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Abstract

Let M be the three dimensional complete simply connected manifold of
constant sectional curvature 0, 1 or −1. Let L be the manifold of all (un-
parametrized) complete oriented geodesics of M , endowed with its canonical
pseudo-Riemannian metric of signature (2, 2) and Kähler structure J . A smooth
curve in L determines a ruled surface in M .

We characterize the ruled surfaces ofM associated with the magnetic geodesics
of L, that is, those curves σ in L satisfying∇σ̇σ̇ = Jσ̇. More precisely: a time-like
(space-like) magnetic geodesic determines the ruled surface in M given by the
binormal vector field along a helix with positive (negative) torsion. Null mag-
netic geodesics describe cones, cylinders or, in the hyperbolic case, also cones
with vertices at infinity. This provides a relationship between the geometries of
L and M .

Key words and phrases:1 manifold of oriented geodesics, Hermitian symmetric space,
magnetic flow, ruled surface, horospherical distribution

1 Introduction

For κ = 0, 1,−1, let Mκ be the three dimensional complete simply connected manifold
of constant sectional curvature κ, that is, R3, S3 and the hyperbolic space H3. Let Lκ
be the manifold of all (unparametrized) complete oriented geodesics of Mκ. We may
think of an element c in Lκ as the equivalence class of unit speed geodesics γ : R→Mκ

with image c such that {γ̇(s)} is a positive basis of Tγ(s)c for all s.
Let γ be a complete unit speed geodesic of Mκ and let Jγ be the space of all

Jacobi fields along γ which are orthogonal to γ. There exists a well-defined canonical
isomorphism

Tγ : Jγ → T[γ]Lκ, Tγ(J) =
d

dt

∣∣∣∣
0

[γt], (1)
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where γt is any variation of γ by unit speed geodesics associated with J (see [8]).
A pseudo-Riemannian metric of signature (2, 2) can be defined on Lκ as follows

[9]: For X ∈ T[γ]Lκ, the square norm ‖X‖ = 〈X,X〉 is well defined by

‖X‖ = 〈γ̇ × J, J ′〉, (2)

where X = Tγ(J), the cross product × is induced by a fixed orientation of Mκ and J ′

denotes the covariant derivative of J along γ. Indeed, the right hand side of (2) is a
constant function. In the following, for any vector X, we will denote ‖X‖ = 〈X,X〉 and
|X| =

√
|〈X,X〉|. Recall that X is null, time-like or space-like if ‖X‖ = 0, ‖X‖ < 0

or ‖X‖ > 0, respectively.
Let [γ] ∈ Lκ and let Rγ be the rotation in Mκ fixing γ through an angle of π/2.

This rotation induces an isometry R̃γ of Lκ whose differential at [γ] is a linear isometry
of T[γ]Lκ squaring to −id. This yields a complex structure J on Lκ. With the metric
defined above, Lκ is Kahler.

A magnetic geodesic σ of Lκ is a curve satisfying ∇σ̇σ̇ = Jσ̇. These curves have
constant speed, so they will be null, time-like or space-like.

A smooth curve in Lκ determines a ruled surface in Mκ. For κ = 0,−1, a generic
geodesic of Lκ describes a helicoid in Mκ [5, 4, respectively]. Our purpose is to char-
acterize the ruled surfaces in Mκ associated with the magnetic geodesics of Lκ. For v
∈ TMκ, γv denotes the geodesic of Mκ with initial velocity v.

Theorem 1 A generic magnetic geodesic σ of Lκ describes the ruled surface in Mκ

given by the binormal vector field of a helix. More precisely, σ is a time-like (space-like)
magnetic geodesic of Lκ if and only if σ has the form

σ(t) = [γB(t)], (3)

where B is the binormal vector field of a helix in Mκ with curvature k, speed 1/k and
positive (negative) torsion, for some k > 0.

Now we study null magnetic geodesics in L−1 = L (H3). We recall some concepts
related with the hyperbolic space (see for instance [3]).

Two unit speed geodesics γ and α of H3 are said to be asymptotic if there exists a
positive constant C such that d(γ(s), σ(s)) ≤ C, ∀s ≥ 0. Two unit vectors v, w ∈ T 1H3

are said to be asymptotic if the corresponding geodesics γv and γw have this property.
A point at infinity for H3 is an equivalence class of asymptotic geodesics of H3. The

set of all points at infinity for H3 is denoted by H3(∞) and has a canonical differentiable
structure diffeomorphic to the 2-sphere. The equivalence class represented by a geodesic
γ is denoted by γ(∞), and the equivalence class represented by the oppositely oriented
geodesic s 7→ γ(−s) is denoted by γ(−∞).

