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Abstract

Let N be a pseudo-Riemannian manifold such that £°(N), the space of all its
oriented null geodesics, is a manifold. B. Khesin and S. Tabachnikov introduce
a canonical contact structure on L£°(N) (generalizing the definition given by
R. Low in the Lorentz case), and study it for the pseudo-Euclidean space. We
continue in that direction for other spaces.

Let S*™ be the pseudosphere of signature (k,m). We show that £°(S%™)
is a manifold and describe geometrically its canonical contact distribution in
terms of the space of oriented geodesics of certain totally geodesic degenerate
hypersurfaces in S¥™. Further, we find a contactomorphism with some standard
contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian
manifold. Also, we express the null billiard operator on £°(S*™) associated with
some simple regions in S¥™ in terms of the geodesic flows of spheres.

For N the pseudo-Riemannian product of two complete Riemannian mani-
folds, we give geometrical conditions on the factors for £°(N) to be a manifold
and exhibit a contactomorphism with some standard contact manifold.
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1 Introduction

Let N be a complete pseudo-Riemannian manifold. Let v, denote the unique geodesic
in N with initial velocity u. Two null geodesics v, and =, are said to be equivalent if
there exist A > 0 and ¢t € R such that v = M, (t). In particular, they have the same
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trajectory and orientation. We call L°(N) the set of all equivalence classes of oriented
null geodesics of N.

For X € T,N we denote | X| = (X, X) and |X| = /[(X,X)|. For r = 0,1, let
T'"N ={u € TN ||ul| =ru#0}.

By abuse of notation, we say that £°(N) is a manifold if it admits a differentiable
structure (not necessarily Hausdorff) such that the projection II : T°N — LO(N),
II(u) = [y4], is a smooth submersion (throughout the paper, smooth means C*). This
is not always the case, see for example the pseudo-Riemannian metric on the torus
T? given in [8] such that the trajectory of each null geodesic is dense. Nevertheless,
infinitesimal considerations at a fixed [y] € L°(N) are always possible, for instance by
means of Jacobi fields along ~.

B. Khesin and S. Tabachnikov introduce in [5] a canonical contact structure on
LO(N), provided that it is a manifold (generalizing the definition given in the Lorentz
case by R. Low in [8]), and study it for the pseudo-Euclidean space. We continue in
that direction for other spaces such as pseudospheres and some products.

Let R¥1™ he the pseudo-Euclidean space of signature (k+1,m), that is, R x R™
endowed with the inner product whose norm is given by |[|(u,v)|| = |u|? — |v]* (here,
| - | denotes the norm of the canonical inner product on the Euclidean space). The
pseudosphere of radius 1 in R¥*1™ is the hyperquadric

St ={p e R*M™ [ (p,p) = 1} = {(u,v) € RV [[uf* — Ju]* =1},

which is a hypersurface of R¥F1™ with induced metric of signature (k,m). Notice that
the Lorentz pseudosphere S*! is the de Sitter space. The null geodesics of S¥™ are
straight lines in R¥+1™ with initial velocity in 7°S%™. See other geometric properties
of pseudospheres for example in [9)].

In section 3 we show that £°(S*™) is a manifold and it is contactomorphic to
the unit tangent bundle of a certain pseudo-Riemannian manifold. Besides, we de-
scribe geometrically its canonical contact distribution in terms of the space of oriented
geodesics of some totally geodesic degenerate hypersurfaces in S*™. In this section we
also express the null billiard operator on £°(S*™) associated with some simple regions
in S¥™ in terms of the geodesic flow of spheres.

Given M and N complete Riemannian manifolds, we consider on M x N the pseudo-
Riemannian metric whose norm is defined by ||(u,v)|| = |u|%; — |v|%, for each (u,v) €
Tipg) (M x N) and (p,q) € M x N. We denote this pseudo-Riemannian manifold by
M, x N_. In section 4 we prove that £L°(M, x N_) is a manifold if the geodesic
flow of M is free and proper. We also find conditions on M for the existence of a
contactomorphism between £°(M, x N_) and L(M) x T*N, where L(M) is the space
of oriented geodesics of M.

