
Generalized complex and paracomplex structures
on product manifolds

Edison Alberto Fernández-Culma, Yamile Godoy and Marcos Salvai *

Conicet - Universidad Nacional de Córdoba
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Abstract

On a product manifold �M,r�, we consider four geometric structures com-
patible with r, e.g. hyper-paracomplex or bi-Lagrangian, and define distin-
guished generalized complex or paracomplex structures on M , which interpo-
late between some pairs of them. We study the twistor bundles whose smooth
sections are these new structures, obtaining the typical fibers as homogeneous
spaces of classical groups. Also, we give examples of product manifolds ad-
mitting some of these new structures.
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1 Introduction

Hitchin introduced in [14] generalized complex structures on a smooth manifold M
(see also [10]). They can be thought of as geometric structures on M interpolating
between complex and symplectic structures, since these are particular extremal cases
of those generalized structures. Later on, Wade presented in [23] the analogous
concept of generalized paracomplex structures.

In contrast to the premise of [14], where M is only a smooth manifold, Salvai
assumes in [20] that M is additionally endowed with a complex structure j. He con-
siders on �M,j� pairs of geometric structures s1 and s2 on M compatible with j,
for instance, a totally real foliation and a Kähler structure, or a hypercomplex and
a C-symplectic structure. The following question is posed: What are natural condi-
tions on generalized (para)complex structures on M so that they can be realized as
interpolating between s1 and s2? This gives rise to the definition of integrable �λ, `�-
structures on �M,j� for λ, ` � �1, after calling s1 and s2 �λ,0�- and �0, `�-structures,
respectively. In the same article and in [8], the analogous issue is addressed for a
symplectic manifold �M,ω� and a pseudo Riemannian manifold �M,g� instead of
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�M,j�. A similar approach for hypercomplex and holomorphic symplectic structures
in the setting of generalized hypercomplex structures can be found in [21].

In the present paper, the base space M is a paracomplex manifold. For the sake
of generality we let M be endowed with a product structure r, that is, we admit that
the eigenspaces of r have different dimensions. We consider four geometric structures
compatible with r, namely, hyper paracomplex or complex product structures and
bi-Lagrangian, bi-complex and bi-symplectic foliations. In this context we follow
the lines of our previous articles mentioned above. In particular, we define a notion
of interpolation between some of these structures on �M,r�, which is given by a
generalized (para)complex structure S on M with a certain compatibility with r.
We show that the existence of such an S forces �M,r� to fulfill some properties; in
many cases r turns out to be paracomplex.

We study the associated twistor bundles whose smooth sections are integrable�λ, `�-structures, obtaining the typical fibers as homogeneous spaces of classical
groups. Also, we find conditions on closed 2-forms on M implying that the asso-
ciated B-fields preserve the new structures.

Besides, we impose conditions on certain curves t ( St of endomorphisms of
the extended tangent bundle of M that guarantee that St is an integrable �λ, `�-
structure of �M,r� for almost all t. Using this, we exhibit a concrete example of a
curve of integrable �1,1�-structures on H � R endowed with a left invariant para-
complex structure, where H is the three dimensional Heisenberg group. Finally, we
give an example of a left invariant integrable ��1,�1�-structure on a Lie group with
a product structure r, which admits neither complex nor symplectic left invariant
structure compatible with r, that is, integrable ��1,0�- and �0,�1�-structures.

Although the article is organized following closely [20] and [8], the involved defi-
nitions and properties are quite different from the ones in those papers and in some
proofs new techniques are required; for instance, unlike [8], we have to consider a
nonfree module over the Lorentz numbers (case ��1,�1� in the proof of Theorem
4.2).

We would like to thank Eduardo Hulett for a useful reference and the referees
for the careful reading of the manuscript and several suggestions of improvements.

2 Preliminaries

2.1 Generalized complex and paracomplex structures

We recall from [10] the definitions and basic facts on generalized complex structures,
and on generalized paracomplex structures from [23]. A unified approach can be
found in [22].