Given v ∈ T 1H3, the horosphere H(v) is the limit of metric spheres {Sn} in H3

that pass through the foot point of v as the centers {pn} of {Sn} converge to γv (∞).
Below we present a more precise definition.
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Let ψ± : L (H3)→ H3(∞) be the smooth functions given by ψ±([γ]) = γ(±∞) and
let D± be the distributions on L (H3) given by D±[γ] = Ker (dψ±[γ]). These distributions

are called the horospherical distributions on L (H3).

Cones with vertices at infinity : Let x ∈ H3(∞) and let vo ∈ T 1H3 such that γvo(±∞) ∈
x. Let t 7→ v(t) be a curve in T 1H3 such that v(0) = ±vo, v(t) is asymptotic to ±vo
for all t ∈ R and the foot points of v(t) lie on a circle of geodesic curvature ±k (with
k > 0) and speed 1/k in the horosphere determined by ±vo. Under these conditions we
say that the curve in L (H3) given by t 7→ [γ±v(t)] describes a forward cone with vertex
at x (for +) or a backward cone with vertex at x (for −). These cones can be better
visualized in the upper half space model of H3 (in particular H3 (∞) = {z = 0}∪{∞}):
Let γ±t (s) =

(
1
k

cos (t) ,± 1
k

sin (t) , e±s
)
. A curve σ in L (H3) describes a cone with

forward (respectively, backward) vertex at ∞ if it is Sl (2,C)-congruent to t 7→
[
γ+
t

]
(respectively, to t 7→

[
γ−t
]
).

Theorem 2 A null magnetic geodesic of L (H3) describes in H3 a cylinder, a cone
with vertex at p ∈ H3 or a cone with vertex at infinity. More precisely, if σ is a curve
in L (H3), then

a) σ is a null magnetic geodesic with σ̇(0) ∈ D±σ(0) if and only if σ describes a cone

with vertex at σ(0)(±∞) (forward for + and backward for −);
b) σ is a null magnetic geodesic with σ̇(0) /∈ D±σ(0) if and only if σ either has the

form
σ(t) = [γB(t)], (4)

where B is the binormal vector field of a helix h in H3 with curvature k, speed 1/k
and zero torsion (in particular, h is contained in a totally geodesic surface S and B is
normal to S and parallel along h), or σ has the form

σ(t) = [γv(t)], (5)

where v is a curve with geodesic curvature k and speed 1/k in T 1
pH3, for some p ∈ H3,

for certain k > 0.

Theorem 3 The ruled surfaces associated with null magnetic geodesics of Lκ for κ =
0, 1 are described in an analogous manner as in the previous theorem, except that case
a) is empty. Besides, for κ = 1, a null magnetic geodesic has simultaneously the forms
(4) and (5).

2 Preliminaries

For the simultaneous analysis of the three cases κ = 0,1,−1, we consider the standard
presentation of Mκ as a submanifold of R4. That is, R3 = {(1, x) ∈ R4 | x ∈ R3},
S3 = {x ∈ R4 | |x|2 = 1} and H3 = {x ∈ R4 | −x2

0 + x2
1 + x2

2 + x2
3 = −1 and x0 > 0}.

3



Let Gκ be the identity component of the isometry group of Mκ, that is, G0 =
SO3 n R3, G1 = SO4 and G−1 = Oo (1, 3). We consider the usual presentation of G0

as a subgroup of Gl4 (R). The group Gκ acts on Lκ as follows: g · [γ] = [g ◦ γ]. This
action is transitive and smooth.

If we denote by gκ the Lie algebra of Gκ we have that

gκ =

{(
0 −κxt
x B

)
| x ∈ R3, B ∈ so3

}
.

Let γo be the geodesic in Mκ with γo(0) = e0 and initial velocity e1 ∈ Te0Mκ,
where {e0, e1, e2, e3} is the canonical basis of R4. For A, B ∈ R2×2, let diag (A,B) =(
A 02

02 B

)
, where 02 denotes the 2× 2 zero matrix. Then the isotropy subgroup of Gκ

at [γo] is
Hκ = {diag (Rκ (t) , B) | t ∈ R, B ∈ SO2} ,

where

R0 (t) =

(
1 0
t 1

)
, R1 (t) =

(
cos t − sin t
sin t cos t

)
, R−1 (t) =

(
cosh t sinh t
sinh t cosh t

)
. (6)

Let j =

(
0 −1
1 0

)
. The Lie algebra of Hκ is

hκ = {diag (rκ (t) , sj) | s, t ∈ R} ,

where rκ (t) =

(
0 −κt
t 0

)
. We may identify Lκ with Gκ/Hκ via the diffeomorphism

φ : Gκ/Hκ → Lκ, φ(gHκ) = g · [γo]. (7)

For x, y ∈ R2 we denote Z(x, y) =

(
02 (−κx,−y)t

(x, y) 02

)
. Let

pκ =
{
Z(x, y) ∈ gκ | x, y ∈ R2

}
,

which is an Ad (Hκ)-invariant complement of hκ.
For κ = 0, 1, we consider on gκ the inner product such that hκ⊥pκ, ‖Z(x, y)‖ =

det (x, y) and
‖diag (rκ (t) , sj)‖ = −ts.

