The magnetic flow on the manifold of oriented geodesics of a three dimensional space form

Yamile Godoy and Marcos Salvai *

Abstract

Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,1 or -1. Let \mathcal{L} be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2, 2) and Kähler structure J. A smooth curve in \mathcal{L} determines a ruled surface in M.

We characterize the ruled surfaces of M associated with the magnetic geodesics of \mathcal{L} , that is, those curves σ in \mathcal{L} satisfying $\nabla_{\dot{\sigma}}\dot{\sigma} = J\dot{\sigma}$. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of \mathcal{L} and M.

Key words and phrases:¹ manifold of oriented geodesics, Hermitian symmetric space, magnetic flow, ruled surface, horospherical distribution

1 Introduction

For $\kappa = 0, 1, -1$, let M_{κ} be the three dimensional complete simply connected manifold of constant sectional curvature κ , that is, \mathbb{R}^3 , \mathbb{S}^3 and the hyperbolic space \mathbb{H}^3 . Let \mathcal{L}_{κ} be the manifold of all (unparametrized) complete oriented geodesics of M_{κ} . We may think of an element c in \mathcal{L}_{κ} as the equivalence class of unit speed geodesics $\gamma : \mathbb{R} \to M_{\kappa}$ with image c such that $\{\dot{\gamma}(s)\}$ is a positive basis of $T_{\gamma(s)}c$ for all s.

Let γ be a complete unit speed geodesic of M_{κ} and let \mathcal{J}_{γ} be the space of all Jacobi fields along γ which are orthogonal to γ . There exists a well-defined canonical isomorphism

$$T_{\gamma}: \mathcal{J}_{\gamma} \to T_{[\gamma]} \mathcal{L}_{\kappa}, \qquad T_{\gamma}(J) = \left. \frac{d}{dt} \right|_{0} [\gamma_{t}],$$

$$\tag{1}$$

^{*}Partially supported by CONICET, FONCYT, SECYT (UNC).

¹Mathematics Subject Classification: 53C22, 53C35, 53C55; 53B30, 53C50.

where γ_t is any variation of γ by unit speed geodesics associated with J (see [8]).

A pseudo-Riemannian metric of signature (2, 2) can be defined on \mathcal{L}_{κ} as follows [9]: For $X \in T_{[\gamma]}\mathcal{L}_{\kappa}$, the square norm $||X|| = \langle X, X \rangle$ is well defined by

$$||X|| = \langle \dot{\gamma} \times J, J' \rangle, \tag{2}$$

where $X = T_{\gamma}(J)$, the cross product \times is induced by a fixed orientation of M_{κ} and J' denotes the covariant derivative of J along γ . Indeed, the right hand side of (2) is a constant function. In the following, for any vector X, we will denote $||X|| = \langle X, X \rangle$ and $|X| = \sqrt{|\langle X, X \rangle|}$. Recall that X is null, time-like or space-like if ||X|| = 0, ||X|| < 0 or ||X|| > 0, respectively.

Let $[\gamma] \in \mathcal{L}_{\kappa}$ and let R_{γ} be the rotation in M_{κ} fixing γ through an angle of $\pi/2$. This rotation induces an isometry \widetilde{R}_{γ} of \mathcal{L}_{κ} whose differential at $[\gamma]$ is a linear isometry of $T_{[\gamma]}\mathcal{L}_{\kappa}$ squaring to -id. This yields a complex structure J on \mathcal{L}_{κ} . With the metric defined above, \mathcal{L}_{κ} is Kahler.

A magnetic geodesic σ of \mathcal{L}_{κ} is a curve satisfying $\nabla_{\dot{\sigma}}\dot{\sigma} = J\dot{\sigma}$. These curves have constant speed, so they will be null, time-like or space-like.

A smooth curve in \mathcal{L}_{κ} determines a ruled surface in M_{κ} . For $\kappa = 0, -1$, a generic geodesic of \mathcal{L}_{κ} describes a helicoid in M_{κ} [5, 4, respectively]. Our purpose is to characterize the ruled surfaces in M_{κ} associated with the magnetic geodesics of \mathcal{L}_{κ} . For $v \in TM_{\kappa}$, γ_v denotes the geodesic of M_{κ} with initial velocity v.

Theorem 1 A generic magnetic geodesic σ of \mathcal{L}_{κ} describes the ruled surface in M_{κ} given by the binormal vector field of a helix. More precisely, σ is a time-like (space-like) magnetic geodesic of \mathcal{L}_{κ} if and only if σ has the form

$$\sigma(t) = [\gamma_{B(t)}],\tag{3}$$

where B is the binormal vector field of a helix in M_{κ} with curvature k, speed 1/k and positive (negative) torsion, for some k > 0.

Now we study null magnetic geodesics in $\mathcal{L}_{-1} = \mathcal{L}(\mathbb{H}^3)$. We recall some concepts related with the hyperbolic space (see for instance [3]).

Two unit speed geodesics γ and α of \mathbb{H}^3 are said to be asymptotic if there exists a positive constant C such that $d(\gamma(s), \sigma(s)) \leq C, \forall s \geq 0$. Two unit vectors $v, w \in T^1 \mathbb{H}^3$ are said to be asymptotic if the corresponding geodesics γ_v and γ_w have this property.

A point at infinity for \mathbb{H}^3 is an equivalence class of asymptotic geodesics of \mathbb{H}^3 . The set of all points at infinity for \mathbb{H}^3 is denoted by $\mathbb{H}^3(\infty)$ and has a canonical differentiable structure diffeomorphic to the 2-sphere. The equivalence class represented by a geodesic γ is denoted by $\gamma(\infty)$, and the equivalence class represented by the oppositely oriented geodesic $s \mapsto \gamma(-s)$ is denoted by $\gamma(-\infty)$.

Given $v \in T^1 \mathbb{H}^3$, the horosphere H(v) is the limit of metric spheres $\{S_n\}$ in \mathbb{H}^3 that pass through the foot point of v as the centers $\{p_n\}$ of $\{S_n\}$ converge to $\gamma_v(\infty)$. Below we present a more precise definition. Let $\psi^{\pm} : \mathcal{L}(\mathbb{H}^3) \to \mathbb{H}^3(\infty)$ be the smooth functions given by $\psi^{\pm}([\gamma]) = \gamma(\pm \infty)$ and let \mathcal{D}^{\pm} be the distributions on $\mathcal{L}(\mathbb{H}^3)$ given by $\mathcal{D}^{\pm}_{[\gamma]} = \operatorname{Ker}(d\psi^{\pm}_{[\gamma]})$. These distributions are called *the horospherical distributions* on $\mathcal{L}(\mathbb{H}^3)$.

