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Abstract

We consider smooth plane curves which are convex with respect to the ori-
gin. We describe centro-affine invariants (that is, GL+ (2,R)-invariants), such
as centro-affine curvature and arc length, in terms of the canonical Lorentz
structure on the three dimensional space of all the ellipses centered at zero, by
means of null curves of osculating ellipses. This is the centro-affine analogue
of the approach to conformal invariants of curves in the sphere introduced by
Langevin and O’Hara, using the canonical pseudo Riemannian metric on the
space of circles.
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1 Introduction

Some years ago, Rémi Langevin and Jun O’Hara presented in [6] a new approach
to the classical subject of conformal length of curves in the sphere, in terms of the
canonical pseudo Riemannian structure on the space C of oriented circles: The circles
osculating a curve α in the sphere define a null curve in C, whose 1

2
-dimensional

length provides, generically, a conformally invariant parametrization of α (for the
two-sphere C is Lorentz, while it has signature (4, 2) for the three-sphere). See also
[7]. This line of thought can be traced back to Lie, Darboux and Klein (see [2])
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1



and continued with the interpretation given by Robert Bryant in [1] of the standard
conformally invariant 2-form on a surface M in R3 as the area of the surface in
5-dimensional Lorentz space, determined by a certain family of tangent spheres to
M .

In this paper we deal with an analogous situation: We consider smooth plane
curves which are convex with respect to the origin. The corresponding curves of
osculating ellipses centered at zero turn out to be null curves in E , the three dimen-
sional space of all ellipses centered at zero, provided that E is endowed with a canon-
ical Lorentz structure. We use this notion to describe centro-affine, i.e. GL+ (2,R)-
invariants.

I would like to thank the referee for reading the paper very carefully and finding
several typos.

2 Centro-affine invariants of 0-convex plane curves

By a path in the plane we understand an oriented embedded submanifold included
in R2 which is diffeomorphic to R. Given a path c in the plane, an embedding
α : I → R2 defined on the open interval I with image c, such that α′ is positive with
respect to the orientation of c, is called a parametrization of c.

For u, v ∈ R2, denote u∧ v = det (u, v). All maps are supposed to be of class C3,
which we call smooth.

A curve α : I → R2 is said to be convex with respect to 0 (or briefly, 0-convex ) if
α∧α′ and α′∧α′′ are both positive functions. In particular, α (t) 6= 0 for all t ∈ I, α
is regular, that is, α′ never vanishes, and α is traversed counterclockwise (we made
this choice for the sake of simplicity). A path c in R2 is said to be 0-convex if some
(or equivalently, any) of its parametrizations is 0-convex.

For instance, with a convenient orientation, a spiral centered at zero is 0-convex,
as well as an arc of the border of a strictly convex subset of the plane containing
the origin.

Let P be the set of paths in R2 which are 0-convex. This set is invariant by the
canonical action of the group G := GL+ (2,R) of linear isomorphisms of the plane
with positive determinant.

Any path c ∈ P admits a standard centro-affine parametrization α, that is, a
parametrization α such that

α′′ = −α + 1
2
κα′ (1)

for some smooth function κ : I → R, called the centro-affine curvature of α, which
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induces as usual a well defined notion of centro-affine curvature on c. See [8, 10],
where the centro-affine curvature coincides up to a multiple with the one given here
and also 0-concave curves are considered simultaneously.

For the sake of completeness, we include the computation giving rise to κ. Let β
a 0-convex curve and let α = β (t) with t′ > 0. Then α′ = β′ (t) t′, α′′ = β′′ (t) (t′)2 +
β′ (t) t′′. We have β′′ = aβ + bβ′ for some functions a, b with a < 0. If the function t
satisfies the equation (t′)2 a (t) = −1, then (1) holds with κ = 2b (t) t′ + 2t′′/t′ and
so α is a standard centro-affine reparametrization of β. It is an easy to verify fact
that a 0-convex path is an arc of an ellipse if and only if κ ≡ 0.