(for κ = 0, we have learnt of this inner product from [6, page 499] ). On g−1 we consider
the Killing form (hκ⊥pκ also holds). For κ = 0, 1,−1, this inner product on gκ induces
on Gκ a bi-invariant metric. Thus, there exists an unique pseudo-Riemannian metric
on Lκ ' Gκ/Hκ such that π : Gκ → Gκ/Hκ is a pseudo-Riemannian submersion. For
κ = 0, 1, this metric on Lκ coincides with the given in (2), see Lemma 5 b). For κ = −1,
the metric on L−1 associated with the Killing form is different from the one in (2).
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However, the magnetic geodesics of either metric on L−1 are the same. This follows
since the geodesics are the same (see [8]), so the Levi-Civita connections coincide.

Let us call A = diag (02, j), which is in the center of hκ. We have that ad A is
orthogonal and ad 2

A = − id in pκ. Hence, adA induces a complex structure on Gκ/Hκ.
A straightforward computation shows that it coincides, via φ in (7), with the complex
structure given in the introduction. With the metric above and this complex structure,
Lκ is a Hermitian symmetric space.

As a direct application of a result by Adachi, Maeda and Udagawa in [1] (see also
[2], Remark 1) we have

Theorem 4 Let σ be a magnetic geodesic of Gκ/Hκ with initial conditions σ (0) = Hκ

and σ̇ (0) = X ∈ pκ. Then σ (t) = π (exp t (X + A)).

As we saw in (1), Jγo is isomorphic to T[γo]Lκ ∼= pκ. In the next Lemma we relate
pκ and Jγo explicitly, involving the matrix A.

Lemma 5 Let Z = Z (x, y) ∈ pκ.

a) The Jacobi field J(s) = d
dt

∣∣
0

exp t(Z+A)·γo(s) in Jγo is the unique one that satisfies

J(0) = (0, 0, x)t and J ′(0) = (0, 0, y)t.

b) Tγo (J) = d (φ ◦ π)Z and its norm is ‖d(φ ◦ π)Z‖ = det (x, y).

Proof. For each κ, we consider the following parameterization of γo:

γo(s) = (1, s, 0, 0), if κ = 0;
γo(s) = (cos s, sin s, 0, 0), if κ = 1;
γo(s) = (cosh s, sinh s, 0, 0), if κ = −1.

Given Z = Z(x, y) ∈ pκ, the Jacobi field along γo defined by J(s) = d
dt

∣∣
0

exp t(Z +
A) · γo(s) belongs to Jγo , because for all s ∈ R,

〈J(s), γ̇o(s)〉 = 〈(Z + A)(γo(s)), γ̇o(s)〉 = 0 ,

since (Z + A)(γo(s)) is orthogonal to e0 and e1, while γ̇o(s) has non zero components
only in these two directions.

One verifies easily that J (0) = (Z + A) (e0) = (0, 0, x)t. On the other hand,

J ′ (0) =
D

∂s

∣∣∣∣
0

∂

∂t

∣∣∣∣
0

exp t (Z + A) · γo (s)

=
D

∂t

∣∣∣∣
0

exp t (Z + A) (e1) = (Z + A) (e1) = (0, 0, y)t .

Besides,

Tγo(J) =
d

dt

∣∣∣∣
0

[exp t(Z + A) · γo] =
d

dt

∣∣∣∣
0

φ(exp t(Z + A)Hκ)

=
d

dt

∣∣∣∣
0

φ(π(exp t(Z + A))) = dφ ◦ dπZ,
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where the last equality holds since A ∈ hκ. Finally, the norm (2) of d(φ ◦ π)Z equals

‖d(φ ◦ π)Z‖ = 〈γ̇o (0)× J (0) , J ′ (0)〉 = det (x, y)

and the assertions of b) are verified. �

Let Z(x, y) ∈ pκ and let h = diag (Rκ (t) , B) ∈ Hκ, where B ∈ SO2 and

Rκ (t) =

(
cκ(t) −κsκ(t)
sκ(t) cκ(t)

)
is as in (6). Then Ad(h)Z(x, y) = Z(Bxt, Byt), where

xt = cκ(t)x− sκ(t)y, yt = κsκ(t)x+ cκ(t)y.

We denote by ε1 and ε2 the vectors of the canonical basis of R2.

