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Abstract. Let M be the Lie group of Moebius transformations of the circle.
Suppose that the circle has initially a homogeneous distribution of mass and that
the particles are allowed to move only in such a way that two configurations differ
in an element of M. We describe all force free Moebius motions, that is, those
curves in M which are critical points of the kinetic energy. The main tool is a
Riemannian metric on M which turns out to be not complete (in particular not
invariant, as happens with non-rigid motions) given by the kinetic energy.

1. Introduction

In the spirit of the classical description of the force free motions of a rigid body in
Euclidean space using an invariant metric on SO (3) [1, Appendix 2], the second
author defined in [4] an appropriate metric on the Lorenz group SOo (n+ 1, 1)
to study force free conformal motions of the sphere Sn, obtaining a few explicit
ones (only through the identity and those which can be described using the Lie
structure of the configuration space). In this note, in the particular case n = 1, that
is, Moebius motions of the circle, we obtain all force free motions.

This is an example of a situation in which using concepts of Physics one can state
and solve a problem in Differential Geometry; see for instance [2, 3, 6]

Notice that the canonical action of PSL (2,R) on RP 1 ∼= S1 is equivalent to the
action of the group of Moebius transformations on the circle. Then, the results
presented here, up to a double covering, also extend the case n = 1 of [5], where
force free projective motions of the sphere Sn were studied.

This note, as well as [4, 5], is weakly related with mass trasportation [7]. In our
situation, the set of admitted mass distributions is finite dimensional, and also the
allowed transport maps are very particular.
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1.1. Moebius motions of the circle

Let S1 be the unit circle centered at zero in C with the usual metric and let M
be the Lie group of Moebius transformations of the circle, that is, the group of
Moebius transformations of the extended plane preserving the circle. It consists of
maps of the form cTα, where c ∈ S1 and

Tα (z) =
z + α

1 + ᾱz
(1)

for α ∈ C, |α| < 1 and all z ∈ S1. Although we are interested in the action of
M on the circle, we recall that if the unit disc ∆ = {z ∈ C ; |z| < 1} carries the
canonical Poincaré metric of constant negative curvature −1 and α 6= 0, then Tα
is the transvection translating the geodesic with end points ±α/ |α|, sending 0 to
α.

A Moebius motion of the circle is by definition a smooth curve inM, thought of
as a curve of diffeomorphisms of the circle. (Throughout the paper, smooth means
of class C∞.)

In the next two subsections we recall, specialized for the circle, some definitions
and statements given in [4] for conformal motions on the n-dimensional sphere.

1.2. The energy of Moebius motions of the circle

Suppose that the circle has initially a homogeneous distribution of mass of constant
density 1 and that the particles are allowed to move only in such a way that two
configurations differ in an element ofM. The configuration space may be naturally
identified withM.

Let γ : [t0, t1] →M be a Moebius motion of S1. The total kinetic energy Eγ (t)
of the motion γ at the instant t is given by

Eγ (t) = 1
2

∫
S1
|vt (q)|2 ρt (q) dm (q) , (2)

where integration is taken with respect to the canonical volume form of S1 and, if
q = γ (t) (p) for p ∈ S1, then

vt (q) =
d

ds

∣∣∣∣
t

γ (s) (p) ∈ TqS1, ρt (q) = 1/det (dγ(t)p)
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are the velocity of the particle q and the density at q at the instant t, respectively.
Applying to (2) the formula for change of variables, one obtains

Eγ (t) = 1
2

∫
S1

∣∣∣∣ d

ds

∣∣∣∣
t

γ (s) (p)

∣∣∣∣2 dm (p) . (3)

The kinetic energy of γ is defined by

E (γ) =

∫ t1

t0

Eγ (t) dt.

The following definition is based on the principle of least action.

Definition 1 A smooth curve γ in M, thought of as a Moebius motion of S1, is
said to be force free if it is a critical point of the kinetic energy functional, that is,

d

ds

∣∣∣∣
0

E (γs) = 0

for any proper smooth variation γs of γ (here γs (t) = Γ (s, t), where Γ : (−ε, ε)×
[t0, t1] →M is a smooth map, with ε > 0, Γ (0, t) = γ (t) and Γ (s, ti) = γ (ti)
for all s ∈ (−ε, ε), i = 0, 1).