Spaces of geodesics, their geometric structures and their applications have also
been studied for instance in [1, 2, 4, 11, 12, 13].



2 Preliminaries

As in the introduction, let N be a complete pseudo-Riemannian manifold and £°(V)
the set of all equivalence classes of oriented null geodesic of N.

Let A = Aff (R) be the Lie group of orientation preserving affine transformations
of R and consider the right action from A on T°N given as follows: if u € T°N and
g€ A,

wg = G| o). (1)

If this action is free and proper, then L%(N) ~ T°N/ A is a Hausdorff differentiable
manifold such that the canonical projection II : T°N — L°(N) is a submersion (see
for instance Proposition 2.3.8 of [10]).

Let w : TN — N be the canonical projection and for r = 0,1 1let i : T"N — T'N
be the inclusion. Let 6 and « be the canonical 1-forms on T'N and T" N respectively,
that is, for u € TN and £ € T, TN,

0.(8) = (u,dm,§) and  «a=7i"0. (2)

Definition. [5, 8] Let N be a pseudo-Riemannian manifold such that L°(N) is a
manifold. The canonical contact distribution D on LO(N) is well defined by

Driwy = d 11, (Ker ay,), (3)
for each uw € T°N.

The canonical contact structure is presented here following the approach of [8], in
a slightly different way as in the article [5] by Khesin and Tabachnikov (they define it
in two steps via the space of scaled light-like geodesics, obtaining at the same time a
symplectization of LO(NN)).

3 The canonical contact structure on £°(S%™)

The following theorem is motivated by the fact that unit tangent bundles of pseudo-
Riemannian manifolds are among the standard examples of contact manifolds (with
contact form as in (2)).

Let S% x S™! be the manifold S* x S™~! with the pseudo-Riemannian metric
such that for each (x,y) € T(y)(S* x S™7 1), ||(z,y)|| = |z]* — |y|*.

Theorem 1. The set L°(S*™) is a manifold and if one considers on L°(S*™) and

TSk x S™71) the canonical contact structures, then the map
F TS x S0 = LYS5™), F((u,v), (2,y) = [,

with y(t) = (x,y) + t(u,v), is a contactomorphism.



Proof. First we prove that £°(S%™) is a manifold. As explained above, since a straight-
forward computation yields that the action of A is clearly free, is suffices to check that
the action is proper. In fact, let (p,,u,) be a sequence converging to (p,u) in T°S%™
and let (s,, A,) be a sequence in R x R, = A such that (p,,u,) - (sn, An) converges
to (g,v) in T°S*™ We have to show that there exists a convergent subsequence of
(82, \n) in A. The footpoints p, converge to p in S®™ and as the null geodesics in
Skm are straight lines, for each n € N, (pn, un) * (Sn, A\n) = (Pn + Snlin, Ay, ). Hence,
by hypothesis, \,u, — v and p,, + s,u,, — ¢ as well. Considering the canonical inner
product (,) on R¥1+™ gince u # 0, we obtain that

Ay, — (U,u>/|u\2 and s, = (g —p, u>/|u|2

Next, we verify that F' is a diffeomorphism. The map is well defined since given
(z,y) € T(1 (8% x S™1), we have that

u,v)
lul> =1= |, (u,z) =0=(v,y) and |z]*—|y|? = 1. (4)

Then, (z,y) € S*™, (u,v) € (z,y)" = T(y)S™™, [|(w,v)|| = 0 and ¢ — (z,y) + t(u, v)
is a null geodesic in S*™. Thus, F((u,v), (z,y)) € LO(S"™).

Now, F'is smooth since all the spaces involved are (quotients of) embedded sub-
manifolds of E = RFFIH™ x R and g: E — E, g((u,v), (z,y)) = ((z,9), (u,v)),
is obviously smooth and descends to F'.

