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Abstract

Suppose that the sphere Sn has initially a homogeneous distribution of mass and
let G be the Lie group of orientation preserving projective diffeomorphisms of Sn.
A projective motion of the sphere, that is, a smooth curve in G, is called force free
if it is a critical point of the kinetic energy functional. We find explicit examples of
force free projective motions of Sn and, more generally, examples of subgroups H of
G such that a force free motion initially tangent to H remains in H for all time (in
contrast with the previously studied case of conformal motions, this property does
not hold for H = SOn+1). The main tool is a Riemannian metric on G, which turns
out to be not complete (in particular not invariant, as it happens with non-rigid
motions), given by the kinetic energy.
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1 Introduction

The force free conformal motions of the sphere Sn have been studied by
the second author in [7], with the aid of a suitable Riemannian metric on
SOo (n + 1, 1), an analogue of the classical description of the force free mo-
tions of a rigid body in Euclidean space using an invariant metric on SO (3)
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[1, Appendix 2]. Other applications of the same technique to the study of the
dynamics of a rigid body in the hyperbolic spaces of dimensions 2 and 3 can
be found in [2,5,6]. In this note we define an appropriate metric on the special
linear group Sl (n + 1,R) to study force free projective motions of the sphere
Sn. In some aspects the situation is similar to the conformal one, but there
are also strong contrasts.

A diffeomorphism F of a Riemannian manifold M of dimension n ≥ 2 is
said to be projective if for any geodesic γ of M , F ◦ γ is a reparametrization
(not necessarily of constant speed) of a geodesic of M . If M is oriented, a
projective transformation of M will be called directly projective if it preserves
the orientation.

Let Sn be the unit sphere centered at zero in Rn+1 and let G be the Lie group
of directly projective diffeomorphisms of Sn. For n ≥ 2, the directly projective
transformations of Sn are exactly those of the form p 7→ Ap/ |Ap| for some
A ∈ Gl+(n + 1,R) (we denote by |Y | the canonical Euclidean norm of the
vector Y ). This was proved by Beltrami for n = 2 and for higher dimensions
the same proof works: Use the central projection of a hemisphere H to a
hyperplane tangent at the center of H, and then the well-known fact that
the projective transformations of Rn are the affine ones (see [4]). We thank
Vladimir Matveev for having told the result to us and for the reference as well.
By definition, the directly projective transformations of the circle S1 are given
by the canonical action of Gl+ (2,R) on the circle, as above. Throughout the
paper, smooth means of class C∞.

1.1 The energy of projective motions

In this subsection and the next one we give some definitions and statements
that are analogous to those given for the conformal (instead of the projective)
situation in [7]. We present them here for the sake of completeness.

Suppose that the sphere has initially a homogeneous distribution of mass of
constant density 1 and that the particles are allowed to move only in such a
way that two configurations differ in an element of G. The configuration space
may be naturally identified with G.

Let γ be a smooth curve in G, which may be thought of as a conformal motion
of Sn. The total kinetic energy E (t) of the motion γ at the instant t is given
by

E (t) = 1
2

∫

Sn
ρt (q) |vt (q)|2 dµ (q) , (1)

where integration is taken with respect to the canonical volume form of Sn
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and, if q = γ (t) (p) for p ∈ Sn, then

vt (q) =
d

ds

∣∣∣∣∣
t

γ (s) (p) ∈ TqS
n, ρt (q) = 1/ det (dγ(t)p)

are the velocity of the particle q and the density at q at the instant t, respec-
tively. Applying to (1) the formula for change of variables, one obtains

E (t) = 1
2

∫

Sn

∣∣∣∣∣
d

ds

∣∣∣∣∣
t

γ (s) (p)

∣∣∣∣∣
2

dµ (p) . (2)

The following definition is based on the principle of least action.

Definition. A smooth curve γ in G, thought of as a projective motion of Sn,
is said to be force free if it is a critical point of the kinetic energy functional.