Let M be a smooth manifold (by smooth we mean of class Cª; all the objects
considered will belong to this class). The extended tangent bundle is the vector
bundle TM � TM ` TM� over M . A canonical split pseudo Riemannian structure
on TM is defined by

b �u � σ, v � τ� � τ �u� � σ �v� , (1)

for smooth sections u � σ, v � τ of TM . The Courant bracket of these sections [6] is
given by �u � σ, v � τ� � �u, v� �Luτ �Lvσ � 1

2d �τ �u� � σ �v�� ,

where L denotes the Lie derivative.
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A real linear isomorphism S with S2
� λ id, λ � �1, is called split if tr S � 0

(equivalently, if the dimension of the �
º
λ-eigenspaces of S coincide); this is always

the case if λ � �1.
For λ � �1, let S be a smooth section of End �TM� satisfying

S2
� λ id, S is split and skew-symmetric for b

and such that the set of smooth sections of the �
º
λ-eigenspace of S is closed under

the Courant bracket (if λ � �1, this means as usual closedness under the C-linear
extension of the bracket to sections of the complexification of TM). Then, for λ � �1
(respectively, λ � 1), S is called a generalized complex (respectively, generalized
paracomplex ) structure on M . Notice that in [23] the latter is not required to be
split.

2.2 Geometric structures compatible with a product structure

Let �M,r� be a product manifold, that is, r is a tensor field of type �1,1� on M with
r2

� id such that the eigendistributions r�δ� of eigenvalues δ � �1 are integrable. If
r�1� and r��1� have the same dimension, r is called a paracomplex structure. We
consider the following integrable geometric structures on M compatible with a prod-
uct structure r. Basically, they are rotations and reflections in each tangent space of
M which commute or anti-commute with r and satisfy certain integrability condi-
tions or they are symplectic structures for which r is symmetric or skew-symmetric.
The reason of the names integrable �λ,0�- or �0, `�-structures will become apparent
in Theorem 3.4.

Integrable �1,0�-structure or hyper-paracomplex structure on �M,r�. It is
given by a product structure p on M with rp � �pr. In this case, r and p turn out
to be paracomplex structures on M , since rp is an almost complex structure on M
which anti-commutes with both r and p and so rp interchanges the eigendistributions
of r and also those of p. Besides, rp is a complex structure since r and p are integrable
(see Proposition 6.1 in [16]). Therefore, �M,r, rp� is a complex product manifold.

Integrable ��1,0�-structure or bi-complex foliation on �M,r�. It is given by
a complex structure j on M with rj � jr. In this case the eigendistributions of r are
j-invariant (in particular, they have even dimension) and the restriction of j to any
leaf of the corresponding foliations is a complex structure.

Integrable �0,1�-structure or bi-Lagrangian foliation on �M,r� ([5, 7], aka
Künneth [11], para-Kähler [1, 9] or Kähler D-manifold [13]). It is given by a
symplectic form on M for which r is skew-symmetric. In this case, the restriction of ω
to the eigendistributions r�δ� of r vanish. So, the leaves of the foliations determined
by r�δ� are Lagrangian submanifolds of �M,ω�. In particular, their dimension is
not bigger than half the dimension of M . Since they are complementary, r must be
paracomplex.

Integrable �0,�1�-structure or bi-symplectic foliation on �M,r�. It is given
by a symplectic form ω for which r is symmetric. The restrictions of ω to the leaves
of the eigendistributions of r are closed and nondegenerate (indeed, if ω �x, y� � 0
for some x > r �δ� and all y > r �δ�, then ω �x, z� � 0 for all z > r ��δ�, since r is
symmetric for ω). Therefore the leaves are symplectic manifolds. In the case that
r is paracomplex, ω determines on �M,r� a symplectic structure over the Lorentz
numbers (see Proposition 4.1 of [20]).
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3 Integrable �λ, `�-structures on �M,r�

Definition 3.1 Let �M,r� be a product manifold. For k � �1, let Rk be the product
structure on the real vector bundle TM over M given by

Rk � � r 0
0 kr�

� .

We observe that R�1 is a generalized paracomplex structure on M (in particular,
it is split), but R1 is not, since it is symmetric for b. Furthermore, R1 is split only
when r is a paracomplex structure on M .

Now, we introduce four families of generalized geometric structures on �M,r�
interpolating between some of the structures listed in the previous section.