There is a broader notion of centro-affine arc length: Suppose Po is a subset
of P closed under the action of G. Any map defined on Po assigning to c ∈ Po
a nowhere vanishing positively oriented 1-form τc on c is called a centro-affine arc
length element on Po, provided that τc = g∗τgc for any g ∈ G. This induces a G-
invariant way of measuring length of arcs of 0-convex paths. In the analogous three
dimensional conformal setting, the conformal arc length element is not defined for
any path, but only for the so called vertex free paths, having parametrizations with
(κ′)2 + (κτ)2 > 0, where κ and τ denote the curvature and torsion (see Definition
1.2 and Theorem 7.3 in [6]). Theorem 6 below involves this notion.

3 The canonical Lorentz metric on the space of

centered ellipses

A subset E of R2 is an ellipse centered at zero if there exist an orthonormal basis
u, v of R2 and positive numbers a, b such that

E =

{
xu+ yv | x

2

a2
+
y2

b2
= 1

}
. (2)

We will consider only ellipses centered at zero, so in the following we sometimes call
them just ellipses.

Let E be the set of all ellipses in the plane centered at zero (with axes not
necessarily parallel to the coordinate axes) and let S+ be the manifold of all positive
definite symmetric 2× 2 matrices. Among the several ways of identifying E with S+

we choose the following:

F : S+ → E , F (A) = EA, (3)

where
EA =

{
z ∈ R2 |

〈
A−1z, z

〉
= 1
}

= A1/2S1 =
{
A1/2z | |z| = 1

}
, (4)
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since it is equivariant with respect to the canonical smooth transitive actions of the
group G on S+ and E , given by g · A = gAgT and g · E = g (E), respectively (the
superscript T denotes transpose). Notice that EA is equal to E as in (2) provided
that Au = a2u and Av = b2v.

Now, S+ is an open set in the three dimensional vector space S of 2 × 2 real
symmetric matrices. We consider on S+ the unique G-invariant Lorentz structure
on S+ whose norm at the identity I is given by

〈X,X〉 =def ‖X‖ = − detX, for X ∈ TIS+
∼= S.

Equivalently, ‖(A,X)‖ = − det (A−1X) for any (A,X) ∈ TS+
∼= S+ × S.

We define the future pointing cone in TIS+ as the set of all X ∈ S with ‖X‖ ≤ 0
such that either X11 or X22 is positive. This induces a temporal orientation on S+,
which is invariant by the action of G.

A tangent vector X of a Lorentz manifold is called spatial, temporal or null (or
light-like), if ‖X‖ is positive, negative or zero, respectively.

Consider on the space of ellipses E the Lorentz metric copied from that in S+

above via the bijection (3).

Proposition 1 The G-invariant metric on E defined above is isometric to H×−R,
the warped product of the hyperbolic plane H of constant curvature −1 with R with
warping function H → R constant and equal to −1.

Proof. Let H = SL (2,R) = {A ∈ R2×2 | detA = 1} endowed with the bi-invariant
Lorentz metric defined at the identity by ‖X‖H = 1

2
tr (X2) (tr X = 0), which is a

multiple of the Killing form of H. It is well known that there is a pseudo Riemannian
submersion from H onto H with isotropy group SO (2).

Now, F : H × R → G defined by F (A, x) = exA is a Lie group isomorphism
satisfying∥∥dF(I,0)

(
X, x d

dt

∣∣
0

)∥∥ = − det (X + xI) =
1

2
tr
(
X2
)
− x2 = ‖X‖H − x

2.