Lemma 6 Let Z(x, y) 6= 0 in pκ.

a) If {x, y} is a linearly independent set of R2, then there exists h ∈ Hκ such that
Ad(h)Z(x, y) = Z(aε1, bε2), with a > 0 and b 6= 0, for κ = 0,±1.

b) If κ = 0, 1 and {x, y} is a linearly dependent set of R2, then there exists h ∈ Hκ

such that either Ad(h)Z(x, y) = Z(0, bε2), with b 6= 0, or Ad(h)Z(x, y) = Z(aε1, 0),
with a > 0. This is true for κ = −1 if in addition |x| 6= |y|.
c) For κ = 1, there exists h ∈ Hκ such that Ad(h)Z(ε1, 0) = Z(0, ε2).

Proof. For the proof of a), as {x, y} is a linearly independent set, then for κ = 0,±1
there exists t ∈ R such that 〈xt, yt〉 = 0. Indeed, for each κ, this is equivalent to fact
that the equation

c3 − c2t = 0 if κ = 0;
1
2
(c1 − c2) sin(2t) + c3 cos(2t) = 0 if κ = 1;

−1
2
(c1 + c2) sinh (2t) + c3 cosh (2t) = 0 if κ = −1

has a real solution, where c1 = 〈x, x〉, c2 = 〈y, y〉 and c3 = 〈x, y〉. But the linear
independence of x and y determines the existence of the solution in each case. Then,
we can take B ∈ SO2 such that Bxt = aε1, with a > 0 and Byt = bε2, with b 6= 0.
Therefore the isometry h = diag (Rκ (t) , B) ∈ Hκ satisfies Ad(h)Z(x, y) = Z(aε1, bε2).

For the proof of b), first we suppose that x = 0 or y = 0 (but not both zero since
Z(x, y) 6= 0). Let B ∈ SO2 such that Bx = aε1 with a > 0, if x 6= 0, and in the
case that y 6= 0, let B ∈ SO2 such that By = bε2, with b 6= 0. Then we can take
h = diag (I, B) ∈ Hκ.

Now, let x 6= 0 and y 6= 0. So x = λy or y = λx, with λ 6= 0. We suppose
that y = λx (for x = λy the argument is similar). In the cases κ = 0, 1 there exists
t ∈ R such that xt = 0. In fact, from the hypothesis and some computations, t ∈ R is
obtained by solving

1− λt = 0, if κ = 0 and cos t− λ sin t = 0, if κ = 1.
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Thus, taking B ∈ SO2 such that Byt = bε2 (with b 6= 0 as yt 6= 0), we have that
h = diag (Rκ (t) , B) ∈ Hκ satisfies Ad(h)Z(x, y) = Z(0, bε2).

For κ = −1, as in the cases κ = 0, 1, we find t ∈ R such that either xt = 0 or yt = 0
by solving

cosh t− λ sinh t = 0, and − sinh t+ λ cosh t = 0,

respectively. But these equations have a solution if and only if λ 6= ±1. That is, if and
only if |x| 6= |y|. Hence, taking B ∈ SO2 such that either Byt = bε2 or Bxt = aε1 (with
a > 0; here again we have that xt 6= 0), as appropriate. Then h = diag (R−1 (t) , B) ∈
H−1 is as desired in this case.

For part c), we observe that h = diag (R1 (π/2) , B) ∈ H1, where B ∈ SO2 takes
ε1 to ε2, satisfies Ad(h)Z(ε1, 0) = Z(0, ε2). �

Remark. The previous lemma corresponds, geometrically, with the fact of finding s ∈ R
at which the Jacobi field associated with Z(x, y) (given by Lemma 5) and its covariant
derivative are orthogonal.

Recall that if h is a regular curve in Mκ of constant speed a, then the Frenet frame
of h is

T (t) = 1
a
ḣ(t), N(t) = ḣ′(t)/

∣∣∣ḣ′(t)∣∣∣ , B(t) = T (t)×N(t) (8)

(here the prime denotes the covariant derivative along h), and its curvature and torsion
are given by

k(t) = 1
a2

∣∣∣ḣ′(t)∣∣∣ , τ(t) = − 1
a
〈B′(t), N(t)〉. (9)

For each g ∈ Gκ we have that g is an isometry of Lκ and preserves the Hermitian
structure. Hence, g takes magnetic geodesics to magnetic geodesics.

3 Time- and space-like magnetic geodesics

Proof of Theorem 1. Let Z ∈ pκ be the initial velocity of σ, with ‖Z‖ 6= 0. First, we
consider the case Z = Z(aε1, bε2), with a > 0 and b 6= 0.

For each t ∈ R, let α(t) = exp t(Z + A). By Theorem 4 and the diffeomorphism φ
in (7), we know that σ(t) = α(t) · [γo], that is, σ(t) = [α(t) · γo].