1.3. A Riemannian metric on the configuration space

Given g ∈M and X ∈ TgM, let us define the map X̃ : S1 → TS1 by

X̃(q) =
d

dt

∣∣∣∣
0

γ (t) (q) ∈ Tg(q)S1, (4)

where γ is any smooth curve inM with γ (0) = g and γ̇ (0) = X . The map X̃
is well-defined and smooth and it is a vector field on S1 if and only if X ∈ TeM.
Moreover,

X 7→ ‖X‖2 =
1

2π

∫
S1

∣∣∣X̃(q)
∣∣∣2 dm (q) (5)

is a quadratic form on TgM and gives a Riemannian metric onM.

Remarks 2 a) The fundamental property of the metric (5) onM is that a curve γ
inM is a geodesic if and only if (thought of as a Moebius motion) it is force free,
since by (5) and (3), Eγ (t) = π ‖γ̇ (t)‖2.

b) The metric onM is neither left nor right invariant, since we saw in [4] that it is
not even complete.
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2. Force free Moebius motions of the circle

The next theorem describes completely the geometry ofM endowed with the met-
ric (5) given by the kinetic energy. Recall from (1) that Ta denotes the transvection
associated with α and that ∆ is the unit disc centered at zero in C.

Theorem 3 Let ds2 be the metric on the disc ∆ given in polar coordinates (r, θ)
by

ds2 =
2
(
dr2 + r2dθ2

)
1− r2

(6)

and consider on S1 ×∆ the Riemannian product metric, where S1 has length 2π.
Then the map

F : S1 ×∆→M, F (u, α) = uTα

is an isometry.

Remarks 4 a) Note that the metric (6) on ∆ is not the canonical metric of constant
negative curvature on ∆. Indeed, the curvature function can be easily computed
to be K(r, θ) = −1/

(
1− r2

)
, in particular, it tends to −∞ as r → 1−. Also, the

metric on ∆ is not complete, since the inextendible ray (0, 1) � r 7→ Tr has length
π/
√

2, since
∥∥ ∂
∂r

∥∥2 = 2
1−r2 .

b) In the higher dimensional situation [4] it is proven that the group SO(n) (with
the metric induced from the one given by the kinetic energy) is totally geodesic in
the group of directly conformal transformations of Sn, but the author did not know
whether this subgroup is a Riemannian factor, as it turned to be for n = 1. In the
projective case [5], SO(n) is not even totally geodesic.

Proof of Theorem 3. Let S1 ⊂M be the subgroup of isometries of the circle. The
torus S1×S1 acts onM on the left by (u, v) ·g = ugv̄, where (ugv̄) (z) = ug (zv̄)
for any z ∈ S1. We know from the higher dimensional cases in [4] that this action
is by isometries ofM, provided that this group is endowed with the metric (5).

We fix 0 < r < 1. By the torus symmetry just described, it suffices to verify that
dF(1,r) : T(1,r)

(
S1 ×∆

)
→ TF (1,r)M is a linear isometry. We put coordinates

t 7→ eit on S1 and (ρ, θ) 7→ ρeiθ on ∆. We denote ∂x = d
dx . Let X,Y, Z be the

images under dF(1,r) of ∂t, ∂ρ, ∂θ, respectively. It suffices to show that {X,Y, Z}
is an orthogonal basis of TF (1,r)M with

‖X‖2 = 1, ‖Y ‖2 =
2

1− r2
, ‖Z‖2 =

2r2

1− r2
.
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First, we compute X̃ , Ỹ and Z̃ by their definition (4). In each case, we take the
curve γ as the image under F of the coordinate curves in S1×∆ through the point
(1, r). We have