1.2 A Riemannian metric on the configuration space

Given g ∈ G and X ∈ TgG, let us define the map X̃ : Sn → TSn by

X̃(q) =
d

dt

∣∣∣∣∣
0

γ (t) (q) ∈ Tg(q)S
n, (3)

where γ is any smooth curve in G with γ (0) = g and γ̇ (0) = X. The map X̃ is
well-defined and smooth and it is a vector field on Sn if and only if X ∈ TeG.
Moreover,

X 7→ ‖X‖2 =
∫

Sn

∣∣∣X̃(q)
∣∣∣
2

dµ (q) (4)

is a quadratic form on TgG and gives a Riemannian metric on G. The ver-
ification of the analogous assertions in the conformal case can be found in
[7].

Remarks. (a) The fundamental property of the metric (4) on G is that a curve
γ in G is a geodesic if and only if (thought of as a projective motion) it is force
free, since applying to (1) the formula for change of variables q = γ (t) (p), one
obtains that E (t) = 1

2
‖γ̇ (t)‖2.

(b) For any n, the metric on G is neither left nor right invariant, since we will
see in Theorem 2 below that it is not even complete.
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1.3 Force free projective motions

We fix n ≥ 1 and identify G = Sl (n + 1,R), which acts transitively and
effectively on Sn by A ·p = Ap/ |Ap|. These are exactly the directly projective
transformations of Sn, as we mentioned above.

A great sphere of Sn is the intersection of Sn with a subspace of Rn+1. A flag
of orthogonal great spheres in Sn is a set {Si | i = 0, · · · , l}, where Si = Sn∩Vi

and Vi (i = 0, . . . , l) are nontrivial orthogonal subspaces of Rn+1 whose union
generates Rn+1. Let {e0, · · · , en} be the canonical basis of Rn+1 and let C, H
denote the normed division algebras of the complex numbers and quaternions,
respectively.

Theorem 1 The following subgroups of G are totally geodesic:

a) The set of directly projective transformations of Sn fixing a flag of orthog-
onal great spheres, in particular, those fixing the points of the canonical basis
of Rn+1.

b) For n = 2m − 1, GL1 (m,C) = {A ∈ M (m,C) | |detCA| = 1}, with its
canonical inclusion in G.

c) For n = 4m − 1, Sl (m,H) = {A ∈ M (m,H) | detRA = 1}, with its
canonical inclusion in G.

Theorem 2 Let α : (0,∞) → G be the curve in G defined by α (t) =
diag (1/tn, t, . . . , t). Then any reparametrization of α by arc length is a geodesic,
has finite length and is inextendible. In particular, G is not a complete Rie-
mannian manifold.

Let K = SO (n + 1) be the group of orientation preserving isometries of Sn

and let k denote its Lie algebra.

Theorem 3 (a) K×K acts on G on the left, (h, k) ·g = hgk−1, by isometries
of G. In particular, the metric on K induced from G is bi-invariant and hence
its geodesics through the identity are one-parameter subgroups.

(b) For Z ∈ k, the geodesic σ(t) = exp(tZ) of K through the identity is also a
geodesic of G if and only if Z = λJ for some λ ∈ R and J ∈ k with J2 = −I.
In particular, if n is even, no geodesic of K through the identity (except the
constant one) is a geodesic of G.

Corollary 4 The flow of a Killing field V on Sn is a geodesic of G if and
only if n is odd and V is a Hopf vector field.
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Remark. Part (b) of Theorem 3 contrasts strongly with the conformal situa-
tion in [7], where it is proved that K is totally geodesic in the group of directly
conformal transformations of Sn endowed with the kinetic energy metric.

2 Proofs of the theorems

Proposition 5 Let f, g be isometries of Sn, not necessarily in G, whose deter-
minants are equal, in particular, fhg ∈ G for all h ∈ G. Then f ( h · g (q)) =
(fhg) · q for all q ∈ Sn and Ff,g : G → G, defined by Ff,g (h) = fhg, is an
isometry of G with respect to the metric given in (4).

The proof is similar to the one of the analogous statement in the conformal
situation in [7] and we omit it. In the case when g = f−1 we call Ff,g just Ff .

Corollary 6 If f is an isometry of Sn, then the set of fixed points of Ff is a
totally geodesic submanifold of G.