Cones with vertices at infinity: Let $x \in \mathbb{H}^3(\infty)$ and let $v_o \in T^1\mathbb{H}^3$ such that $\gamma_{v_o}(\pm \infty) \in x$. Let $t \mapsto v(t)$ be a curve in $T^1\mathbb{H}^3$ such that $v(0) = \pm v_o$, v(t) is asymptotic to $\pm v_o$ for all $t \in \mathbb{R}$ and the foot points of v(t) lie on a circle of geodesic curvature $\pm k$ (with k > 0) and speed 1/k in the horosphere determined by $\pm v_o$. Under these conditions we say that the curve in $\mathcal{L}(\mathbb{H}^3)$ given by $t \mapsto [\gamma_{\pm v(t)}]$ describes a forward cone with vertex at x (for +) or a backward cone with vertex at x (for -). These cones can be better visualized in the upper half space model of \mathbb{H}^3 (in particular $\mathbb{H}^3(\infty) = \{z = 0\} \cup \{\infty\}$): Let $\gamma_t^{\pm}(s) = (\frac{1}{k}\cos(t), \pm \frac{1}{k}\sin(t), e^{\pm s})$. A curve σ in $\mathcal{L}(\mathbb{H}^3)$ describes a cone with forward (respectively, backward) vertex at ∞ if it is $Sl(2, \mathbb{C})$ -congruent to $t \mapsto [\gamma_t^+]$ (respectively, to $t \mapsto [\gamma_t^-]$).

Theorem 2 A null magnetic geodesic of $\mathcal{L}(\mathbb{H}^3)$ describes in \mathbb{H}^3 a cylinder, a cone with vertex at $p \in \mathbb{H}^3$ or a cone with vertex at infinity. More precisely, if σ is a curve in $\mathcal{L}(\mathbb{H}^3)$, then

a) σ is a null magnetic geodesic with $\dot{\sigma}(0) \in \mathcal{D}_{\sigma(0)}^{\pm}$ if and only if σ describes a cone with vertex at $\sigma(0)(\pm \infty)$ (forward for + and backward for -);

b) σ is a null magnetic geodesic with $\dot{\sigma}(0) \notin \mathcal{D}_{\sigma(0)}^{\pm}$ if and only if σ either has the form

$$\sigma(t) = [\gamma_{B(t)}],\tag{4}$$

where B is the binormal vector field of a helix h in \mathbb{H}^3 with curvature k, speed 1/kand zero torsion (in particular, h is contained in a totally geodesic surface S and B is normal to S and parallel along h), or σ has the form

$$\sigma(t) = [\gamma_{v(t)}],\tag{5}$$

where v is a curve with geodesic curvature k and speed 1/k in $T_p^1 \mathbb{H}^3$, for some $p \in \mathbb{H}^3$, for certain k > 0.

Theorem 3 The ruled surfaces associated with null magnetic geodesics of \mathcal{L}_{κ} for $\kappa = 0, 1$ are described in an analogous manner as in the previous theorem, except that case a) is empty. Besides, for $\kappa = 1$, a null magnetic geodesic has simultaneously the forms (4) and (5).

2 Preliminaries

For the simultaneous analysis of the three cases $\kappa = 0, 1, -1$, we consider the standard presentation of M_{κ} as a submanifold of \mathbb{R}^4 . That is, $\mathbb{R}^3 = \{(1, x) \in \mathbb{R}^4 \mid x \in \mathbb{R}^3\}$, $\mathbb{S}^3 = \{x \in \mathbb{R}^4 \mid |x|^2 = 1\}$ and $\mathbb{H}^3 = \{x \in \mathbb{R}^4 \mid -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1 \text{ and } x_0 > 0\}$.

Let G_{κ} be the identity component of the isometry group of M_{κ} , that is, $G_0 = SO_3 \ltimes \mathbb{R}^3$, $G_1 = SO_4$ and $G_{-1} = O_o(1,3)$. We consider the usual presentation of G_0 as a subgroup of $Gl_4(\mathbb{R})$. The group G_{κ} acts on \mathcal{L}_{κ} as follows: $g \cdot [\gamma] = [g \circ \gamma]$. This action is transitive and smooth.

If we denote by \mathfrak{g}_{κ} the Lie algebra of G_{κ} we have that

$$\mathfrak{g}_{\kappa} = \left\{ \left(\begin{array}{cc} 0 & -\kappa x^t \\ x & B \end{array} \right) \mid x \in \mathbb{R}^3, \ B \in so_3 \right\}.$$

Let γ_o be the geodesic in M_{κ} with $\gamma_o(0) = e_0$ and initial velocity $e_1 \in T_{e_0}M_{\kappa}$, where $\{e_0, e_1, e_2, e_3\}$ is the canonical basis of \mathbb{R}^4 . For $A, B \in \mathbb{R}^{2 \times 2}$, let diag $(A, B) = \begin{pmatrix} A & 0_2 \\ 0_2 & B \end{pmatrix}$, where 0_2 denotes the 2×2 zero matrix. Then the isotropy subgroup of G_{κ} at $[\gamma_o]$ is

$$H_{\kappa} = \{ \text{diag} (R_{\kappa}(t), B) \mid t \in \mathbb{R}, B \in SO_2 \},\$$

where

$$R_{0}(t) = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, \quad R_{1}(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, \quad R_{-1}(t) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}.$$
(6)
Let $j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. The Lie algebra of H_{κ} is

 $\mathfrak{h}_{\kappa} = \{ \text{diag} (r_{\kappa}(t), sj) \mid s, t \in \mathbb{R} \},\$

where $r_{\kappa}(t) = \begin{pmatrix} 0 & -\kappa t \\ t & 0 \end{pmatrix}$. We may identify \mathcal{L}_{κ} with G_{κ}/H_{κ} via the diffeomorphism

$$\phi: G_{\kappa}/H_{\kappa} \to \mathcal{L}_{\kappa}, \qquad \phi(gH_{\kappa}) = g \cdot [\gamma_o].$$
 (7)

For $x, y \in \mathbb{R}^2$ we denote $Z(x, y) = \begin{pmatrix} 0_2 & (-\kappa x, -y)^t \\ (x, y) & 0_2 \end{pmatrix}$. Let $\mathfrak{p}_{\kappa} = \left\{ Z(x, y) \in \mathfrak{g}_{\kappa} \mid x, y \in \mathbb{R}^2 \right\},$

which is an Ad (H_{κ}) -invariant complement of \mathfrak{h}_{κ} .