Let h be the curve in Mκ given by h(t) = α(t)(e0). As α is a one-parameter
subgroup of isometries of Mκ, we have that h is a curve with constant curvature and
torsion, thus h is a helix in Mκ.

Let us see that σ(t) = [γB(t)], where B(t) is the binormal field of h. For each t ∈ R,
the initial velocity of the geodesic α(t) · γo is d (α(t)) (e1), hence σ(t) = [γd(α(t))(e1)].
Then, we have to verify that B(t) = d (α(t)) (e1), for all t ∈ R. Since α(t) is an isometry
that preserves the helix and takes the Frenet frame at t = 0 to the Frenet frame at t,
is suffices to show that B (0) = e1.
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By the usual identifications, since α (t) is a linear transformation, we can write
d (α(t)) (e1) = α (t) (e1), so

ḣ(t) = α(t) ((Z + A)e0) and ḣ′ (t) = [α(t)((Z + A)2e0)]T,

where T denotes the tangent projection. Since

ḣ(0) = (Z + A)e0 = ae2,

ḣ′ (0) =
[
(Z + A)2 e0

]T
= [−κa2e0 + ae3]T = ae3

and α(t) is an isometry, we have
∣∣∣ḣ(t)

∣∣∣ = a =
∣∣∣ḣ′(t)∣∣∣. By the computation before and

(8) we obtain

B(0) =
1

a2
ḣ(0)× ḣ′(0) = e1.

Consequently, B(t) = α(t)(e1). Then B′(t) = [α(t)((Z + A)e1)]T and B′(0) = be3.
Besides, using (8) and the previous computations, it follows that N(0) = e3. Therefore,
by (9) we have that the curvature and torsion of h are equal to

k = 1/a, τ = −b/a. (10)

The assertion regarding the sign of the torsion is immediate from Lemma 5 b) and
(10). Thus, the theorem is proved in this particular case.

Now, let σ be a magnetic geodesic with σ(0) = [γ] and initial velocity with non
zero norm. Since Gκ acts transitively on Lκ, there is an isometry g such that g · [γ] =
[γo]. So, the magnetic geodesic g · σ also has initial velocity with non zero norm and
g · σ(0) = [γo]. By Lemma 5 b), if d(φ ◦ π)Z(x, y) is the initial velocity of g · σ, we
have that the vectors {x, y} are linearly independent. Then, by Lemma 6 a), there
exists h ∈ Hκ such that Ad(h)Z(x, y) = Z(aε1, bε2), with a > 0 and b 6= 0. Since
((h ◦ g) · σ)′(0) = d(φ ◦ π)(Ad(h)Z(x, y)), the curve (h ◦ g) · σ is a magnetic geodesic
of the type studied above. Therefore, σ has the form (3).

Conversely, let h be a helix inMκ with curvature k > 0, non zero torsion τ and speed
1/k. Let {T,B,N} be the Frenet frame of h. As Mκ is a simply connected manifold
of constant curvature, we have that there exists an isometry g of Mκ preserving the
orientation such that g(h(0)) = e0 and its differential at h (0) takes B(0) to e1, T (0)
to e2 and N(0) to e3.

Let a = 1/k and b = −τ/k. Let Z = Z(aε1, bε2) ∈ pκ. We consider, for each t ∈ R,
α(t) = exp t(Z +A). According to computations from the first part of the proof, both
helices have initial position e0, curvature k, torsion τ , speed 1/k and the same Frenet
frame at t = 0. Hence (g ◦ h) (t) = α(t)e0. So, if we call B̄ the binormal field of g ◦ h,
we have that B̄(t) = d (α(t)) e1, for all t. Finally, since the curve [γB̄(t)] is a magnetic
geodesic in Lκ and

[γB(t)] = [γdg−1B̄(t)] = g−1 · [γB̄(t)],

we obtain that [γB(t)] is a magnetic geodesic. �
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4 Null magnetic geodesics

We deal first with the hyperbolic case. We use the notation given in the introduc-
tion and we recall from [3] certain properties of horospheres and related concepts. To
simplify the notation we omit the subindex κ = −1.

Let γ be a geodesic of H3. Then, for each p ∈ H3 there exists a unique unit speed
geodesic α of H3 such that α(0) = p and α is asymptotic to γ. Let v ∈ T 1H3. If p is any
point of H3, then v(p) denotes the unique unit tangent vector at p that is asymptotic
to v. The Busemann function fv : H3 → R is defined by

fv(p) = lim
s→+∞

d(p, γv(s))− s,

and satisfies gradp (fv) = −v(p). The horosphere determined by v is given by

H(v) = {q ∈M : fv(q) = 0}.