Proof. It is well-known that each connected component of the set of fixed
points of an isometry is a totally geodesic submanifold. Now, the set of the
fixed points of Ff is a Lie subgroup of G, in particular a submanifold. Hence,
it is totally geodesic submanifold of G. ¤

Proof of Theorem 1. a) We may suppose that the flag of great spheres is
given by the intersection of Sn with subspaces Vi = span {ek | ki ≤ k < ki+1},
0 ≤ i ≤ l, where 0 = k0 < k1 < · · · < kl+1 = n + 1 and 0 ≤ l ≤ n. For
1 ≤ i ≤ l let fi = diag (−Iki

, In+1−ki
) and let Hi be the set of fixed points

of Ffi
, which consists of the matrices of G of the form diag (A,B), with A,B

square matrices with ki and n + 1 − ki rows, respectively. By Corollary 6,
Hi, which is the subgroup of G fixing the subspaces span {e0, · · · , eki−1} and
span {eki

, · · · , en}, is totally geodesic in G. So ∩l
i=1Hi, the subgroup fixing

the given flag of great spheres, is also totally geodesic in G. This holds in
particular when l = n and all the great spheres of the flag have dimension
zero. Thus, (a) is proved. For m ∈ N we denote

J =




0 −Im

Im 0


 , J1 =




0 −I2m

I2m 0


 , J2 =




J 0

0 −J


 . (5)

b) There is a canonical monomorphism ι : Gl (m,C) → Gl (n + 1,R), whose
image consists of the elements of the latter commuting with J . Now, we have by
[3, p 16] that |detC (A)|2 = detR ι (A) for any A ∈ Gl (m,C). Thus, Gl1 (m,C)
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is the set of fixed points of FJ defined on G, and hence totally geodesic in G
by Corollary 6.

c) We identify as usual Gl (m,H) with the set of elements in Gl+ (n + 1,R)
commuting with both J1 and J2 as in (5). So Sl (m,H) is the intersection of
the sets of fixed points of FJ1 and FJ2 defined on G, and hence totally geodesic,
again by Corollary 6. ¤

Proof of Theorem 2. By Theorem 1 (a), the set of diagonal matrices in
G is totally geodesic, since it is the subgroup of G fixing the complete flag
of 0-dimensional great spheres Si = {ei,−ei}, 0 ≤ i ≤ n. So, its connected
component of the identity, D = {diag (a0, · · · , an) | ai > 0} is also totally

geodesic in G. If n = 1, D = α (0,∞). Now, if n > 1, let R =




0 1

1 0


 and Ri =

diag (Ii, R, In−1−i), for 1 ≤ i < n. By Corollary 6, the set Di of fixed points
of FRi

, which consists of the elements of D as above with ai = ai+1, is totally
geodesic in G. Now, an easy computation shows that α (0,∞) = ∩n−1

i=1 Di, so
it is totally geodesic in G. Hence the first assertion is immediate. In order to
check the validity of the second statement, we recall from (4) and (3) that

‖α̇ (t)‖2 =
∫

Sn

∣∣∣X̃t (q)
∣∣∣
2
dµ (q) ,

where X̃t (q) = d
ds

∣∣∣
s=0

γ (s) · q, with γ (0) = α (t) y γ̇ (0) = α̇ (t). We can take

γ (s) = α (s + t) = diag (1/ (s + t)n , (s + t) In) .

Let q ∈ Sn with q = (x0, x), x = (x1, . . . , xn). Then

γ (s) · q =
(
x0, (s + t)n+1 x

)
/
√

x2
0 + (s + t)2n+2 |x|2.

Straightforward computations give

X̃t (q) = tn (n + 1) x0

(
−tn+1 |x|2 , x0x

)
/

(
x2

0 + t2n+2 |x|2
)3/2

,

∣∣∣X̃t (q)
∣∣∣
2
= (n + 1)2 x2

0 t 2n |x|2 /
(
x2

0 + t2n+2 |x|2
)2

.