For $\kappa = 0, 1$, we consider on \mathfrak{g}_{κ} the inner product such that $\mathfrak{h}_{\kappa} \perp \mathfrak{p}_{\kappa}$, $||Z(x, y)|| = \det(x, y)$ and

$$\|\operatorname{diag}\left(r_{\kappa}\left(t\right),sj\right)\|=-ts.$$

(for $\kappa = 0$, we have learnt of this inner product from [6, page 499]). On \mathfrak{g}_{-1} we consider the Killing form ($\mathfrak{h}_{\kappa} \perp \mathfrak{p}_{\kappa}$ also holds). For $\kappa = 0, 1, -1$, this inner product on \mathfrak{g}_{κ} induces on G_{κ} a bi-invariant metric. Thus, there exists an unique pseudo-Riemannian metric on $\mathcal{L}_{\kappa} \simeq G_{\kappa}/H_{\kappa}$ such that $\pi : G_{\kappa} \to G_{\kappa}/H_{\kappa}$ is a pseudo-Riemannian submersion. For $\kappa = 0, 1$, this metric on \mathcal{L}_{κ} coincides with the given in (2), see Lemma 5 b). For $\kappa = -1$, the metric on \mathcal{L}_{-1} associated with the Killing form is different from the one in (2). However, the magnetic geodesics of either metric on \mathcal{L}_{-1} are the same. This follows since the geodesics are the same (see [8]), so the Levi-Civita connections coincide.

Let us call $A = \text{diag}(0_2, j)$, which is in the center of \mathfrak{h}_{κ} . We have that ad_A is orthogonal and $\text{ad}_A^2 = -\text{id}$ in \mathfrak{p}_{κ} . Hence, ad_A induces a complex structure on G_{κ}/H_{κ} . A straightforward computation shows that it coincides, via ϕ in (7), with the complex structure given in the introduction. With the metric above and this complex structure, \mathcal{L}_{κ} is a Hermitian symmetric space.

As a direct application of a result by Adachi, Maeda and Udagawa in [1] (see also [2], Remark 1) we have

Theorem 4 Let σ be a magnetic geodesic of G_{κ}/H_{κ} with initial conditions $\sigma(0) = H_{\kappa}$ and $\dot{\sigma}(0) = X \in \mathfrak{p}_{\kappa}$. Then $\sigma(t) = \pi (\exp t (X + A))$.

As we saw in (1), \mathcal{J}_{γ_o} is isomorphic to $T_{[\gamma_o]}\mathcal{L}_{\kappa} \cong \mathfrak{p}_{\kappa}$. In the next Lemma we relate \mathfrak{p}_{κ} and \mathcal{J}_{γ_o} explicitly, involving the matrix A.

Lemma 5 Let $Z = Z(x, y) \in \mathfrak{p}_{\kappa}$. a) The Jacobi field $J(s) = \frac{d}{dt}\Big|_{0} \exp t(Z+A) \cdot \gamma_{o}(s)$ in $\mathcal{J}_{\gamma_{o}}$ is the unique one that satisfies $J(0) = (0, 0, x)^{t}$ and $J'(0) = (0, 0, y)^{t}$. b) $T_{\gamma_{o}}(J) = d(\phi \circ \pi) Z$ and its norm is $||d(\phi \circ \pi)Z|| = \det(x, y)$.

Proof. For each κ , we consider the following parameterization of γ_o :

Given $Z = Z(x, y) \in \mathfrak{p}_{\kappa}$, the Jacobi field along γ_o defined by $J(s) = \frac{d}{dt}\Big|_0 \exp t(Z + A) \cdot \gamma_o(s)$ belongs to \mathcal{J}_{γ_o} , because for all $s \in \mathbb{R}$,

$$\langle J(s), \dot{\gamma}_o(s) \rangle = \langle (Z+A)(\gamma_o(s)), \dot{\gamma}_o(s) \rangle = 0,$$

since $(Z + A)(\gamma_o(s))$ is orthogonal to e_0 and e_1 , while $\dot{\gamma}_o(s)$ has non zero components only in these two directions.

One verifies easily that $J(0) = (Z + A)(e_0) = (0, 0, x)^t$. On the other hand,

$$J'(0) = \frac{D}{\partial s} \Big|_{0} \frac{\partial}{\partial t} \Big|_{0} \exp t \left(Z + A\right) \cdot \gamma_{o}(s)$$
$$= \frac{D}{\partial t} \Big|_{0} \exp t \left(Z + A\right) \left(e_{1}\right) = \left(Z + A\right) \left(e_{1}\right) = \left(0, 0, y\right)^{t}.$$

Besides,

$$T_{\gamma_o}(J) = \frac{d}{dt}\Big|_0 \left[\exp t(Z+A) \cdot \gamma_o\right] = \frac{d}{dt}\Big|_0 \phi(\exp t(Z+A)H_\kappa)$$
$$= \frac{d}{dt}\Big|_0 \phi(\pi(\exp t(Z+A))) = d\phi \circ d\pi Z,$$

where the last equality holds since $A \in \mathfrak{h}_{\kappa}$. Finally, the norm (2) of $d(\phi \circ \pi)Z$ equals

$$\|d(\phi \circ \pi)Z\| = \langle \dot{\gamma}_o(0) \times J(0), J'(0) \rangle = \det(x, y)$$

and the assertions of b) are verified.

Let $Z(x, y) \in \mathfrak{p}_{\kappa}$ and let $h = \text{diag}(R_{\kappa}(t), B) \in H_{\kappa}$, where $B \in SO_2$ and

$$R_{\kappa}(t) = \begin{pmatrix} c_{\kappa}(t) & -\kappa s_{\kappa}(t) \\ s_{\kappa}(t) & c_{\kappa}(t) \end{pmatrix}$$

is as in (6). Then $Ad(h)Z(x,y) = Z(Bx_t, By_t)$, where

$$x_t = c_{\kappa}(t)x - s_{\kappa}(t)y, \quad y_t = \kappa s_{\kappa}(t)x + c_{\kappa}(t)y.$$

We denote by ϵ_1 and ϵ_2 the vectors of the canonical basis of \mathbb{R}^2 .

Lemma 6 Let $Z(x, y) \neq 0$ in \mathfrak{p}_{κ} .

a) If $\{x, y\}$ is a linearly independent set of \mathbb{R}^2 , then there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h)Z(x, y) = Z(a\epsilon_1, b\epsilon_2)$, with a > 0 and $b \neq 0$, for $\kappa = 0, \pm 1$.

b) If $\kappa = 0, 1$ and $\{x, y\}$ is a linearly dependent set of \mathbb{R}^2 , then there exists $h \in H_{\kappa}$ such that either $\operatorname{Ad}(h)Z(x,y) = Z(0,b\epsilon_2)$, with $b \neq 0$, or $\operatorname{Ad}(h)Z(x,y) = Z(a\epsilon_1,0)$, with a > 0. This is true for $\kappa = -1$ if in addition $|x| \neq |y|$.

c) For $\kappa = 1$, there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h)Z(\epsilon_1, 0) = Z(0, \epsilon_2)$.