X̃(z) =
d

dt

∣∣∣∣
0

F (eit, r) (z) =
d

dt

∣∣∣∣
0

eitTr(z) = ieitTr(z)
∣∣
t=0

= iTr(z) = i
z + r

1 + rz

Ỹ (z) =
d

dρ

∣∣∣∣
r

F (1, ρ) (z) =
d

dρ

∣∣∣∣
r

Tρ(z) =
d

dρ

∣∣∣∣
r

z + ρ

1 + ρz
=

1− z2

(1 + rz)2

Z̃ (z) =
d

dθ

∣∣∣∣
0

F (1, reiθ) (z) =
d

dθ

∣∣∣∣
0

Treiθ(z) =
d

dθ

∣∣∣∣
0

z + reiθ

1 + re−iθz
=
ri(1 + 2rz + z2)

(1 + rz)2
.

Next we compute

2π‖X‖2 =

∫
S1

∣∣∣X̃ (z)
∣∣∣2 dm(z) =

∫
S1
|iTr(z)|2 dm(z) =

∫
S1

1 dm(z) = 2π.

We have also

2π‖Y ‖2 =

∫
S1

∣∣∣Ỹ (z)
∣∣∣2 dm(z) =

∫
S1

∣∣∣∣ 1− z2

(1 + rz)2

∣∣∣∣2 dm(z).

Setting z = eis, we have

2π‖Y ‖2 =

∫ 2π

0

1

ieis

∣∣∣∣ 1− eis2

(1 + reis)2

∣∣∣∣2 ieis ds =

∫
S1

1

iz

∣∣∣∣ 1− z2

(1 + rz)2

∣∣∣∣2 dz.

Now, the integrand is a complex analytic function inside the circle (observe that
z̄ = 1/z for |z| = 1), except for a simple pole at z = 0 and a pole of order
two at z = −r, with residues i

r2
and i(r2+1)

−r2(1−r2) , respectively. One obtains that
‖Y ‖2 = 2/

(
1− r2

)
. In the same way one gets ‖Z‖2 = 2r2/

(
1− r2

)
.

We claim that the vectors X,Y, Z are pairwise orthogonal. Let h (U, V ) = UV̄
denote the Hermitian inner product on C. We compute∫

S1
h
(
X̃ (z) , Ỹ (z)

)
dm(z) =

∫
S1
f(z) dz,

where f (z) = z2−1
z(1+rz)(z+r) is an complex analytic function inside the circle, ex-

cept for simple poles at z = 0 and z = −r, with residues 1/r and −1/r, respec-
tively. Then,

〈X,Y 〉 = <
∫
S1
h
(
X̃ (z) , Ỹ (z)

)
dm(z) = 0.

Analogously, we find that 〈Y,Z〉 = 〈X,Z〉 = 0. �
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Corollary 5 The force free Moebius motions of the circle, or equivalently, the
geodesics of M, are, via F , of the form γ = (γ1, γ2), where γ1 parametrizes
the circle with constant speed and γ2 is a geodesic in the disc ∆ whose trajectory
coincides with the images of either c1(ρ) = (ρ, θ0) or c2 (θ) = (ρ(θ), θ), where ρ
satisfies the differential equation

(
ρ′
)2

=
µ+ ρ2

(1− ρ2) ρ2
(7)

for some constant µ > −1.

Proof. Clearly, a geodesic of a Riemannian product projects to a geodesic in each
factor. Besides, as the coefficients of the first fundamental form of ∆ depend only
on ρ, the corresponding metric is Clairaut. Then, the trajectories of the geodesics
of ∆ are, in polar form,

c1(ρ) = (ρ, θ0) or c2 (θ) = (ρ(θ), θ)

for some constant θ0, where ρ(θ) satisfies Clairaut’s differential equation, for some
λ:

λE2(ρ) = E(ρ) + (ρ′)2G(ρ).

Since in our case E(ρ) =
∥∥ ∂
∂r

∥∥2 = 2
1−ρ2 and G(ρ) =

∥∥ ∂
∂θ

∥∥2 = 2ρ2

1−ρ2 , the differ-
ential equation is equivalent to (7) for some constant µ > −1. �
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