its density matrix is necessary. Both the dipolar Hamiltonian
rotated to the x axis �HXX� and the double-quantum Hamil-
tonian �HDQ� fulfill this requirement and are experimentally
achievable:

HXX = exp�− i
�

2
Iy�HZZ exp�i

�

2
Iy� �3�

=�
i,j

dij

2
�2Ii

xIj
x − Ii

yIj
y − Ii

zIj
z� , �4�

HDQ = �
i,j

dij

2
�Ii

xIj
x − Ii

yIj
y� �5�

=�
i,j

dij

4
�Ii

+Ij
+ + Ii

−Ij
−� . �6�

In the special case of nearest neighbor �NN� interactions,
HDQ is unitary similar to the XY Hamiltonian, HXY � Ii

+Ij
−

+ Ii
−Ij

+. Consequently, HDQ can simulate the HXY dynamics
after the corresponding transformation of the initial state.
Although this relation between HDQ and HXY is valid in one,
two, and three dimensions �20,31�, we focus on one-
dimensional systems, for which closed analytical results are
available. Here, we summarize the successive transforma-

tions, developed by Doronin et al. �27�, that enable this map-
ping. First, one applies the unitary transformation

U = exp�− i�I2
x�exp�− i�I4

x� ¯ exp�− i�I2n
x �¯ �7�

to HDQ. This is a composition of � pulses which rotate even-
numbered spins 180° about the x axis. As a result, the trans-
formed Hamiltonian is

HXY = UHDQU† = �
i

di,i+1

4
�Ii

+Ii+1
− + Ii

−Ii+1
+ � . �8�

The same transformation must be applied to the initial state.
For the thermal equilibrium state, in the high-field and high-
temperature limit, we only consider the main deviation of the
density matrix from the identity, which is the experimentally
observable part, i.e., ��0�=�iIi

z. This leads to

�̄�0� = U��0�U† = �
i

�− 1�i−1Ii
z. �9�

Then, as shown schematically in Fig. 1, the dynamics of an
initial state ��0� under HDQ is reduced to the dynamics of
�̄�0� under HXY which, in turn, maps to a noninteracting
fermion system �32–34�. The dynamics of this fermionic sys-
tem has a closed analytical solution when the interaction is
homogeneous, di,i+1=d, ∀ i. Transforming back to the
double-quantum dynamics, a closed expression for the den-
sity matrix ��t� can be obtained. The intensities JM of the
M-QC are calculated as

JM�t� = Tr��M�t��−M�t�� , �10�

where

�M�t� = �
r,s

��rs�t� , �11�

where �� restricts the sum to mr−ms=M. Thus, �M collects
all the contributions to � due to coherences of order M, and
��t�=�M�M�t�. Then, the JM�t�, in the normalized form
�MJ�M =1, result in

J0�t� =
1

N
�

n

cos2
4dt/� cos� �n

N + 1
�� , �12�

J�2�t� =
1

2N
�

n

sin2
4dt/� cos� �n

N + 1
�� , �13�

with n=1, . . . ,N. This shows that only Z-QC and 2-QC are
allowed. All other even orders cannot be created. Even

FIG. 1. Pathways to generate multiple-quantum coherences
from the initial state ��0�. Experimentally one follows the dashed
arrow. This is equivalent, in a 1D system with nearest-neighbor
interactions, to the mathematical pathway indicated in solid arrows.
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though a closed analytical solution is not possible in a NN
inhomogeneous case, it was shown that only zero- and
second-order coherences are excited �35�, as what occurs in
the homogeneous chain.

Finally, the evolution of particular initial conditions �20�
under 1D nearest-neighbor double-quantum interactions re-
duces to that of noninteracting �“one-body”� spinless fermi-
ons. This one-body dynamics manifests through the presence
of only 2 orders of coherence �Z-QC and 2-QC�. We test this
in Secs. V and VI by performing numerical simulations and
multiple-quantum NMR experiments of the dynamics under
HDQ. This is contrasted with the irreducible many-body di-
polar dynamics under HXX.