Proof. For the proof of a), as $\{x, y\}$ is a linearly independent set, then for $\kappa = 0, \pm 1$ there exists $t \in \mathbb{R}$ such that $\langle x_t, y_t \rangle = 0$. Indeed, for each κ , this is equivalent to fact that the equation

$$c_3 - c_2 t = 0 \qquad \text{if} \quad \kappa = 0;$$

$$\frac{1}{2}(c_1 - c_2) \sin(2t) + c_3 \cos(2t) = 0 \qquad \text{if} \quad \kappa = 1;$$

$$-\frac{1}{2}(c_1 + c_2) \sinh(2t) + c_3 \cosh(2t) = 0 \qquad \text{if} \quad \kappa = -1$$

has a real solution, where $c_1 = \langle x, x \rangle$, $c_2 = \langle y, y \rangle$ and $c_3 = \langle x, y \rangle$. But the linear independence of x and y determines the existence of the solution in each case. Then, we can take $B \in SO_2$ such that $Bx_t = a\epsilon_1$, with a > 0 and $By_t = b\epsilon_2$, with $b \neq 0$. Therefore the isometry $h = \text{diag}(R_{\kappa}(t), B) \in H_{\kappa}$ satisfies $\text{Ad}(h)Z(x, y) = Z(a\epsilon_1, b\epsilon_2)$.

For the proof of b), first we suppose that x = 0 or y = 0 (but not both zero since $Z(x, y) \neq 0$). Let $B \in SO_2$ such that $Bx = a\epsilon_1$ with a > 0, if $x \neq 0$, and in the case that $y \neq 0$, let $B \in SO_2$ such that $By = b\epsilon_2$, with $b \neq 0$. Then we can take $h = \text{diag}(I, B) \in H_{\kappa}$.

Now, let $x \neq 0$ and $y \neq 0$. So $x = \lambda y$ or $y = \lambda x$, with $\lambda \neq 0$. We suppose that $y = \lambda x$ (for $x = \lambda y$ the argument is similar). In the cases $\kappa = 0, 1$ there exists $t \in \mathbb{R}$ such that $x_t = 0$. In fact, from the hypothesis and some computations, $t \in \mathbb{R}$ is obtained by solving

$$1 - \lambda t = 0$$
, if $\kappa = 0$ and $\cos t - \lambda \sin t = 0$, if $\kappa = 1$.

Thus, taking $B \in SO_2$ such that $By_t = b\epsilon_2$ (with $b \neq 0$ as $y_t \neq 0$), we have that $h = \text{diag}(R_{\kappa}(t), B) \in H_{\kappa}$ satisfies $\text{Ad}(h)Z(x, y) = Z(0, b\epsilon_2)$.

For $\kappa = -1$, as in the cases $\kappa = 0, 1$, we find $t \in \mathbb{R}$ such that either $x_t = 0$ or $y_t = 0$ by solving

$$\cosh t - \lambda \sinh t = 0$$
, and $-\sinh t + \lambda \cosh t = 0$,

respectively. But these equations have a solution if and only if $\lambda \neq \pm 1$. That is, if and only if $|x| \neq |y|$. Hence, taking $B \in SO_2$ such that either $By_t = b\epsilon_2$ or $Bx_t = a\epsilon_1$ (with a > 0; here again we have that $x_t \neq 0$), as appropriate. Then $h = \text{diag}(R_{-1}(t), B) \in$ H_{-1} is as desired in this case.

For part c), we observe that $h = \text{diag}(R_1(\pi/2), B) \in H_1$, where $B \in SO_2$ takes ϵ_1 to ϵ_2 , satisfies $\text{Ad}(h)Z(\epsilon_1, 0) = Z(0, \epsilon_2)$.

Remark. The previous lemma corresponds, geometrically, with the fact of finding $s \in \mathbb{R}$ at which the Jacobi field associated with Z(x, y) (given by Lemma 5) and its covariant derivative are orthogonal.

Recall that if h is a regular curve in M_{κ} of constant speed a, then the Frenet frame of h is

$$T(t) = \frac{1}{a} \dot{h}(t), \qquad N(t) = \dot{h}'(t) / \left| \dot{h}'(t) \right|, \qquad B(t) = T(t) \times N(t)$$
(8)

(here the prime denotes the covariant derivative along h), and its curvature and torsion are given by

$$k(t) = \frac{1}{a^2} \left| \dot{h}'(t) \right|, \qquad \tau(t) = -\frac{1}{a} \left< B'(t), N(t) \right>.$$
 (9)

For each $g \in G_{\kappa}$ we have that g is an isometry of \mathcal{L}_{κ} and preserves the Hermitian structure. Hence, g takes magnetic geodesics to magnetic geodesics.

3 Time- and space-like magnetic geodesics

Proof of Theorem 1. Let $Z \in \mathfrak{p}_{\kappa}$ be the initial velocity of σ , with $||Z|| \neq 0$. First, we consider the case $Z = Z(a\epsilon_1, b\epsilon_2)$, with a > 0 and $b \neq 0$.

For each $t \in \mathbb{R}$, let $\alpha(t) = \exp t(Z + A)$. By Theorem 4 and the diffeomorphism ϕ in (7), we know that $\sigma(t) = \alpha(t) \cdot [\gamma_o]$, that is, $\sigma(t) = [\alpha(t) \cdot \gamma_o]$.

Let h be the curve in M_{κ} given by $h(t) = \alpha(t)(e_0)$. As α is a one-parameter subgroup of isometries of M_{κ} , we have that h is a curve with constant curvature and torsion, thus h is a helix in M_{κ} .