On the other hand, if v is a null geodesic in S*™, then ~(t) = (x,y) + t(u,v) with
(z,y) € S¥™ 0 # (u,v) L (z,y) in R¥™ and |ul? — |v|> = 0. So, we have that

FH (D) = (lul ™ (u,0), (@) = [ul (2, u)(u, v)) (5)

and this is a smooth map.

Finally, we check that F'is a contactomorphism, that is dF'(Kerw) = D, where D
is defined in (3) and w is the canonical contact form on T%(S* x S™7 ') as in (2).

Let p: TH(Sk x S™71) — Sk x S™~! be the canonical projection and let f : T*(S* x
Sy — T0S% ™ be the restriction of g defined above. Let U = ((u,v), (z,y)) €
TH(Sk x S™7') and let £ € Kerwy. Since F' = Il o f, we only have to verify that
dfy € € Ker ay ). For this, let ¢ — (c(t), 2(t)) be a curve in T'(S% x S™ ") such that
c(0) = (u,v), 2(0) = (x,y) and with initial velocity &.

By definition of w, we have that

0 =wy(£) = (dpu €, 2(0)) = (c'(0), 2(0)).

Since (z(t),c(t)) = f(c(t), 2(t)) € T°S*™ it follows that c(t) L z(t) in R¥L™ for
all t. Then,

0=~ . (c(t), (1)) = (c(0), 2(0)) + {c(0), 2°(0)).

Therefore,
ayw) (dfv &) = (dmp) (dfv €), ¢(0)) = (d(m o flu & ¢(0)) = (2'(0),c(0)) = 0.
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Consequently, dFyr§ € Dpy, and since both contact distributions have the same
dimension, they are equal. O]

The following is an analogue of Proposition 2.6 (1) of [5].

Proposition 2. Let y(t) = p + tu be a null geodesic in S¥™. Let H be the totally
geodesic degenerate hypersurface of S¥™ containing the image of v, given by H =
utNS*™ and let L(H) be the space of all oriented geodesics of H. If D is the canonical
contact distribution on L°(S*™), then, at the infinitesimal level,

Dy = Tpy) £(H).

Proof. The statement is meant in the following sense (we do not address the question
whether £(H) is a manifold): Given X = dIIj,)(§) € D}, (we recall that D is defined
in (3)), there exists a variation by geodesics contained in H whose associated Jacobi
field along v satisfies .J(0) = dm,& and J'(0) = K, (€) (here K, : T,T°S*™ — Ty, S&™
is the connection operator).

Specifically, since ¢ € Ker v, C T, T°S*™ we have that (dm,&, u) =0 = (K, (£),u)
and this implies that dm,&, K, (&) € Trw)H. Let ¢ be a curve in H such that ¢(0) = 7(u)
and ¢’(0) = dm,& and consider

s = v(s) = 75 (u+ sKu(£)),

where 77 denotes the parallel transport along ¢ from 0 to s. Since H is totally geodesic
and u + sK,(§) € Trw)H for all s € R, we obtain that v(s) € T, H and the image of
Yo(s) is contained in H for any s (see for instance [9, page 125]). Besides, since

D

0) = d —
v(0) =u an s

. U(S) = Ku(f))

d
then the Jacobi field J(s) = —

o Yu(s)(t) along v has the desired properties. O

0

3.1 Billiards

We recall the definition of the null billiard map (see Section 3 of [5]) in a special case.
Let N be a complete pseudo-Riemannian manifold and let R be a region in N with
smooth nondegenerate boundary M. We require additionally that any null geodesic ~y
intersecting the interior of R satisfies that v(R) N R = ~([to, t1]). We call £ C LO(N)
the set of all oriented null geodesics intersecting the interior of R.

Let v be a null geodesic of N such that [y] € £. Decompose #(t;) into its tangential
and normal components, that is, §(t;) = v’ + vt with v’ € T,4,)M and ut €
(T t,yM)*. The null billiard operator B is well defined in the following way:

B:2— & B() =, with w=u"—u*.