Hence F is an isometry between H×−R and G. Considering the quotient by SO (2)×
{0} ' SO (2), the proposition follows. �

One can see E as the set of curves in the plane congruent to the circle via the
group G. Let K be a Lie group acting on a manifold N . Canonical K-invariant
pseudo Riemannian metrics on spaces of K-congruent curves in N have proved to
be useful in the study of foliations of N by such curves (see for instance [9, 3, 4]).
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Although the G-invariant metric on S+ is relevant for the nature of the results,
for some computations it will be convenient to consider on S+ the constant Lorentz
structure g whose associated norm is ‖X‖ = − det (X) (notice that S+ is an open
subset of the vector space S). The G-invariant metric ḡ defined above is conformally
equivalent to g, and ḡ = φ−2g, where φ : S+ → R is given by φ (A) =

√
det (A).

Lemma 2 Let M be a smooth manifold and let ḡ and g be two conformally equiv-
alent pseudo Riemannian metrics on M . If γ is a smooth curve in M which is null
for ḡ (or equivalently, for g), then∥∥∥∥D̄γ′dt

∥∥∥∥ =

∥∥∥∥Dγ′dt

∥∥∥∥ ,

where D̄
dt

and D
dt

denote the covariant derivatives along γ associated with ḡ and g,
respectively.

Proof. It suffices to show that
∥∥∇̄XX

∥∥ = ‖∇XX‖ for any null local vector field on
M . Now, we have from the proof of Proposition 2.2 in [5] that for any vector field
on M ,

∇̄XX = ∇XX − 2X (log φ)X + ‖X‖ grad (log φ) ,

where ḡ = φ−2g, with φ : M → R. Hence, if X is null,∥∥∇̄XX
∥∥ = ‖∇XX‖ − 4X (log φ) 〈∇XX,X〉 = ‖∇XX‖ ,

as desired. The last equality follows from the fact that 〈∇XX,X〉 = 0 since ‖X‖ is
constant. �

4 Null curves of osculating ellipses

Given a regular curve α : I → R2, the (Euclidean) curvature of α is the real function
κ on I defined by κ (t) = (α′ ∧ α′′) / |α′|3. This induces a well defined notion of
curvature on a path in R2.

For each z on a 0-convex path c there exists exactly one ellipse E osculating
c at z. This means the following: Suppose that α is a parametrization of c with
α (to) = z, then E is the ellipse having a counterclockwise parametrization ε such
that ε (0) = z, ε′ (0) is a multiple of α′ (to) and κε (0) = κα (to), where κε and κα are
the curvatures of ε and α, respectively.

The first assertion of the next theorem is the centro-affine analogue of Theorems
5.1 and 7.2 in [6], within the conformal setting, for S2 and S3, respectively.
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Theorem 3 Let α : I → R2 be a parametrization of a 0-convex path c. For each
t ∈ I, let E (t) be the ellipse centered at the origin osculating α at t. Then the curve
E : I → E is light-like.

If α is a standard centro-affine parametrization of c and κ : I → R is the centro-
affine curvature of α, then

κ2 (t) =

∥∥∥∥DdtE ′ (t)
∥∥∥∥ (5)

for all t ∈ I. Moreover, κ is positive or negative depending on whether E is future
or past directed.

Proof. If α ◦ s is a reparametrization of α, then E ◦ s is the curve of osculating
ellipses to α, which is null if and only if E is null. Hence, we may suppose that α is
a standard centro-affine parametrization, that is, α satisfies (1).

Given to ∈ I, we verify that ‖E ′ (to)‖ = 0. We may assume additionally, without
loss of generality, that to = 0,

α0 = e1, α′0 = e2 (6)

(by considering ᾱ (t) = Aα (t− to), where A ∈ G satisfies Aαto = e1 and Aα′to = e2

and using the G-invariance of the statement).
Given t in the domain of α, we see first that

u 7→ εt (u) = (cosu)αt + (sinu)α′t

parametrizes E (t). Clearly εt is a counterclockwise parametrization of an ellipse.
We have that

ε′t (u) = − (sinu)αt + (cosu)α′t

and so ε′′t = −εt. In particular, εt (0) = αt, ε
′
t (0) = α′t and ε′′t (0) = −αt. So, for

E (t) to osculate α at t it suffices to check that κεt (0) = κα (t), where the left and
right hand side are the curvatures of εt and α at u = 0 and t, respectively. Indeed,

κα (t) =
α′t ∧ α′′t
|α′t|

3 =
α′t ∧

(
−αt + 1

2
κtα′t

)
|α′t|

3 =
αt ∧ α′t
|α′t|

3 =
ε′t (0) ∧ ε′′t (0)

|ε′t (0)|3
= κεt (0) .