Let us see that $\sigma(t) = [\gamma_{B(t)}]$, where B(t) is the binormal field of h. For each $t \in \mathbb{R}$, the initial velocity of the geodesic $\alpha(t) \cdot \gamma_o$ is $d(\alpha(t))(e_1)$, hence $\sigma(t) = [\gamma_{d(\alpha(t))(e_1)}]$. Then, we have to verify that $B(t) = d(\alpha(t))(e_1)$, for all $t \in \mathbb{R}$. Since $\alpha(t)$ is an isometry that preserves the helix and takes the Frenet frame at t = 0 to the Frenet frame at t, is suffices to show that $B(0) = e_1$. By the usual identifications, since $\alpha(t)$ is a linear transformation, we can write $d(\alpha(t))(e_1) = \alpha(t)(e_1)$, so

$$\dot{h}(t) = \alpha(t) ((Z+A)e_0)$$
 and $\dot{h}'(t) = [\alpha(t)((Z+A)^2e_0)]^{\mathrm{T}},$

where T denotes the tangent projection. Since

$$h(0) = (Z + A)e_0 = ae_2,$$

$$\dot{h}'(0) = \left[(Z + A)^2 e_0 \right]^T = \left[-\kappa a^2 e_0 + ae_3 \right]^T = ae_3$$

and $\alpha(t)$ is an isometry, we have $|\dot{h}(t)| = a = |\dot{h}'(t)|$. By the computation before and (8) we obtain

$$B(0) = \frac{1}{a^2} \dot{h}(0) \times \dot{h}'(0) = e_1.$$

Consequently, $B(t) = \alpha(t)(e_1)$. Then $B'(t) = [\alpha(t)((Z + A)e_1)]^T$ and $B'(0) = be_3$. Besides, using (8) and the previous computations, it follows that $N(0) = e_3$. Therefore, by (9) we have that the curvature and torsion of h are equal to

$$k = 1/a, \quad \tau = -b/a. \tag{10}$$

The assertion regarding the sign of the torsion is immediate from Lemma 5 b) and (10). Thus, the theorem is proved in this particular case.

Now, let σ be a magnetic geodesic with $\sigma(0) = [\gamma]$ and initial velocity with non zero norm. Since G_{κ} acts transitively on \mathcal{L}_{κ} , there is an isometry g such that $g \cdot [\gamma] = [\gamma_o]$. So, the magnetic geodesic $g \cdot \sigma$ also has initial velocity with non zero norm and $g \cdot \sigma(0) = [\gamma_o]$. By Lemma 5 b), if $d(\phi \circ \pi)Z(x, y)$ is the initial velocity of $g \cdot \sigma$, we have that the vectors $\{x, y\}$ are linearly independent. Then, by Lemma 6 a), there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h)Z(x, y) = Z(a\epsilon_1, b\epsilon_2)$, with a > 0 and $b \neq 0$. Since $((h \circ g) \cdot \sigma)'(0) = d(\phi \circ \pi)(\operatorname{Ad}(h)Z(x, y))$, the curve $(h \circ g) \cdot \sigma$ is a magnetic geodesic of the type studied above. Therefore, σ has the form (3).

Conversely, let h be a helix in M_{κ} with curvature k > 0, non zero torsion τ and speed 1/k. Let $\{T, B, N\}$ be the Frenet frame of h. As M_{κ} is a simply connected manifold of constant curvature, we have that there exists an isometry g of M_{κ} preserving the orientation such that $g(h(0)) = e_0$ and its differential at h(0) takes B(0) to e_1 , T(0) to e_2 and N(0) to e_3 .

Let a = 1/k and $b = -\tau/k$. Let $Z = Z(a\epsilon_1, b\epsilon_2) \in \mathfrak{p}_{\kappa}$. We consider, for each $t \in \mathbb{R}$, $\alpha(t) = \exp t(Z + A)$. According to computations from the first part of the proof, both helices have initial position e_0 , curvature k, torsion τ , speed 1/k and the same Frenet frame at t = 0. Hence $(g \circ h)(t) = \alpha(t)e_0$. So, if we call \overline{B} the binormal field of $g \circ h$, we have that $\overline{B}(t) = d(\alpha(t))e_1$, for all t. Finally, since the curve $[\gamma_{\overline{B}(t)}]$ is a magnetic geodesic in \mathcal{L}_{κ} and

$$[\gamma_{B(t)}] = [\gamma_{dg^{-1}\bar{B}(t)}] = g^{-1} \cdot [\gamma_{\bar{B}(t)}],$$

we obtain that $[\gamma_{B(t)}]$ is a magnetic geodesic.

4 Null magnetic geodesics

We deal first with the hyperbolic case. We use the notation given in the introduction and we recall from [3] certain properties of horospheres and related concepts. To simplify the notation we omit the subindex $\kappa = -1$.

Let γ be a geodesic of \mathbb{H}^3 . Then, for each $p \in \mathbb{H}^3$ there exists a unique unit speed geodesic α of \mathbb{H}^3 such that $\alpha(0) = p$ and α is asymptotic to γ . Let $v \in T^1\mathbb{H}^3$. If p is any point of \mathbb{H}^3 , then v(p) denotes the unique unit tangent vector at p that is asymptotic to v. The Busemann function $f_v : \mathbb{H}^3 \to \mathbb{R}$ is defined by

$$f_v(p) = \lim_{s \to +\infty} d(p, \gamma_v(s)) - s,$$

and satisfies $\operatorname{grad}_p(f_v) = -v(p)$. The horosphere determined by v is given by

$$H(v) = \{ q \in M : f_v(q) = 0 \}.$$

The Jacobi vector fields orthogonal to $\dot{\gamma_o}$ have the form

$$J(s) = e^{s}U(s) + e^{-s}V(s),$$
(11)

where U and V are parallel vector fields along γ_o and orthogonal to $\dot{\gamma}_o$.

A Jacobi vector field Y along a geodesic γ of \mathbb{H}^3 is said to be *stable* (*unstable*) if there exists a constant c > 0 such that

$$|Y(s)| \le c \qquad \forall s \ge 0 \qquad (\forall s \le 0).$$

In what follows we shall denote by $\hat{\pi}$ the canonical projection from $T\mathbb{H}^3$ onto \mathbb{H}^3 . We recall that in the introduction we have defined the smooth maps $\psi^{\pm} : \mathcal{L}(\mathbb{H}^3) \to \mathbb{H}^3(\infty)$ by $\psi^{\pm}[\gamma] = \gamma(\pm \infty)$ and the distributions \mathcal{D}^{\pm} in $\mathcal{L}(\mathbb{H}^3)$ given by $\mathcal{D}^{\pm}_{[\gamma]} = \text{Ker}(d\psi^{\pm}_{[\gamma]})$. We need to relate the distributions \mathcal{D}^{\pm} with distributions $\bar{\mathcal{E}}^{\pm}$ and \mathcal{E}^{\pm} on G and $T^1\mathbb{H}^3$, respectively.

Let $\overline{\mathcal{E}}^{\pm}$ be the left invariant distribution on G defined at $I \in G$ by

$$\bar{\mathcal{E}}_{I}^{\pm} = \left\{ Z(u, \mp u) \in \mathfrak{p} \mid u \in \mathbb{R}^{2} \right\}.$$

As the canonical action of G on $T^1\mathbb{H}^3$ is transitive, the projection $\bar{p}: G \to T^1\mathbb{H}^3$ given by $\bar{p}(g) = dg_{e_0}e_1$ is a submersion. Since given $v \in T^1\mathbb{H}^3$ there exists $g \in G$ such that $\bar{p}(g) = v$, we define:

$$\mathcal{E}^{\pm}(v) = (d\bar{p} \ \bar{\mathcal{E}}^{\pm})(\bar{p}(g)) = d\bar{p}_g(\bar{\mathcal{E}}_g^{\pm}).$$

We have that \mathcal{E}^{\pm} determines a well defined distribution on $T^1\mathbb{H}^3$, which is called the *horospherical distribution* on $T^1\mathbb{H}^3$. This distribution has the following property: if $t \mapsto v(t)$ is a curve in $T^1\mathbb{H}^3$ tangent to the distribution \mathcal{E}^{\pm} , then $\hat{\pi}(v(t))$ is in the horosphere $H(\pm v(0))$.