The Jacobi vector fields orthogonal to γ̇o have the form

J(s) = esU(s) + e−sV (s), (11)

where U and V are parallel vector fields along γo and orthogonal to γ̇o.
A Jacobi vector field Y along a geodesic γ of H3 is said to be stable (unstable) if

there exists a constant c > 0 such that

|Y (s)| ≤ c ∀s ≥ 0 (∀s ≤ 0).

In what follows we shall denote by π̂ the canonical projection from TH3 onto H3. We
recall that in the introduction we have defined the smooth maps ψ± : L (H3)→ H3(∞)
by ψ±[γ] = γ(±∞) and the distributions D± in L (H3) given by D±[γ] = Ker (dψ±[γ]).

We need to relate the distributions D± with distributions Ē± and E± on G and T 1H3,
respectively.

Let Ē± be the left invariant distribution on G defined at I ∈ G by

Ē±I =
{
Z(u,∓u) ∈ p | u ∈ R2

}
.

As the canonical action of G on T 1H3 is transitive, the projection p̄ : G→ T 1H3 given
by p̄(g) = dge0e1 is a submersion. Since given v ∈ T 1H3 there exists g ∈ G such that
p̄(g) = v, we define:

E±(v) = (dp̄ Ē±)(p̄(g)) = dp̄g(Ē±g ).

We have that E± determines a well defined distribution on T 1H3, which is called the
horospherical distribution on T 1H3. This distribution has the following property: if
t 7→ v(t) is a curve in T 1H3 tangent to the distribution E±, then π̂(v(t)) is in the
horosphere H (±v (0)).

Lemma 7 Let Z ∈ Ē±I . For each t ∈ R, let γ±t (s) = exp t (Z + A) · γo(± s). Then the
geodesics γ±t are asymptotic to each other for all t ∈ R.
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Proof. Let J be the Jacobi vector field associated with the variation by geodesics
t 7→ γ±t . By Lemma 5 a), J(0) = −J ′(0). Hence, by (11) we have that J(s) = e−sU(s),
where U is a parallel vector field along γo orthogonal to γ̇o. Thus, J is a stable vector
field, that is, there exists c > 0 such that |J(s)| ≤ c ∀s ≥ 0.

We have to show that given t0, t1 ∈ R with t0 < t1, there exists N > 0 such that

d(γ±t0(s), γ
±
t1

(s)) ≤ N ∀ s ≥ 0.

For fixed s,

d(γ±t0(s), γ
±
t1

(s)) ≤ length
(
[t0, t1] 3 t 7−→ γ±t (s)

)
=

∫ t1

t0

∣∣∣∣ ddtγ±t (s)

∣∣∣∣ dt.
For each t ∈ R, let Jt(s) = d

dt
γ±t (s). We observe that Jt′+t(s) = d exp(t′Z)Jt(s) for all

t, t′. Since exp(t′Z) is an isometry, we have |Jt(s)| = |J(s)|. Therefore,∫ t1

t0

|Jt(s)|dt =

∫ t1

t0

|J(s)|dt ≤ c(t1 − t0)

for all s ≥ 0. Then, we may take N = c(t1 − t0) > 0. �

We consider the projection p : T 1H3 → L (H3), p (v) = [γv]. We call D̄± the
distribution on L (H3) p-related with E± (well defined). More specifically, given [γ] ∈
L (H3) and v ∈ T 1H3 such that p(v) = [γ],

D̄±([γ]) = dpv E±v .

Proposition 8 Let D± and D̄± be the distributions on L (H3) defined above. Then
D± = D̄±.

Proof. Since D± and D̄± are G-invariant, it is enough to show D±[γo] = dp(e0,e1)(E±(e0,e1))

(we observe that p̄(I) = (e0, e1) and p(e0, e1) = [γo]).
Let Z ∈ Ē±I . We take the curve in L (H3) given by α(t) = exp tZ · [γo]. As α(t) =

p ◦ p̄(exp tZ), we have that α(0) = [γo] and α̇(0) = d(p ◦ p̄)IZ. That is, α̇(0) ∈
dp(e0,e1)(E±(e0,e1)). Besides,

d

dt

∣∣∣∣
0

exp tZ · γo(s) =
d

dt

∣∣∣∣
0

exp t(Z + A) · γo(s), (12)

since both Jacobi fields have the same initial conditions. Hence, Lemma 7 applies to the
geodesics γ±t (s) = exp tZ ·γo (±s). Thus, ψ± ◦α is constant. Then (dψ±)[γo](α̇(0)) = 0,
that is, α̇(0) ∈ D±[γo].