Now we find the curve in S+ associated with the curve E (t) in E , according to
the isometry (3). Let At = (αt, α

′
t) ∈ R2×2, where αt and α′t are column vectors. We

have that E (t) = AtS
1. For simplicity, in the following we omit writing t. The polar

decomposition of A is given by

A =
(
AAT

)1/2
O
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for some O ∈ SO (2). Hence E =
(
AAT

)1/2
S1 and so, by (4), the curve γ in S+

associated with E is γ = AAT = ααT + α′ (α′)T . Therefore,

γ′ = α′αT + α (α′)
T

+ α′′ (α′)
T

+ α′ (α′′)
T

.

Evaluating at t = 0 one has, using (6) and (1), that

γ′0 =

(
0 0
0 κ0

)
. (7)

In particular, ‖γ′0‖ = − det (γ′0) = 0. Since to was arbitrary, E is a null curve in E .
In order to prove the second assertion we compute

γ′′ = α′′αT + 2α′ (α′)
T

+ α (α′′)
T

+ α′′′ (α′)
T

+ 2α′′ (α′′)
T

+ α′ (α′′′)
T

.

Now, (1) yields α′′′ = −1
2
κα +

(
1
4
κ2 + 1

2
κ′ − 1

)
α′. From this and (6) we have that

the first component of α′′′0 equals −1
2
κ0 and

γ′′0 =

(
0 −κ0

−κ0 x

)
for some number x. Since E (t) and γt correspond under the isometry (3), we have
by Lemma 2 that ∥∥∥∥DE ′dt

∣∣∣∣
0

∥∥∥∥ = ‖γ′′0‖ = − det (γ′′0 ) = κ2
0 ,

as desired. The last assertion follows from (7) and the definition of the temporal
orientation on S+. �

Lemma 4 Let A ∈ S+ and let v, w two vectors in R2 such that v∧w > 0, 〈Av, v〉 = 1
and 〈Av,w〉 = 0, and let L =

√
〈Aw,w〉. Then the curve ε : R→ R2 defined by

ε (s) = cos s Av + sin s Aw/L (8)

parametrizes the ellipse EA counterclockwise and its curvature at s = 0 is

κ (0) =
v ∧ w

(v ∧ Aw) |v|
. (9)
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Proof. We verify that ε (s) ∈ EA for all s. Indeed,〈
A−1ε (s) , ε (s)

〉
= 〈cos s v + sin s w/L, cos s Av + sin s Aw/L〉
= cos2 s 〈v, Av〉+ sin2 s 〈Aw,w〉 /L2 + 2 sin s cos s 〈w,Av〉
= cos2 s+ sin2 s = 1.

We have that ε ∧ ε′ = (detA) v ∧ w/L and so ε parametrizes EA counterclockwise.
We compute

κ (0) =
ε′ ∧ ε′′

|ε′|3
(0) =

Aw/L ∧ (−Av)

(|Aw| /L)3 =
(Av ∧ Aw) 〈Aw,w〉

|Aw|3
.

Since A is symmetric we have that 〈Aw, v〉 = 0 and we may suppose that Aw = iµv
for some µ ∈ R. Here i denotes counterclockwise rotation through a right angle.
Therefore

κ (0) =
(Av ∧ iµv) 〈iµv, w〉

|iµv|3
=
〈v, Av〉 (v ∧ w)

µ |v|3
=
v ∧ w
|v|3

and (9) holds since v ∧ Aw = v ∧ iµv = µ |v|2. �

The following theorem is a partial converse of Theorem 3.