Lemma 7 Let $Z \in \overline{\mathcal{E}}_{I}^{\pm}$. For each $t \in \mathbb{R}$, let $\gamma_{t}^{\pm}(s) = \exp t (Z + A) \cdot \gamma_{o}(\pm s)$. Then the geodesics γ_{t}^{\pm} are asymptotic to each other for all $t \in \mathbb{R}$.

Proof. Let J be the Jacobi vector field associated with the variation by geodesics $t \mapsto \gamma_t^{\pm}$. By Lemma 5 a), J(0) = -J'(0). Hence, by (11) we have that $J(s) = e^{-s}U(s)$, where U is a parallel vector field along γ_o orthogonal to $\dot{\gamma_o}$. Thus, J is a stable vector field, that is, there exists c > 0 such that $|J(s)| \le c \forall s \ge 0$.

We have to show that given $t_0, t_1 \in \mathbb{R}$ with $t_0 < t_1$, there exists N > 0 such that

$$d(\gamma_{t_0}^{\pm}(s), \gamma_{t_1}^{\pm}(s)) \le N \qquad \forall \ s \ge 0.$$

For fixed s,

$$d(\gamma_{t_0}^{\pm}(s), \gamma_{t_1}^{\pm}(s)) \le \operatorname{length}\left([t_0, t_1] \ni t \longmapsto \gamma_t^{\pm}(s)\right) = \int_{t_0}^{t_1} \left| \frac{d}{dt} \gamma_t^{\pm}(s) \right| dt.$$

For each $t \in \mathbb{R}$, let $J_t(s) = \frac{d}{dt} \gamma_t^{\pm}(s)$. We observe that $J_{t'+t}(s) = d \exp(t'Z) J_t(s)$ for all t, t'. Since $\exp(t'Z)$ is an isometry, we have $|J_t(s)| = |J(s)|$. Therefore,

$$\int_{t_0}^{t_1} |J_t(s)| dt = \int_{t_0}^{t_1} |J(s)| dt \le c(t_1 - t_0)$$

for all $s \ge 0$. Then, we may take $N = c(t_1 - t_0) > 0$.

We consider the projection $p: T^1\mathbb{H}^3 \to \mathcal{L}(\mathbb{H}^3), p(v) = [\gamma_v]$. We call $\overline{\mathcal{D}}^{\pm}$ the distribution on $\mathcal{L}(\mathbb{H}^3)$ *p*-related with \mathcal{E}^{\pm} (well defined). More specifically, given $[\gamma] \in \mathcal{L}(\mathbb{H}^3)$ and $v \in T^1\mathbb{H}^3$ such that $p(v) = [\gamma]$,

$$\bar{\mathcal{D}}^{\pm}([\gamma]) = dp_v \ \mathcal{E}_v^{\pm}.$$

Proposition 8 Let \mathcal{D}^{\pm} and $\overline{\mathcal{D}}^{\pm}$ be the distributions on $\mathcal{L}(\mathbb{H}^3)$ defined above. Then $\mathcal{D}^{\pm} = \overline{\mathcal{D}}^{\pm}$.

Proof. Since \mathcal{D}^{\pm} and $\bar{\mathcal{D}}^{\pm}$ are *G*-invariant, it is enough to show $\mathcal{D}^{\pm}_{[\gamma_o]} = dp_{(e_0,e_1)}(\mathcal{E}^{\pm}_{(e_0,e_1)})$ (we observe that $\bar{p}(I) = (e_0, e_1)$ and $p(e_0, e_1) = [\gamma_o]$).

Let $Z \in \overline{\mathcal{E}}_I^{\pm}$. We take the curve in $\mathcal{L}(\mathbb{H}^3)$ given by $\alpha(t) = \exp tZ \cdot [\gamma_o]$. As $\alpha(t) = p \circ \overline{p}(\exp tZ)$, we have that $\alpha(0) = [\gamma_o]$ and $\dot{\alpha}(0) = d(p \circ \overline{p})_I Z$. That is, $\dot{\alpha}(0) \in dp_{(e_0,e_1)}(\mathcal{E}_{(e_0,e_1)}^{\pm})$. Besides,

$$\frac{d}{dt}\Big|_{0} \exp tZ \cdot \gamma_{o}(s) = \frac{d}{dt}\Big|_{0} \exp t(Z+A) \cdot \gamma_{o}(s),$$
(12)

since both Jacobi fields have the same initial conditions. Hence, Lemma 7 applies to the geodesics $\gamma_t^{\pm}(s) = \exp t Z \cdot \gamma_o(\pm s)$. Thus, $\psi^{\pm} \circ \alpha$ is constant. Then $(d\psi^{\pm})_{[\gamma_o]}(\dot{\alpha}(0)) = 0$, that is, $\dot{\alpha}(0) \in \mathcal{D}_{[\gamma_o]}^{\pm}$.

On the other hand, let $\varphi : T_{e_0}^1 \mathbb{H}^3 \to \mathcal{L}(\mathbb{H}^3), \varphi(v) = [\gamma_v]$, be the submanifold whose image $\mathcal{L}_{e_0}(\mathbb{H}^3)$ consists of all the oriented geodesics passing through e_0 . Besides, $H(\infty)$ is a manifold with the differentiable structure (well defined) such that $F_{e_0}: T_{e_0}^1 \mathbb{H}^3 \to$ $H(\infty)$ given by $F_{e_0}(v) = \gamma_v(\infty)$ is a diffeomorphism. Then, since $\psi^+|_{\mathcal{L}_{e_0}(\mathbb{H}^3)} \circ \varphi = F_{e_0}$, we have that $(d\psi^+)_{[\gamma_o]}$ is surjective. Now, $(d\psi^-)_{[\gamma_o]}$ is also surjective because ψ^- is the composition of ψ^+ with the diffeomorphism of $\mathcal{L}(\mathbb{H}^3)$ assigning $[\gamma^{-1}]$ to $[\gamma]$. Therefore, dim $\mathcal{D}^{\pm}_{[\gamma_o]} = \dim \overline{\mathcal{D}}^{\pm}_{[\gamma_o]}$ and equality follows.