III. DYNAMICAL ENHANCEMENT OF THE ONE-
DIMENSIONALITY BY THE QUANTUM ZENO EFFECT

We perform NMR experiments in a physical system that
behaves as a one-dimensional spin-1/2 chain. The system is a
polycrystalline sample of hexagonal hydroxyapatite,
Ca5�PO4�3OH, with space group P63 /m. Due to the differ-
ence in resonance frequencies of the various spin nuclei, the
experimental setup allows taking account of only the spin
degrees of freedom of the 1H nuclei. The hydrogen spins of
this sample are ordered as linear chains in the c direction of
a hexagonal arrangement �a=b ,c� �29�. A central chain is
surrounded by six neighboring chains at a distance of rx
=9.42 Å �rx=a�. The closest distance between protons
within a chain is rin=3.44 Å �rin=c /2�. In solid-state NMR
the strongest interaction is the dipolar one. Because of the
dependence of the dipolar couplings on the spin distance, the
ratio between the in-chain �din� and the cross-chain �dx� di-
polar couplings for the orientation that maximizes the in-
chain coupling is

din

dx
= 2� rx

rin
�3

� 2 	 20. �14�

As we work with a polycrystal, we calculate for each chain
orientation the ratio of the local second moment due to in-
chain interactions, M2,in, to the local second moment due to
the six neighboring chains, M2,x. Then, by taking the average
over solid angle, we obtain

��M2,in

M2,x
� = �f��,
�
� rx

rin
�3

� 1.5 	 20, �15�

where f�� ,
� is the angular function that takes into account
the angular dependence of the dipolar interaction and the
relative orientation of the internuclear vectors with respect to
the external magnetic field.

There is a dynamical effect that further enhances the dif-
ference between these two couplings. The characteristic time
for a flip-flop process within the chain is clearly

�in �
�

din
. �16�

However, the characteristic rate of a flip-flop due to the weak
cross-chain couplings should be estimated invoking the
Fermi golden rule that yields �36�

1

�x
�

1

�
dx

2 1

din
, �17�

and not dx /� as one might first guess. This is because the
strong in-chain dynamics leads to an uncertainty of the final
state over a wide excitation spectrum. Then, we have

�in

�x
� � dx

din
�2

� � rin

rx
�6

�
1

400
. �18�

Equation �17� states that fast in-chain dynamics makes al-
ready slow cross-chain dynamics even slower. This is a form
of the QZE, which states that quantum dynamics is slowed
down by a frequent measurement process �37�. Spin-
diffusion experiments in low-dimensional crystals showed an
unexpected dimensional crossover as a function of a struc-
tural parameter �38�. This crossover was described as a QZE
where the internal degrees of freedom act as measurement
apparatus �39�. The concept that the measurement is played
by an interaction with another quantum object, or simply
another degree of freedom of the subsystem investigated,
was independently and fully formalized by recasting it in
terms of an adiabatic theorem in Ref. �40�. It can even lead to
a freeze of the spin swap dynamics as observed in a cross-
polarization experiment �11�. In the present context, Eq. �18�
reinforces the effective one-dimensional behavior of HAp.

IV. NMR EXPERIMENTAL SETUP

The experiments were performed using a Bruker Avance
II spectrometer operating at a 1H resonance frequency of
300.13 MHz. We used a cross polarization–magic angle spin-
ning �CP-MAS� probe working in static conditions at room
temperature with a 4 mm outer diameter rotor.