Theorem 5 Let γ : (a, b) → S+ a regular null curve with spatial acceleration, that

is,
∥∥∥Dγ′dt

∥∥∥ > 0, and let Et be the ellipse associated with γ (t) via the bijection (3).

Then there exists a 0-convex curve α : (a, b) → R2 such that either t 7→ Et or
t 7→ E−t osculates α at t, for all t ∈ (a, b).

Proof. We have ‖γ′‖ = − det γ′ = 0. Since γ′ 6= 0, for each t, the kernel of γ′ (t) has
dimension one. Let v be a smooth curve such that γ′ (t) v (t) = 0 for all t, normalized
in such a way that 〈γv, v〉 = 1, and let α (t) = γtvt. In particular, α′ = γ′v+γv′ = γv′.

By differentiating 1 = 〈γv, v〉 and using that γ is symmetric we have

0 = 〈γv′ + γ′v, v〉+ 〈γv, v′〉 = 〈γv′, v〉+ 〈γv, v′〉 = 2 〈γv, v′〉 . (10)

Now we verify that α is 0-convex. Since γ′ 6= 0 is symmetric and singular, and
γ′v = 0, there exist a nowhere vanishing smooth function λ : (a, b)→ R such that

γ′ = λuuT ,
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where u = iv (a column vector). We compute

γ′′ = λ′uuT + λ
(
uuT

)′
=
λ′

λ
γ′ + λ

(
B +BT

)
,

where B = u′uT . On the other hand, 〈γ′, γ′〉 = 0 implies 〈γ′′, γ′〉 = 0. Hence,

0 = 〈γ′′, γ′〉 =
λ′

λ
〈γ′, γ′〉+ λ

〈
B +BT , γ′

〉
= λ

〈
B +BT , γ′

〉
.

Therefore, by Lemma 2,

0 <

∥∥∥∥Ddtγ′
∥∥∥∥ = ‖γ′′‖ = λ2

∥∥B +BT
∥∥ = −λ2 det

(
B +BT

)
= λ2 (u ∧ u′)2

= λ2 (v ∧ v′)2
.

Consequently, v ∧ v′ 6= 0. We may suppose that v ∧ v′ > 0 (otherwise, we can
substitute γ (t) and v (t) with γ (t) = γ (−t) and v (t) = v (−t), respectively, and in
this case t 7→ E (t) = E (−t) will be the curve of ellipses we were looking for).

We know that α′ = γv′. Hence,

α ∧ α′ = γv ∧ γv′ = (det γ) (v ∧ v′) > 0

and so α is parametrized counterclockwise. By (10), since γ is symmetric, we have
α′ = `iv for some nowhere zero function `. Hence, α′′ = `′iv + `iv′. Thus,

α′ ∧ α′′ = `iv ∧ (`′iv + `iv′) = `2 (iv ∧ iv′) = `2 (v ∧ v′) > 0.

Therefore α is 0-convex. Let ε be as in (8), with A = γ (t) and w = v′ (t), and
let E (t) be the ellipse parametrized by ε. Then ε (0) = α (t) and ε′ (0) is a positive
multiple of γ (t) v′ (t) = α′ (t). Thus, in order to prove that E (t) osculates α at t it
remains only to see that the curvature of Et at α (t) coincides with the curvature of
α at t. The latter is α′ (t) ∧ α′′ (t) / |α′ (t)|3. We compute

α′ ∧ α′′

|α′|3
=
`iv ∧ (`′iv + `iv′)

|`iv|3
=
iv ∧ iv′

` |v|3
=

v ∧ v′

(v ∧ γv′) |v|

(the last equality follows since v ∧ γv′ = v ∧ α′ = v ∧ `iv = ` |v|2), which coincides
with the curvature of Et at α (t) by Lemma 4. Consequently E (t) is the osculating
ellipse to α at t. �

The following theorem is the centro-affine analogue of Theorems 5.2 and 7.3
in [6]. In the context of the last paragraph of the introduction, we consider as Po
the set of all 0-convex paths with nowhere vanishing centro-affine curvature and
give the centro-affine arc length element as the 1

2
-dimensional length of the curve of

osculating ellipses.
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Theorem 6 Let c be a 0-convex path in R2 with nowhere vanishing centro-affine
curvature. Let α : I → R2 be any parametrization of c (not necessarily standard
centro-affine). For each t ∈ I, let E (t) be the ellipse centered at the origin osculating
α at t. Then the null curve E in E has spatial acceleration, that is

∥∥D
dt
E ′
∥∥ > 0 and

the 1-form τc on c is well defined by

α∗τc =

∥∥∥∥DE ′dt

∥∥∥∥1/4

dt.

Moreover, the map c 7→ τc is invariant under the action of G.

Proof. Notice that the curve E is null by the first assertion of Theorem 3. Suppose
that β (s) = α (φ (s)) is a reparametrization of α and let F (s) = E (φ (s)) be the
osculating ellipse of β at s. We compute F ′ (s) = E ′ (φ (s))φ′ (s) and

DF ′

ds
=
DE ′

dt
(φ) (φ′)

2
+ E ′ (φ)φ′′.

Now 〈E ′, E ′〉 = 0 and this implies
〈
DE′

dt
, E ′
〉

= 0. Hence∥∥∥∥DF ′ds

∥∥∥∥ =

∥∥∥∥DE ′dt
(φ)

∥∥∥∥ (φ′)
4

. (11)

If β is a standard centro-affine reparametrization of α, we have by hypothesis and
the second assertion of Theorem 3 that

∥∥DF ′

ds

∥∥ is positive, and by (11)
∥∥DE′

ds

∥∥ is also
so. Therefore ∥∥∥∥DF ′ds

(s)

∥∥∥∥1/4

ds =

∥∥∥∥DE ′dt
(φ (s))

∥∥∥∥1/4

φ′ (s) ds,

and this implies that the 1-form τc on c is well defined, since

β∗
(
α−1
)∗

=
(
α−1β

)∗
= φ∗ and φ∗dt = φ′ (s) ds.

Finally, we show that τc is G-invariant. We have to check that τc = A∗τAc for
any A ∈ G, or equivalently, that α∗τc = (Aα)∗ τAc for a parametrization α of c, that
is, ∥∥∥∥DE ′dt

∥∥∥∥1/4

dt =

∥∥∥∥D (AE)′

dt

∥∥∥∥1/4

dt,

(AE (t) osculates Aα at t) and this is true since A acts by isometries on E . �
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[6] R. Langevin and J. O’Hara, Conformal arc-length as 1
2
-dimensional length of

the set of osculating circles, Comment. Math. Helv. 85 (2010), 273–312.

[7] M. C. Romero-Fuster and E. Sanabria-Codesal, Conformal invariants inter-
preted in de Sitter space, Mat. Contemp. 35 (2008), 205–220.

[8] P. J. Olver, Moving frames and differential invariants in centro-affine geometry,
Lobachevskii J. Math. 31 (2010), 77–89.

[9] M. Salvai, Global smooth fibrations of R3 by oriented lines, Bull. London Math.
Soc. 41 (2009), 155–163.

[10] G. R. Wilkens, Centro-affine geometry in the plane and feedback invariants of
two-state scalar control systems. In: G. Ferreyra, R. Gardner, H. Hermes and
H. Sussmann (eds.) Differential geometry and control. Proc. Symp. Pure Math.
64, pp. 319–333, Amer. Math. Soc., Providence (1999).

Marcos Salvai
ciem - famaf
Conicet - Universidad Nacional de Córdoba
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