The word *cylinder* in the statement of Theorem 2 refers to a ruled surface determined by a parallel vector field along a curve c of constant geodesic curvature kcontained in a totally geodesic surface in M_{κ} (and normal to it), as explained. For $\kappa = -1$, this ruled surface is diffeomorphic to $S^1 \times \mathbb{R}$ if |k| > 1; otherwise it is diffeomorphic to a plane.

Proof of Theorem 2 a). By Lemma 5 b), we have that every element of $\mathcal{D}_{[\gamma]}^{\pm}$ is null. As G acts transitively on $\mathcal{L}(\mathbb{H}^3)$ and by the G-invariance of the horospherical distributions, we may suppose without loss of generality that $\sigma(0) = [\gamma_o]$, hence $\dot{\sigma}(0) \in \mathcal{D}_{[\gamma_o]}^{\pm}$. By Proposition 8, there exists $Z \in \bar{\mathcal{E}}_I^{\pm}$ such that $\dot{\sigma}(0) = (dp)_{(e_0,e_1)}(d\bar{p})_I Z$. Thus, by Theorem 4, $\sigma(t) = [\exp t(Z + A) \cdot \gamma_o]$.

We assume that $Z \in \overline{\mathcal{E}}_I^+$. Let us show that σ describes a forward cone with vertex at $\gamma_o(+\infty)$. In a similar way, if $Z \in \overline{\mathcal{E}}_I^-$, then σ describes a backward cone with vertex at $\gamma_o(-\infty)$.

We consider the geodesics $\gamma_t(s) = \exp t(Z + A) \cdot \gamma_o(s)$ of \mathbb{H}^3 . As $Z \in \overline{\mathcal{E}}_I^+$, by Lemma 7, we have that the geodesics γ_t are asymptotic to each other for all t. Hence, $z(t) = \dot{\gamma}_t(0)$ is a curve in $T^1 \mathbb{H}^3$ of asymptotic vectors to e_1 .

Let $c(t) = \hat{\pi}(z(t)) = \exp t(Z + A)(e_0)$. In order to see that $c(t) \in H(e_1)$ for all t, we observe that

$$\frac{d}{dt}f_{e_1}(c(t)) = (df_{e_1})_{c(t)}\dot{c}(t) = \langle \operatorname{grad}_{c(t)}(f_{e_1}), \dot{c}(t) \rangle.$$
(13)

Since $\operatorname{grad}_p(f_v) = -v(p)$ we have that

$$\operatorname{grad}_{c(t)}(f_{e_1}) = -z(t) = -d\left(\exp t(Z+A)\right)e_1.$$

On the other hand,

$$\dot{c}(t) = d(\exp t(Z+A))(Z+A)e_0$$

Since $\exp t(Z+A)$ is an isometry and observing that $(Z+A)e_0$ and e_1 are perpendicular $(Z \in \overline{\mathcal{E}}_I^+)$, it follows that the expression in (13) is equal to $-\langle e_1, (Z+A)(e_0)\rangle = 0$. Then, $f_{e_1}(c(t)) = f_{e_1}(e_0) = 0$ for all t, that is, $c(t) \in H(e_1)$ for all t.

Now, as c is the orbit through e_0 of a one-parameter subgroup of isometries of G preserving $H(e_1)$, its geodesic curvature and speed are constant. If Z = Z(u, -u) for certain $0 \neq u \in \mathbb{R}^2$, we obtain that the speed of c is |u|. For each $v \in T^1H^3$ we consider on H(v) the orientation given by $- \operatorname{grad} f_v$. The geodesic curvature of c is then

$$k = \langle -\operatorname{grad}_{e_0}(f_{e_1}), \dot{c}(0) \times \dot{c}'(0) \rangle / |u|^3 = 1/|u|,$$

since $\dot{c}(0) = (Z + A)e_0$ and $\dot{c}'(0) = ((Z + A)^2 e_0)^T$. As for each $v \in T^1 \mathbb{H}^3$, H(v), with the induced metric of \mathbb{H}^3 , is isometric to \mathbb{R}^2 , we have that c(t) runs along a circle on $H(e_1)$ of geodesic curvature k = 1/|u| > 0 and speed 1/k = |u|.

Besides, $\sigma(t) = [\gamma_{z(t)}]$. Thus we have that all conditions are satisfied in order to assert that σ describes a forward cone with vertex at $\gamma_o(+\infty)$.

Conversely, let σ be a curve in $\mathcal{L}(\mathbb{H}^3)$ that describes a forward cone with vertex at infinity. As G acts transitively on the positively oriented frame bundle, and also each element of G takes horospheres to horospheres, preserving their orientation, we may suppose that $\sigma(t) = [\gamma_{v(t)}]$, where v(t) is a curve in $T^1\mathbb{H}^3$ of asymptotic vectors to $v(0) = e_1$ and $c(t) = \hat{\pi}(v(t))$ is a curve of geodesic curvature k and speed 1/k in $H(e_1)$ with $\dot{c}(0) = \frac{1}{k}e_2$, for some k > 0. Let $Z = Z(\frac{1}{k}\epsilon_1, -\frac{1}{k}\epsilon_1) \in \bar{\mathcal{E}}_I^+$. We define

 $\bar{c}(t) = \exp t(Z+A)(e_0)$ and $\bar{v}(t) = d(\exp t(Z+A))(e_1).$

We showed above that $\bar{c}(t)$ is a curve of geodesic curvature k and speed $\frac{1}{k}$ in $H(e_1)$. Moreover, $\bar{c}(0) = e_0$ and the initial velocity of \bar{c} is $\frac{1}{k}e_2$. So, we obtain that $\bar{c} = c$. This implies, together with the identities $\hat{\pi} \circ \bar{v} = \bar{c}$ and $\hat{\pi} \circ v = c$, that $\hat{\pi} \circ \bar{v} = \hat{\pi} \circ v$.

According to the first part of the proof, \bar{v} and v are curves of asymptotic vectors to e_1 . Hence, $-\bar{v}(t) = \operatorname{grad}_{\bar{c}(t)}(f_{e_1}) = -v(t)$. Therefore, $[\gamma_{\bar{v}(t)}] = [\gamma_{v(t)}]$, which is a null magnetic geodesic with initial velocity in the horospherical distribution since $[\gamma_{v(t)}] = [\exp t(Z + A) \cdot \gamma_o]$.

Proof of Theorem 2 b). We suppose first that σ is a null magnetic geodesic such that $\sigma(0) = [\gamma_o]$ and $\dot{\sigma}(0) = d(\phi \circ \pi)Z(a\epsilon_1, 0)$, with a > 0. The expression (4) and the relation between the speed and curvature of h are obtained as in the prove of Theorem 1. By (10) we know that the torsion of h is $\tau = -b/a = 0$ (since b = 0). Thus h is contained in a totally geodesic surface S of \mathbb{H}^3 and B is normal to S.