As in the pseudo-Euclidean case [5], the null billiard operator preserves the contact
structure on £°(N). For the sake of completeness, we include this fact as a proposition.
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Proposition 3. Let N be a complete pseudo-Riemannian manifold and let R be a
region in N as above. Then the canonical contact structure on LO(N) is preserved by
B.

Proof. Let { € £ and X € D,. By the definition of L°(N) we can take u € T°N
such that II(u) = ¢ and m(u) € M. There exists n € Kera, such that dIl,n = X.
Since TrwyN = Ru + TrwyM, then dm,n = Au + v, with v € Tr,yM and X € R.
Let 7: T, TN — TN X Tr@w)N be the isomorphism given by 7(§) = (dm,&, K.(£)).
Thus, { = 77 (v, K,(n)) satisfies that £ € Ker oy, d11,§ = X and dn,§ € TryM. Let
¢ be a curve in M with initial velocity dm,£. Since 7|70y is a submersion, there exists
a curve t — u(t) in T°N such that u(0) = u, v/(0) = £ and 7(u(t)) = c(t). So,

0= 0, (§) = (w(0), dmyyu’(0)) = (u(0),c’(0)). (6)
We decompose u(t) = u”(t) + u*(t), where v’ (t) € T,y M and u*(t) € (TopM)*
(we recall that M is supposed to be nondegenerate). Taking ¢(t) = II(u(t)), we have

d

dBy X = —| B({(t)) = —

X = | B =5

We observe that 7(u” (£) — u*(t)) = ¢(t). Thus, to see that dB; X € Dp() we only
have to show that

OH(uT(t) —utt)).

(" (0) — u*(0), ¢(0)) = 0. (7)

But, by (6) and the fact that ¢'(0) € T.)M, we obtain that (u”(0),¢’(0)) = 0, and
this implies that (7) holds.

Finally, since D has constant dimension and dB, is nonsingular, it follows that
dBy Dy = Dp). OJ

For ¢ > 0, let R, be the region in S*™ given by
Re = {(u,v) € S"™ |]v] < c},

with boundary M. = {(u,v) € S¥™||v| = ¢}, which is nondegenerate since V (u,v) =
(cu, (1 + ¢*)v) is an outside pointing normal time-like vector field.

We write the null billiard operator B via F' of Theorem 1, in terms of the geodesic
flow of spheres. For this, we consider the map

i TH(SE x 8™ 5 TSF xTS™ 1, i((u,v), (z,9) = (v, 2), (v,9))-

As before, we call £ the set of all oriented null geodesics in S*™ that intersect the
interior of R. and denote L =io F~1(£) c TSk x TS™ L.
We call ¢ and 1) the geodesic flows of S¥ and S™ !, respectively.

Proposition 4. Let B : L — L be the conjugate of the null billiard operator on £ by
the map i o F~1. Then,

B((u, ), (v,9)) = (|2] a0, (uw, 2/]2]), [yl 20, (v, y/1y])), (8)
where 0, 0, € (=75,0] are such that |x|tant, = —/c? — |y|> = |y| tan §,.
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Proof. Let ((u,x),(v,y)) € L. Using (4), we find that t; = /c® — |y|? is as in the
definition of the null billiard operator. So, we have that F'((u,v), (x,y)) = [y] with
v(t) = (z,y) + t1(u,v) + t(u,v) and we can decompose the vector (u,v) into its tan-
gential and normal parts at v(0). Indeed,

1 1
(1.0)" = (ol = ), oo — ) )

and  (u,0)t = (1i (tu+ 1), 2 (tlv—i—y)).

Then, by definition of B and using the expression for the inverse of I given in (5),
we obtain that B((u,z), (v,y)) = (u’,2"), (v',y’)), where

(ul,x/) _ |$|2—t%u_2t1|$| z | | 2t1|$| +|:L'|2—t%£
1+ 1+ || 1+ 1+ |z

= |CE| 26, (U, CL'/|ZU|),

with 6, such that tanf, = —t;/|z|, and

P> =6 2tfyl v 2t1|y| lyl> =t y
<v’,y'>:( e

c 2y |yl
= |yl e, (v, y/yl),

with 6, such that tan6, = —t;/|y|. O

Corollary 5. (Lorentz case) Let B be the conjugate of the null billiard operator on
LO(S%) by the identifications LO(S*') ~ TH(S% x SY) ~ T1S* x {—1,1}, then

B((U,l’),f) = (90 f2arctan(c)(u7 iL‘), _6)7

where v € S*, x Lu and e = £1.