To integrate we change variables F : (−π/2, π/2) × Sn−1 → Sn, F (θ, y) =
(sin θ, y cos θ) = (x0, x). The Jacobian factor is cosn−1θ, hence
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‖α̇ (t)‖2 =
∫

Sn

∣∣∣X̃t (q)
∣∣∣
2
dµ (q)

=
∫ π/2

−π/2

∫

Sn−1

(n + 1)2 t2n sin2 θ |y cos θ|2
(

sin2 θ + t2n+2 |y cos θ|2
)2 cosn−1 θ dν (y) dθ

= 2 (n + 1)2 vol
(
Sn−1

) ∫ π/2

0

t 2n sin2 θ cosn+1 θ
(
sin2 θ + t2n+2 cos2 θ

)2 dθ

≤ (n + 1)2 vol
(
Sn−1

) ∫ π/2

0

t 2n2 sin θ cos θ

(1− cos2 θ + t2n+2 cos2 θ)2 dθ.

Now we substitute u = cos2 θ and obtain that ‖α̇ (t)‖2 ≤ cn/t2 where cn

depends only on n. Therefore

(
length

(
α|[1,∞)

))2 ≤
∫ ∞

1
‖α̇ (t)‖2 dt < ∞.

Clearly limt→∞ α (t) does not exist, hence α cannot be extended. ¤

Let k = so (n + 1) be as above the Lie algebra of K and let p be the subspace
of symmetric matrices in g, the Lie algebra of G.

The statement of the following proposition is analogous to the one in the
conformal situation in [7], but the proof is different and we include it.

Proposition 7 With respect to the metric on G defined in (4), 〈k, p〉 = 0.

Proof. For any Y ∈ g ∼= TeG and q ∈ Sn we have

Ỹ (q) =
d

dt

∣∣∣∣∣
t=0

etY · q =
d

dt

∣∣∣∣∣
t=0

etY q/
∣∣∣etY q

∣∣∣ = Y q − 〈Y q, q〉 q.

Let Z ∈ k, X ∈ p. Since Z is skew-symmetric, 〈Zq, q〉 = 0, and we compute

〈Z, X〉 =
∫

Sn

〈
Z̃ (q) , X̃ (q)

〉
=

∫

Sn
〈Zq, Xq〉 =

∑

i,j,`

ZijXi`

∫

Sn
xjx`,

if q = (x0, . . . , xn). Now,
∫
Sn xjx` = 0 if j 6= `, since xjx` is an odd function

on Sn with respect to the reflection fixing e⊥j . Therefore

〈Z, X〉 =
∑

i,j

ZijXij

∫

Sn
x2

j =
∑

i,j

ZijX
t
ji

∫

Sn
x2

0 = tr
(
ZX t

) ∫

Sn
x2

0,

which vanishes since X t = X and Z + Zt = 0 imply that tr (ZX t) = 0. ¤

Lemma 8 Let f (t, s) be a smooth never vanishing function from an open
neighborhood of 0 in R2 to a vector space, such that 〈f (0) , fs (0)〉 = 0 and
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|f (0)| = 1, and let h = f/ |f |, then

d

dt

∣∣∣∣∣
0

|hs(t, 0)|2 = 2〈fs,t (0) , fs (0)〉 − 2〈ft (0) , f (0)〉 |fs (0)|2 , (6)

where the subindexes s, t denote partial derivatives with respect to s, t.

Proof. One computes that |hs|2 = A − B, where A = |fs|2 / |f |2 and B =(
〈fs, f〉 / |f |2

)2
. Further straightforward computations, using the conditions

on f , yield that (d/dt)|0 B (t, 0) = 0 and (d/dt)|0 A (t, 0) equals the right
hand side of (6). Thus, the lemma follows. ¤

Proof of Theorem 3. The proof of (a) is immediate from Proposition 5. Now
we prove (b). The proof will not be very simple because of the fact that the
metric on G is not invariant. Let us denote γZ (t) = exp (tZ). By (a), writing
γZ (t + to) = γZ (to) γZ (t), we have that γZ is a geodesic in G if and only if
(∇ZZ)e = 0, or equivalently, 〈(∇ZZ)e , Y 〉 = 0 for all Y ∈ g. By the formula
for the Levi-Civita connection we have

2 〈(∇ZZ)e , Ye〉 = 2Ze 〈Y, Z〉 − 2 〈[Z, Y ]e , Ze〉 − Ye ‖Z‖2 . (7)