Now, we suppose that $\dot{\sigma}(0) = d(\phi \circ \pi)Z$, where $Z = Z(0, b\epsilon_2)$ with $b \neq 0$. By Theorem 4 we have that $\sigma(t) = [\alpha(t) \cdot \gamma_o]$, where $\alpha(t) = \exp t(Z + A)$. Since Z + A is in the Lie algebra of the isotropy subgroup H of G at $e_0 \in \mathbb{H}^3$, we get that $\alpha(t)$ fixes e_0 . Moreover, if v is the curve in $T^1_{e_0}\mathbb{H}^3$ given by $v(t) = d(\alpha(t))e_1$, then

$$\sigma(t) = [\alpha(t) \cdot \gamma_o] = [\gamma_{v(t)}],$$

since the initial velocity of the geodesic $\alpha(t) \cdot \gamma_o$ is v(t), for each $t \in \mathbb{R}$.

Furthermore, as v is the orbit through e_1 of a one-parameter subgroup of H (the canonical differential action of G on $T^1_{e_0}\mathbb{H}^3$), then v has constant speed and constant geodesic curvature in $T^1_{e_0}\mathbb{H}^3 \cong \mathbb{S}^2$. Easy computations yield

$$\dot{v}(0) = (0, 0, b)^t$$
 and $\ddot{v}(0) = (-b^2, -b, 0)^t$.

So, the speed of v is |b| and its geodesic curvature is

$$k = \langle v(0), \dot{v}(0) \times \ddot{v}(0) \rangle / |b|^3 = 1/|b|$$

(we consider the orientation of the sphere given by the unit normal field pointing outwards). Thus, v is a curve in $T_{e_0}^1 \mathbb{H}^3$ of geodesic curvature k > 0 and speed 1/k. Consequently, σ has the form (5).

Now, let σ be a null magnetic geodesic such that $\sigma(0) = [\gamma]$ and $\dot{\sigma}(0) \notin \mathcal{D}_{[\gamma]}^{\pm}$. As G acts transitively on $\mathcal{L}(\mathbb{H}^3)$ and by the G-invariance of the horospherical distributions, we may suppose that $\sigma(0) = [\gamma_o]$ and $\dot{\sigma}(0) \notin \mathcal{D}_{[\gamma_o]}^{\pm}$. Let $Z = Z(x, y) \in \mathfrak{p}$ such that $\dot{\sigma}(0) = d(\phi \circ \pi)Z$. By Lemma 5 b), as the norm of the initial velocity of σ is zero, we have that x and y are linearly dependent, and since $d(\phi \circ \pi)Z \notin \mathcal{D}_{[\gamma_o]}^{\pm}$, we also have $|x| \neq |y|$. Now, the isometries in Lemma 6 b) take σ to magnetic geodesics of the particular types studied above. Therefore, σ has the form (4) or has the form (5), as desired.

Conversely, given a helix h in \mathbb{H}^3 with curvature k, speed 1/k and torsion $\tau = 0$, the proof that the expression (4) is a magnetic geodesic is identical to the proof of the converse of Theorem 1. As h has zero torsion, the initial velocity of the magnetic geodesic in (4) is not in the distributions \mathcal{D}^{\pm} .

Let v be a curve in $T_p^1 \mathbb{H}^3$ with geodesic curvature k > 0 and speed 1/k. Let g be the isometry of \mathbb{H}^3 preserving the orientation such that $g(p) = e_0$, $dg(v(0)) = e_1$ and $dg(\dot{v}(0)) = be_3$, for certain b > 0. Hence, $g \cdot v$ is a curve in $T_{e_0}^1 \mathbb{H}^3$ having the same geodesic curvature and the same speed as v, and also b = 1/k. As we showed above, \bar{v} is a curve in $T_{e_0}^1 \mathbb{H}^3$ with $\bar{v}(0) = g \cdot v(0)$ and with the same initial velocity and geodesic curvature that $g \cdot v$. By uniqueness, we have that $\bar{v} = g \cdot v$. To complete the proof we observe that $g \cdot [\gamma_{v(t)}] = [\gamma_{g \cdot v(t)}] = [\gamma_{\bar{v}(t)}]$.

Proof of Theorem 3. Lemma 6 b) implies that the analogue of Theorem 2 a) is empty for the cases $\kappa = 0, 1$. The proof of the fact that every curve σ in \mathcal{L}_{κ} is a null magnetic geodesic if and only if σ has the form (4) or (5) is similar to that of Theorem 2 b).

We check the last statement of the theorem. Without lost of generality, we consider only null magnetic geodesics passing through $[\gamma_o]$ at t = 0. We observe that if, in particular, σ is a magnetic geodesic with initial velocity $d(\phi \circ \pi)Z(a\epsilon_1, 0)$, with a > 0, (that is, σ has the form (4)), then by Lemma 6 c) there exists $h \in H_1$ such that Ad $(h)Z(a\epsilon_1, 0) = Z(0, a\epsilon_2)$. Hence, $h \cdot \sigma$ is a null magnetic geodesic with initial velocity $d(\phi \circ \pi)Z(0, a\epsilon_2)$, and then it has the form (5). So, σ also has this form.

References

- T. Adachi, S. Maeda, S. Udagawa: Simpleness and closedness of circles in compact Hermitian symmetric spaces, Tsukuba J. Math. 24 (2000), 1–13.
- [2] A. Bolsinov and B. Jovanovic: Magnetic flows on homogeneous spaces, Comment. Math. Helv. 83 (2008), 679–700.
- [3] P. Eberlein: Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, 1996.

- [4] N. Georgiou and B. Guilfoyle: On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), 1183–1219.
- [5] B. Guilfoyle and W. Klingenberg: An indefinite Kähler metric on the space of oriented lines, J. London Math. Soc. 72 (2005), 497–509.
- [6] M. Kapovich and J. Millson: The symplectic geometry of polygons in Euclidean space, J. Diff. Geom. 44 (1996), 479–513.
- M. Salvai: On the geometry of the space of oriented lines of Euclidean space, Manuscr. Math. 118 (2005), 181–189.
- [8] M. Salvai: On the geometry of the space of oriented lines of the hyperbolic space, Glasgow Math. J. 49 (2007), 357–366.
- [9] M. Salvai: Global smooth fibrations of ℝ³ by oriented lines, Bull. London Math. Soc. 41 (2009), 155–163.

FaMAF - CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina ygodoy@famaf.unc.edu.ar, salvai@famaf.unc.edu.ar