The characterization of the dynamics of the multiple-
quantum coherences was performed using the pulse se-
quences shown in Fig. 2. The different orders of coherence
excited under HDQ were generated using the two-pulse se-
quence shown in Fig. 2�a� �41,42�. With this sequence, HDQ
is built after a minimum number of scans Ns, with Ns
=2Mdes, where Mdes is the order of coherence one desires to
detect indirectly. Thus, in order to measure 2-QC, a mini-
mum of four scans must be added. To get a better signal-to-
noise ratio, the total number of scans must be a multiple of
Ns. Therefore, the evolution of Mdes-QC under HDQ is built
after Ns scans by adding signals with different phases 
. In
particular, one uses 
=0, � /2, �, and 3� /2 for filtering the
2-QC and 
=0, � /4, � /2, 3� /4, �, 5� /4, 3� /2, and 7� /4
for filtering the 4-QC. In both cases, the phase of the reading
pulse was alternated between 0 and � to keep only the orders
of coherences Mdes�nNs, with n=0,1 ,2 , . . . �26,43�.

In order to encode M-QC orders during the evolution un-
der HXX �Eq. �4��, we used the sequence shown in Fig. 2�b�,
which is a modified version of the sequence reported in Ref.
�44�. Here, the highest coherence order detected, nmax=8, is
governed by the phase shift increment �
=� /nmax.

In these sequences, the recorded free induction decays
�FIDs� were the sum of 64 scans. The recycling time, D1
=3 s, was chosen to be longer than five times the spin-lattice
relaxation time T1�500 ms. The � /2 pulse length was
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2.74 
s. The preparation times t, i.e., the periods evolving
under the desired effective Hamiltonian, were varied from 1
to 200 
s. The free evolution time t1=0.5 
s was negli-
gible. After the mixing time and before the � /2 reading
pulse, a delay D=2 ms was used to allow the transverse
magnetization to decay. The detected signal was normalized
to a reference FID obtained by the application of a � /2 pulse
with the same number of scans.

The two-pulse sequence used to generate HDQ was chosen
because the fast growth of the 2-QC intensity is not captured
with the eight-pulse sequence shown in Fig. 2�c� �25�. The
last only captures a few data points in the time range of
interest because of the minimum time of �60 
s required to
accommodate the eight pulses of the basic unit. However, the
eight-pulse sequence was applied to implement a “Loschmidt
echo” experiment, that is, to generate HDQ and then −HDQ,
by using 
=0. We use this echo to give a measure of deco-
herence rates. In order to compare this decoherence rate in
HAp with a widely known system, we performed the echo
experiments in adamantane. Adamantane is a 3D molecular
crystal with only intermolecular dipolar interactions �45� �the
intramolecular interactions cancel out due to rapid molecular

rotations�. In the Loschmidt echo experiments, the prepara-
tion time was varied from 60 to 1400 
s and the � /2 pulse
length was 2.34 
s for HAp and 2.20 
s for adamantane.
The experiments were carried out in a polycrystalline sample
of hydroxyapatite synthesized by a modification of the bio-
mimetic method reported by Zhang et al. �46�, while a com-
mercial polycrystalline sample of adamantane was used as
provided.

V. NUMERICAL RESULTS: MULTIPLE-QUANTUM
DYNAMICS

The M-QC intensities were numerically simulated using
an ensemble average of the evolution of each Zeeman state.
The total magnetization was calculated as a function of
preparation time t and as a function of the M-QC codification
phase 
. This was obtained by evolving each initial state
under H during t and then under −H
, where H
=exp�
−i
Iz�H exp�i
Iz�. Finally, a fast Fourier transform on 

was applied to the magnetization to obtain the M-QC inten-
sities JM�t� �25�.

An alternative method to obtain JM�t�, which makes use
of Eq. �10�, was used. In this case, the �M are obtained from
the elements of the density matrix calculated for each Zee-
man state. Although this method is time consuming, it clearly
shows how the different coherences contribute to the inten-
sity of a given order.