4 The canonical contact structure on £L°(M, x N_)

Let M and N be complete Riemannian manifolds. Let M, x N_ be the manifold M x N
with the pseudo-Riemannian metric whose norm is defined by ||(u,v)|| = |ul3; — |v|3,
for each (u,v) € T, q) (M x N) and (p,q) € M x N.

Let £(M) be the space of oriented geodesics of M, that is, the quotient of T M
by the action of R on it determined by the geodesic flow of M.

We call py, py the projections of £(M) x T'N onto the first and second factors,
respectively, and let a; and a, be the canonical 1-forms on 7'M and T* N, respectively,
defined as in (2).



Theorem 6. Let M and N be complete Riemannian manifolds such that the geodesic
flow of M is free and proper. Then, LO(M, x N_) is a manifold. Suppose additionally
that there exists a smooth global section S : L(M) — T'M. Then 0s = piS*a; — phay
is a contact 1-form on L(M) x T'N and the map

G:L(M)xT'N — LM x N_), G([o],v) = [(Vs(o])» )]

is a contactomorphism, where LO(M, x N_) is endowed with its canonical contact
structure.

Proof. First, notice that £(M) = T'M/R is a manifold since the geodesic flow of
M is free and proper. Now, £°(M, x N_) is also a manifold since the right action
from A on T°(M, x N_) defined in (1) turns out to be proper and free. Indeed, the
action is free due to the fact that the geodesics have constant speed and the geodesic
flow of M is free. On the other hand, given a sequence (uy,,v,) converging to (u,v)
in T°(M, x N_) and a sequence (s,,\,) in R x Ry = A such that the sequence
(Uns V1) * (Sns An) = (MY, (Sn)s Ao, (8n)) converges to (z,w) in T°(M, x N_), then
we have that
MYu, (Sn) = 2z and  w, — u

in TM. So,
Al Y (80)] = 12| and [, (sn)| = |u| # 0,

and then \, — |z|/|u|. Furthermore, since

"Vun/\unl(|un|3n) = |un|_1 Yun (8n)  and  Fy, (s,) = )‘;I(An Youn (80)) = |u|z/|z|,

we obtain that
'.Yun/\unl(|un|3n) — 2/l

in T' M. Since the sequence u,, /|u,| converges to u/|u| in T* M and the geodesic flow of
M is proper, there exits a subsequence |uy,|s,, converging to some s in R. Therefore,
(8n;, An;) — (s/]ul, |2]/|ul) in A, and so the action is proper.

To verify that (L(M) x T'N,6s) is a contact manifold we show that G is a dif-
feomorphism such that dG(Kerfg) = D, where D is the contact distribution as in
(3).

Let h : T'M x T'"N — T°(M, x N_) be the canonical inclusion. Since G =
[Toho (S xid) and any of these maps is smooth, we obtain that G is smooth.

Let mp : T'M — L(M) be the canonical projection. Under the hypothesis on
the geodesic flow of M, (T'M, my, L(M)) is an R-principal bundle (see for instance
[10, Proposition 2.3.8 (iii)]). So, there exists a smooth map = : T*M — R such that
S(map(u)) = Au(x(u)). Then, if v and o are geodesics in M and N, respectively, such
that [(y,0)] € L°(M, x N_), we have that

G LMy x N2) = LIM) x TN, G7H([(v,0)]) = ([l o (())),



where u = %(0)/|%(0)] € T*M and v = 5(0)/|65(0)| € T*N. Since G~! o 7y is smooth
and 7y is a submersion, it follows that G~! is a smooth map. Therefore, G is a
diffeomorphism.