Now, since K ×K acts by isometries on G by (a), we have

〈Y, Z〉exp(tZ) =
〈
dLexp(tZ)Ye, dLexp(tZ)Ze

〉
= 〈Ye, Ze〉

for all t. Hence the first term of the right hand side of (7) is zero. Now write
Y = Z ′+X, with Z ′ ∈ k and X ∈ p. Again by the K-invariance, 〈[Z, Z ′]e , Ze〉
and Z ′

e ‖Z‖2 both vanish. Finally, 〈[Z, X]e , Ze〉 = 0 by Proposition 7, since
g = k ⊕ p is a Cartan decomposition and so [k, p] ⊂ p. Consequently, by (7),
γZ is a geodesic in G if and only if Xe ‖Z‖2 = 0 for all X ∈ p.

Call Ut = Z (exp (tX)) = dLexp(tX) (Ze). Fix momentarily q ∈ Sn and let
f (t, s) = exp (tX) exp (sZ) q and h = f/ |f |. Now, f (0) = q, ft (0) = Xq,
fs (0) = Zq and fs,t (0) = XZq. Since Z is skew symmetric, f satisfies the
hypotheses of Lemma 8 and so we have by (6) that

d

dt

∣∣∣∣∣
0

∣∣∣∣∣
∂h

∂s
(t, 0)

∣∣∣∣∣
2

= 2〈XZq, Zq〉 − 2〈Xq, q〉 |Zq|2 .

On the other hand,

Xe

(
‖Z‖2

)
=

d

dt

∣∣∣∣∣
t=0

‖Z (exp (tX))‖2

=
d

dt

∣∣∣∣∣
t=0

∫

Sn

∣∣∣Ũt (q)
∣∣∣
2
dµ (q) .
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Now, since Ũt (q) = ∂h
∂s

(t, 0) (take γ (s) = etXesZ in (3)), we have that

Xe

(
‖Z‖2

)
= 2

∫

Sn
〈XZq, Zq〉 − 〈Xq, q〉 |Zq|2 dµ (q) . (8)

Clearly we may consider Z in k up to multiples. Suppose first that Z2 = −
id. We can distribute the integral and, since Z is orthogonal, change variables
p = Zq in the first term, with Jacobian factor one. Hence Xe

(
‖Z‖2

)
= 0,

since |Zq| = 1.

Now suppose that Z2 6= λ id for any λ. After conjugating by an element of K
and multiplying by a suitable constant, we may suppose that either

Z = Z0 = diag (Jo, 0, B0) or Z = Z1 = diag (Jo, aJo, B1) ,

where Jo =




0 −1

1 0


, B0 ∈ son−2, B1 ∈ son−3 and |a| 6= 1 (the last case

only if n ≥ 3). Let X = diag (0, 1,−1, 0n−2) ∈ p. First we consider the case
Z = Z0 and show that Xe ‖Z0‖2 6= 0, and hence γZ0 is not a geodesic in G. If
q = (x0, x1, x2, x), one computes

〈XZ0q, Z0q〉 = x2
0, 〈Xq, q〉 = x2

1 − x2
2, |Z0q|2 = x2

0 + x2
1 + |B0x|2 .

Therefore the integrand of (8) equals

x2
0 −

(
x2

1 − x2
2

)
x2

1 −
(
x2

1 − x2
2

) (
x2

0 + |B0x|2
)

,

whose last term is an odd function on Sn with respect to the reflection fix-
ing the hyperplane x1 = x2. Hence its integral over the sphere is zero and
consequently,

Xe ‖Z0‖2 = 2
∫

Sn
x2

0 − x4
1 + x2

2x
2
1 = 2

∫

Sn
x2

0

(
1− x2

0 + x2
1

)
> 0,

since clearly
∫
Sn x4

1 =
∫
Sn x4

0 and
∫
Sn x2

2x
2
1 =

∫
Sn x2

0x
2
1, and also |x0| ≤ 1.

Similar computations yield Xe ‖Z1‖2 = (1− a2) Xe ‖Z0‖2, which does not van-
ish since |a| 6= 1. ¤
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