This second method allows us to draw some conclusions
about the unitary transformations schematized in Fig. 1.
Even when HDQ is unitary similar to HXY, an arbitrary initial
condition under HDQ does not necessarily yield only 2 orders
of coherences. In a chain with NN XY interaction, any exci-
tation remains in the same subspace, i.e., only zero-order
coherences appear. However, the transformed initial thermal
equilibrium condition �̄�0� �Eq. �9�� imposes a further re-
striction in the accessible Hilbert space in which this condi-
tion can evolve under XY interaction. In this case, only a
portion of the ZQ subspace can be reached. It is because of
this restriction that, after transforming back to the double-
quantum dynamics ��t�, only zero- and second-order coher-
ences are excited.

In order to obtain the dynamics of JM�t� under HDQ and
contrast this with that under HXX, we used the first method
described above. Since the effective Hamiltonians HDQ and
HXX are built up experimentally from the natural dipolar in-
teraction, which decays with 1 /r3, it becomes important to
take into account the next-nearest-neighbor �NNN� interac-
tion in the simulations. In a chain, the values of the NNN
couplings are 1/8 of the NN ones. The simulated dynamics of
the Z-QC, 2-QC, and 4-QC intensities under HXX and HDQ is
shown in Figs. 3 and 4 for an N=10 spin chain starting at
thermal equilibrium. Preliminary experimental results in
polycrystalline HAp showed that there were no detectable
M-QC intensities after 200 
s. Consequently, we do not
need simulations for longer times, but we have to take a large
enough number of spins to avoid distortions of the dynamics
due to reflections at the chain ends. To verify this, we calcu-
lated the earliest time at which the mesoscopic echo, i.e., the
revival that appears because of the finite nature of the system

FIG. 2. �a� Selective two-pulse sequence to generate M-QC un-
der an average double-quantum Hamiltonian HDQ based on rota-
tions of HZZ �free evolution�. It detects 2-QC �2+4n� or 4-QC �4
+8n� intensities by applying the appropriate phase cyclings �see
text�. All pulses are of � /2. �b� Sequence to generate M-QC under
a rotated dipolar Hamiltonian HXX. �c� Pulse sequence to generate
M-QC under a HDQ based on m repetitions of the eight � /2-pulse
pattern displayed in parenthesis. In �b� and �c� a free induction
decay was recorded for each value of t and 
. The highest coher-
ence order detected, nmax=8, is governed by a digital phase shift
increment, with �
=� /nmax.
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�14,47�, occurs. This is ensured by using a single crystal at
orientation �ij =0, leading to the maximum dipolar coupling
dmax, which for HAp is dmax=2��	 �2.95 kHz�. Any other
orientation will just stretch the time scale of this curve, de-
laying the occurrence of the mesoscopic echo. As shown in
Fig. 3, for ten spins the mesoscopic echo appears at
6� /dmax�325 
s. It is important to emphasize that by vary-
ing slightly the number of spins, the dynamics changes only
in the neighborhood of the mesoscopic echo, remaining un-
affected before 3.7� /dmax�200 
s.

In Fig. 4, the 4-QC intensity dynamics in a ten-spin chain
of HAp with NNN interactions under HDQ and HXX is dis-

played. In each Hamiltonian evolution, a single orientation
of the chain and a powder average �the integral over solid
angle of the orientation dependent dynamics� were calcu-
lated. Notice that the observable we are using to check the
effective one-body dynamics is robust under orientation av-
erage; i.e., the nonexcitability of the 4-QC occurs for every
orientation of the chains in a polycrystalline sample, main-
taining its null intensity. As can be seen, if one includes the
NNN interactions in the chain, the intensity of the 4-QC
under HDQ is not strictly zero. However, this intensity will
not be observed under the typical conditions of an NMR
experiment. In contrast, the intensity of a 4-QC under HXX
might be observable.

The inclusion of an extra interaction, in this case the NNN
interaction, breaks the mapping to noninteracting fermions.
Consequently, the system evolution is no longer restricted to
only Z-QC and 2-QC. However, as it is clearly shown in Fig.
4, the 4-QC under HDQ is 1 order of magnitude smaller than
the 4-QC excited by HXX. This means that HDQ still keeps
the main dynamics between Z-QC and 2-QC. Hence, one can
infer that the effective one-body dynamics is preserved as a
good approximation.