Finally, we check that dG(Kerfg) = D. For this, let p = ([o],v) € L(M) x T'N
and take (¢,n) € Ker (fs),. Let t — ({;,v;) be a curve in L(M) x T'N such that
(Lo, v9) = p and (£, v5) = (§,m). Since G (b, v) = I1(S(¢;),v;), then

d d

Gp(&sm) = dt G(ly,v) = d1L(s(o)),0) 7 (S(4), vy).
0

By definition of D, we only have to verify that X = %‘0 (S(€y),ve) is in Ker os((o)),v)-
If we call 7! : T'M — M and 72 : T'N — N the canonical projections, we have that

A7 (s (o)) ) X = (A7 g7 (dS01€), drs(n)).

Then,

(S([o]); v), dm(s((o]),0)X)
S([0]), dms ) (dsmf)m — (v, dm(n))w

(3([o]),0) (X) (

(
= (S« ) 1(6) = (a2)u(n)
= (S

(

Y41 p2a2) ([U}),v)<£>77)
9)( n) =0.

Hence, dG,(&,n) € Dg(p). Since dG(Ker 5) and D have the same dimension, we obtain
their equality. Consequently, since D is a contact distribution, fg is a contact 1-form
on L(M) x T'N and G is a contactomorphism. O

Ezample 1. Writing R™* = R} x R* one has LO(R™*) ~ L(R") x T'R* ~ T'S"* x
R* x S*=1. Proposition 2.6 (2) in [5] gives another presentation of £9(R™*), in terms
of 1-jets, which has the advantage of being natural.

Example 2. If M is either a Hadamard manifold or the paraboloid of revolution
{(x,y,2* +y?) | x,y € R}, then L(M) is a manifold and has a smooth section into
TYM, and hence it satisfies the hypotheses of Theorem 6.

Suppose first that M is a Hadamard manifold. The geodesic flow of M is free since
the exponential map is a diffeomorphism at every point. Besides, given a sequence
(P, vn) converging to (p,v) in T*M and a sequence t,, in R such that (v, (1), Yo, (tn))
converges to (q,u), we have that d(p,, Y., (t,)) = |tn], because geodesics in M minimize
the distance. Since the distance is a continuous map, it follows that |¢,| — d(p, ¢). Then
the sequence t,, has a convergent subsequence and the geodesic flow of M is proper.
Therefore, £(M) is a manifold.

Fixing p € M, let H : T(TyM) — L(M) be the map defined as follows: Let
X € Tle and Y € T,M with X 1Y, then H(X,Y) is the oriented geodesic with
initial point exp,(Y’) and initial velocity the parallel transport of X along the geodesic
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t > exp,(tY'). Proposition 4.14 of [3] asserts that H is a diffeomorphism. Thus, there
exists a global section from £(M) into 7'M, namely, S assigns to each oriented unit
speed geodesic of M its velocity at the closest point to p.

Now, let M be the paraboloid of revolution. The geodesic flow ¢; is free since M
has no periodic geodesics (see [6, Example 2.9.2]). Next, we show that it is proper.
Suppose that u,, — v and ¢y, (u,) — 2z in T*M. Let ¢ > 0 such that the footpoints of u
and z belong to the interior of C'= {p € M | z < ¢}. Hence, for n > N the footpoints
of u, and ¢y, (u,) also belong to the interior of C. Now, again by [6, Example 2.9.2],
C' is totally convex. Hence, by Proposition 2.9.14 in [6], there exists L > 0 such that
every geodesic segment in C' has length < L. In particular, |¢,| < L, since |t,| is the
length of the geodesic segment 7, |; , where I,, = [0,,] for t, > 0 and I,, = [t,,, 0] for
t, < 0. Therefore, t,, has a convergent subsequence.

The existence of a smooth global section is proved in an analogous way as for
a Hadamard manifold. Notice that each geodesic in the paraboloid which is not a
meridian has an infinite number of self-intersections.
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