On the other hand, let ϕ : T 1
e0
H3 → L (H3), ϕ (v) = [γv], be the submanifold whose

image Le0 (H3) consists of all the oriented geodesics passing through e0. Besides, H (∞)
is a manifold with the differentiable structure (well defined) such that Fe0 : T 1

e0
H3 →

10



H (∞) given by Fe0 (v) = γv (∞) is a diffeomorphism. Then, since ψ+|Le0 (H3) ◦ ϕ =

Fe0 , we have that (dψ+)[γo] is surjective. Now, (dψ−)[γo] is also surjective because ψ−

is the composition of ψ+ with the diffeomorphism of L (H3) assigning [γ−1] to [γ].
Therefore, dimD±[γo] = dim D̄±[γo] and equality follows. �

The word cylinder in the statement of Theorem 2 refers to a ruled surface de-
termined by a parallel vector field along a curve c of constant geodesic curvature k
contained in a totally geodesic surface in Mκ (and normal to it), as explained. For
κ = −1, this ruled surface is diffeomorphic to S1 × R if |k| > 1; otherwise it is diffeo-
morphic to a plane.

Proof of Theorem 2 a). By Lemma 5 b), we have that every element of D±[γ] is null. As

G acts transitively on L (H3) and by the G-invariance of the horospherical distribu-
tions, we may suppose without loss of generality that σ(0) = [γo], hence σ̇(0) ∈ D±[γo].

By Proposition 8, there exists Z ∈ Ē±I such that σ̇(0) = (dp)(e0,e1)(dp̄)IZ. Thus, by
Theorem 4, σ(t) = [exp t(Z + A) · γo].

We assume that Z ∈ Ē+
I . Let us show that σ describes a forward cone with vertex

at γo(+∞). In a similar way, if Z ∈ Ē−I , then σ describes a backward cone with vertex
at γo(−∞).

We consider the geodesics γt (s) = exp t(Z + A) · γo (s) of H3. As Z ∈ Ē+
I , by

Lemma 7, we have that the geodesics γt are asymptotic to each other for all t. Hence,
z(t) = γ̇t(0) is a curve in T 1H3 of asymptotic vectors to e1.

Let c(t) = π̂(z(t)) = exp t(Z + A)(e0). In order to see that c (t) ∈ H(e1) for all t,
we observe that

d

dt
fe1(c(t)) = (dfe1)c(t)ċ(t) = 〈gradc(t)(fe1), ċ(t)〉. (13)

Since gradp (fv) = −v(p) we have that

gradc(t)(fe1) = −z(t) = −d (exp t(Z + A)) e1.

On the other hand,
ċ(t) = d(exp t(Z + A))(Z + A)e0.

Since exp t(Z+A) is an isometry and observing that (Z+A)e0 and e1 are perpendicular
(Z ∈ Ē+

I ), it follows that the expression in (13) is equal to −〈e1, (Z + A)(e0)〉 = 0.
Then, fe1(c(t)) = fe1(e0) = 0 for all t, that is, c(t) ∈ H(e1) for all t.

Now, as c is the orbit through e0 of a one-parameter subgroup of isometries of G
preserving H(e1), its geodesic curvature and speed are constant. If Z = Z(u,−u) for
certain 0 6= u ∈ R2, we obtain that the speed of c is |u|. For each v ∈ T 1H3 we consider
on H(v) the orientation given by − grad fv. The geodesic curvature of c is then

k = 〈− grade0 (fe1) , ċ(0)× ċ′(0)〉/|u|3 = 1/|u|,

11



since ċ(0) = (Z +A)e0 and ċ′ (0) =
(
(Z + A)2 e0

)T
. As for each v ∈ T 1H3, H(v), with

the induced metric of H3, is isometric to R2, we have that c(t) runs along a circle on
H(e1) of geodesic curvature k = 1/|u| > 0 and speed 1/k = |u|.

Besides, σ(t) = [γz(t)]. Thus we have that all conditions are satisfied in order to
assert that σ describes a forward cone with vertex at γo(+∞).

Conversely, let σ be a curve in L (H3) that describes a forward cone with vertex
at infinity. As G acts transitively on the positively oriented frame bundle, and also
each element of G takes horospheres to horospheres, preserving their orientation, we
may suppose that σ(t) = [γv(t)], where v(t) is a curve in T 1H3 of asymptotic vectors
to v (0) = e1 and c(t) = π̂(v(t)) is a curve of geodesic curvature k and speed 1/k in
H(e1) with ċ (0) = 1

k
e2, for some k > 0. Let Z = Z( 1

k
ε1,− 1

k
ε1) ∈ Ē+

I . We define

c̄(t) = exp t(Z + A)(e0) and v̄(t) = d (exp t(Z + A)) (e1).