VI. EXPERIMENTAL RESULTS: MULTIPLE-QUANTUM
DYNAMICS AND DECOHERENCE

The pulse sequences shown in Figs. 2�a� and 2�b� were
used to generate M-QC under the effective Hamiltonians
HDQ and HXX, respectively, from a thermal equilibrium state.
Figure 5 displays the 2-QC and 4-QC intensities as functions
of the preparation time t. There, the 4-QC has been multi-
plied by a factor of 10 because of its small intensity as com-
pared with the 2-QC. While the 4-QC intensity under HXX is
well above the noise level, being evident its growth and de-
cay, the intensity of the 4-QC under HDQ remains at the
noise level.

In our particular 1D system, the essential difference be-
tween the ideal HXX and HDQ is that the first allows for the

FIG. 3. �Color online� Numerical simulations of the dynamics of
the Z-QC, 2-QC, and 4-QC intensities of HAp under HXX �dashed
line for 2-QC and 4-QC, and dash-dotted line for Z-QC� and HDQ

�solid line for 2-QC and 4-QC, and dotted line for Z-QC� in a
ten-spin chain with NNN interaction for the chain orientation that
maximizes the coupling, dmax /�=2�	2.95 kHz. The mesoscopic
echo appears at 6� /dmax.

FIG. 4. �Color online� Numerical simulations of the dynamics of
the 4-QC intensities under HXX and HDQ for a ten-spin chain of
HAp with NNN interactions. Dashed line corresponds to HXX and
solid line corresponds to HDQ, both at the orientation of maximum
dipolar coupling, dmax /�=2�	2.95 kHz. The powder average is
shown with a dotted line for �HXX
 and with dash-dotted line for
�HDQ
.

FIG. 5. �Color online� Dynamics of 2-QC and 4-QC intensities
under HDQ and HXX in HAp implemented with the pulse sequence
of Figs. 2�a� and 2�b�, respectively. Notice that the normalized in-
tensities of the 4-QC are ten times enlarged.
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development of many orders of coherence, while the second
allows only 2. Since higher orders of coherences decay at
higher rates �48,49�, we expect a faster decoherence in the
case of HXX. However, we should also assess the precision of
the experimental sequences used to generate these Hamilto-
nians. In this context, one should remember that our imple-
mentation of a multiple-quantum experiment under HXX in-
cludes a dipolar Hamiltonian reversal. This involves a further
truncation of the dipolar Hamiltonian with respect to the rf
Zeeman interaction during the long rf pulse �30�. This pro-
duces additional decoherence because the truncated nonsecu-
lar terms, whose magnitudes depend on the rf power, are not
reversed �23�. The pulse sequences to generate HDQ may
also have some limitations. It is known that the eight-pulse
sequence produces a much better average Hamiltonian than
the two-pulse one, especially for long preparation times
�25,50�. This is because the two-pulse sequence plotted in
Fig. 2�a� does not average out the chemical shift nor cancels
out rf inhomogeneities as the eight-pulse sequence does. For
example, if we compare the 2-QC intensities in HAp for the
eight- and two-pulse sequences, both of them show exponen-
tial decay. However, the characteristic time of the first is
�8p�210 
s, while that of the second is �2p�65 
s; i.e., it
is three times faster. The rapid decay of the 2-QC intensity
with the two-pulse sequence explains the early occurrence of
the maximum ��15 
s� in the evolution of 2-QC �see Fig.
5� as compared with the theoretical estimation of � /dmax
�50 
s in Fig. 3. Because of this, the decay of the 2-QC for
the two-pulse sequence is not a reliable quantifier of the de-
coherence of the system.

In order to have a measure of the global decoherence time
of the system under HDQ, we used the eight-pulse sequence
shown in Fig. 2�c�. Having minimized possible experimental
artifacts, we expect to have a decoherence that reflects the
properties of the sample itself �topology of the coupling net-
work, defects, etc.�. Following this idea, we compare the
behaviors of HAp and adamantane measuring a Loschmidt
echo, that is, generating HDQ and then −HDQ. The decays of
both systems are displayed in Fig. 6. The difference in the
functional form of decay is remarkable. While a simple ex-
ponential with characteristic time ��= �770�50� 
s holds
for HAp, a Fermi-type curve M�t��1 / �1+exp��t− tc� /����,
with tc= �545�2� 
s and ��= �123�2� 
s, provides the
best fit for adamantane.

It should be noticed that in adamantane, coherences of
very high order are generated quite rapidly. Indeed, coher-
ences of orders M �100 are well defined after 0.5 ms
�48,51�, indicating the huge portion of the Hilbert space ex-
plored through HDQ in this system. As shown by the Fermi-
type curve, the coherence of such highly interacting system
is not sustained beyond a critical time tc where a sort of
“catastrophe” seems to occur. A similar behavior is observed
in simulations of highly interacting systems, either fermions
or bosons, whose coherence also decays following a Fermi-
type curve �52,53�. In those works, a self-consistent approxi-
mation allows one to see this critical stage as the triggering
of a nonlinear loop.

In contrast with adamantane, the decoherence of HAp, as
seen from the Loschmidt echo, occurs smoothly following an
exponential law. This sort of decay has been seen in chaotic
one-body systems in semiclassical states where the perturba-
tion effects are limited �54–56�. Hence, this decay is consis-
tent with the restricted dynamics imposed by the low con-
nectivity of a 1D system. Furthermore, as the dominant
dynamics is that of the noninteracting fermions, the residual
interactions and the experimental imperfections define the
“environment” that produces the exponential decoherence.

Although the observed decoherence rate seems to be
somewhat fast to enable a straightforward quantum informa-
tion application, the exponential decay of the dynamics of
the 1D system may be easier to manipulate than the dynam-
ics of the 3D system. On the other hand, the 3D system
presents a short-time behavior that could be nicely exploited
to implement quantum operations, because the coherence is
lost at a very low rate. Further experimental designs are nec-
essary to confirm the origin of these different functional
forms, and to quantify the factors determining the respective
characteristic decay times �� in HAp and tc and �� in ada-
mantane.

VII. CONCLUSION

We have shown that the M-QC intensities under a double-
quantum Hamiltonian in HAp behave as effective one-body
dynamics. This has been observed through several experi-
ments where the evolutions of the intensities of the 2-QC and
4-QC were studied under the action of HDQ. These results
were contrasted with the many-body dynamics induced by
HXX. No coherence orders above 2 appear under HDQ, while
they do appear under HXX. In both cases, the dynamics re-
mains mainly one dimensional as the natural anisotropy of
HAp is enhanced by the quantum Zeno effect.

The global decoherence of HAp under HDQ was com-
pared with that in adamantane, a regular 3D system, whose
genuine many-body dynamics is manifested by the rapid ex-
citation of very high orders of coherence. The coherence
decays in both systems follow completely different func-
tional forms.

In summary, we have addressed two main points:
�1� We confirmed the mapping of a nearest-neighbor one-

dimensional spin system under a double-quantum interaction
to a noninteracting fermion system. This mapping was tested
through one of its main consequences: the nonexcitability of
4-QC under HDQ.

FIG. 6. �Color online� Loschmidt echo experiment based on
HDQ and −HDQ using the sequence shown in Fig. 2�c� with 
=0 in
HAp �squares� and adamantane �circles�.
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�2� We evaluated the decoherence through a Loschmidt
echo experiment based on a double-quantum Hamiltonian.
The restricted dynamics induced by the low connectivity
space leads to the appearance of a smooth exponential deco-
herence, while the dynamics in a high connectivity space
shows a sudden drop in coherence.

These results indicate that, in spite of residual interac-
tions, HAp can be used as a “quantum simulator” for nonin-
teracting fermion dynamics.
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