We showed above that c̄(t) is a curve of geodesic curvature k and speed 1
k

in H(e1).
Moreover, c̄(0) = e0 and the initial velocity of c̄ is 1

k
e2. So, we obtain that c̄ = c. This

implies, together with the identities π̂ ◦ v̄ = c̄ and π̂ ◦ v = c, that π̂ ◦ v̄ = π̂ ◦ v.
According to the first part of the proof, v̄ and v are curves of asymptotic vectors

to e1. Hence, −v̄(t) = gradc̄(t) (fe1) = −v(t). Therefore, [γv̄(t)] = [γv(t)], which is a null
magnetic geodesic with initial velocity in the horospherical distribution since [γv(t)] =
[exp t(Z + A) · γo]. �

Proof of Theorem 2 b). We suppose first that σ is a null magnetic geodesic such that
σ (0) = [γo] and σ̇ (0) = d(φ ◦ π)Z(aε1, 0), with a > 0. The expression (4) and the
relation between the speed and curvature of h are obtained as in the prove of Theorem
1. By (10) we know that the torsion of h is τ = −b/a = 0 (since b = 0). Thus h is
contained in a totally geodesic surface S of H3 and B is normal to S.

Now, we suppose that σ̇ (0) = d(φ ◦ π)Z, where Z = Z (0, bε2) with b 6= 0. By
Theorem 4 we have that σ(t) = [α(t) · γo], where α(t) = exp t(Z + A). Since Z + A is
in the Lie algebra of the isotropy subgroup H of G at e0 ∈ H3, we get that α(t) fixes
e0. Moreover, if v is the curve in T 1

e0
H3 given by v(t) = d (α(t)) e1, then

σ(t) = [α(t) · γo] = [γv(t)],

since the initial velocity of the geodesic α(t) · γo is v(t), for each t ∈ R.
Furthermore, as v is the orbit through e1 of a one-parameter subgroup of H (the

canonical differential action of G on T 1
e0
H3), then v has constant speed and constant

geodesic curvature in T 1
e0
H3 ∼= S2. Easy computations yield

v̇(0) = (0, 0, b)t and v̈(0) =
(
−b2,−b, 0

)t
.

So, the speed of v is |b| and its geodesic curvature is

k = 〈v (0) , v̇(0)× v̈(0)〉/|b|3 = 1/|b|
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(we consider the orientation of the sphere given by the unit normal field pointing
outwards). Thus, v is a curve in T 1

e0
H3 of geodesic curvature k > 0 and speed 1/k .

Consequently, σ has the form (5).
Now, let σ be a null magnetic geodesic such that σ(0) = [γ] and σ̇ (0) /∈ D±[γ]. As G

acts transitively on L (H3) and by the G-invariance of the horospherical distributions,
we may suppose that σ(0) = [γo] and σ̇ (0) /∈ D±[γo]. Let Z = Z(x, y) ∈ p such that

σ̇(0) = d(φ ◦ π)Z. By Lemma 5 b), as the norm of the initial velocity of σ is zero,
we have that x and y are linearly dependent, and since d(φ ◦ π)Z /∈ D±[γo], we also

have |x| 6= |y|. Now, the isometries in Lemma 6 b) take σ to magnetic geodesics of the
particular types studied above. Therefore, σ has the form (4) or has the form (5), as
desired.

Conversely, given a helix h in H3 with curvature k, speed 1/k and torsion τ = 0,
the proof that the expression (4) is a magnetic geodesic is identical to the proof of
the converse of Theorem 1. As h has zero torsion, the initial velocity of the magnetic
geodesic in (4) is not in the distributions D±.

Let v be a curve in T 1
pH3 with geodesic curvature k > 0 and speed 1/k. Let g be

the isometry of H3 preserving the orientation such that g(p) = e0, dg (v(0)) = e1 and
dg (v̇(0)) = be3, for certain b > 0. Hence, g · v is a curve in T 1

e0
H3 having the same

geodesic curvature and the same speed as v, and also b = 1/k. As we showed above, v̄
is a curve in T 1

e0
H3 with v̄(0) = g · v(0) and with the same initial velocity and geodesic

curvature that g · v. By uniqueness, we have that v̄ = g · v. To complete the proof we
observe that g · [γv(t)] = [γg·v(t)] = [γv̄(t)]. �

Proof of Theorem 3. Lemma 6 b) implies that the analogue of Theorem 2 a) is empty
for the cases κ = 0, 1. The proof of the fact that every curve σ in Lκ is a null magnetic
geodesic if and only if σ has the form (4) or (5) is similar to that of Theorem 2 b).

We check the last statement of the theorem. Without lost of generality, we consider
only null magnetic geodesics passing through [γo] at t = 0. We observe that if, in
particular, σ is a magnetic geodesic with initial velocity d(φ ◦ π)Z(aε1, 0), with a > 0,
(that is, σ has the form (4)), then by Lemma 6 c) there exists h ∈ H1 such that
Ad (h)Z(aε1, 0) = Z(0, aε2). Hence, h·σ is a null magnetic geodesic with initial velocity
d(φ ◦ π)Z(0, aε2), and then it has the form (5). So, σ also has this form. �
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