Definition 3.2 Let �M,r� be a product manifold. Given λ � �1 and ` � �1, a
generalized complex structure S (for λ � �1) or a generalized paracomplex structure
S (for λ � 1) on M is said to be an integrable �λ, `�-structure on �M,r� if

SRλ` � �λRλ`S. (2)

We call Sr �λ, `� the set of all integrable �λ, `�-structures on �M,r�.
Given a bilinear form c on a real vector space V , let c¬ > End�V,V �� be defined

by c¬�u��v� � c�u, v�.
Example 3.3 If s and ω are integrable �λ,0�- and �0, `�-structures on �M,r�, re-
spectively, then

S � � s 0
0 �s�

� and Q � � 0 λ�ω¬��1

ω¬ 0
�

belong to Sr �λ, `�. In fact, it is well known that they are generalized complex or
paracomplex structures onM and straightforward computations show that condition
(2) holds.

The following simple theorem, along with Theorem 4.2 below, contributes to
render the notion of an integrable �λ, `�-structure appropriate and relevant.

Theorem 3.4 Let �M,r� be a product manifold. For λ � �1, ` � �1, if

S � � s 0
0 t

� and Q � � 0 h
ω¬ 0

�
belong to Sr �λ, `�, then s and ω are integrable �λ,0�- and �0, `�-structures on �M,r�,
respectively.

Proof It is well known from [10] and [23] (see also [22]) that if S and Q as above are
both generalized complex (respectively paracomplex) structures, then s is a complex
(respectively product) structure on M and ω is a closed 2-form. Besides, again for
[10] and [23], t � �s� and h � ��ω¬��1 (respectively, h � �ω¬��1). On the other hand,
since S and Q satisfy condition (2), we obtain that sr � �λrs and ω¬ Xr � �` r� Xω¬.
Therefore, s is an integrable �λ,0�-structure and ω is an integrable �0, `�-structures
on �M,r� as desired.
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4 The �λ, `�-twistor bundles over �M,r�

Let �M,r� be a product manifold of dimension m and let p and q be the dimensions
of the eigenspaces r�1� and r��1�, respectively.

Now we work at the algebraic level. We fix x >M and call E � TxM . By abuse
of notation, in the rest of the section we write b (which is defined in (1)) and Rk

instead of bx and �Rk�x. Also, for an operator S with S2
� id, we denote by S�1�

and S��1� the corresponding eigenspaces of S. For convenience we fix a basis

B � �v1, . . . , vp,w1, . . . ,wq� (3)

of TxM such that �v1, . . . , vp� and �w1, . . . ,wq� are bases of the eigenspaces r�1�
and r��1�, respectively, and call B� � �v1, . . . , vp,w1, . . . ,wq� the corresponding dual
basis.

Next we present a proposition referring to the parity of the dimensions of M and
the eigenspaces of r. Notice that, in general, both dimensions are not necessarily
even. We observe that, in particular, integrable �1, `�-structures exist only when M
has even dimension, in contrast to generalized paracomplex structures, which exist
for any dimension of M .

Proposition 4.1 Let �Mm, r� be a product manifold. If �M,r� admits an integrable�λ, `�-structure, then m is even. Besides, if �λ, `� � �1,1�, then �M,r� is paracom-
plex, and if �λ, `� � ��1,�1�, then the eigenspaces of r have even dimensions.

Proof Suppose that �M,r� admits an integrable �1,�1�-structure S. Since S anti-
commutes with R�1, by (2), S interchanges the eigendistributions of R�1. Since S
is an isomorphism, the dimensions of R�1�1� and R�1��1� coincide and so, they
are equal to m. On the other hand, since R�1 is skew-symmetric for b, we have
that bSR�1�δ��R�1�δ� � 0 for δ � �1. Therefore, the form ω � R�1�1� � R�1�1� � R
defined by ω�x, y� � b�S�x�, y� is nondegenerate and skew-symmetric (recall that S
is skew-symmetric for b), and so dimR�1�1� �m is an even number.

If �M,r� admits an integrable �1,1�-structure S, then r must be split. Indeed,
since S anti-commutes with R1, once again, we have that the isomorphism S in-
terchanges the eigendistributions of R1. Then R1 is split (�v1, . . . , vp, v1, . . . , vp� is a
basis of R1 �1� and �w1, . . . ,wq,w1, . . . ,wq� is a basis of R1 ��1�) and consequently
so is r.

Now suppose that M admits an integrable ��1, `�-structure J , which is in par-
ticular a generalized complex structure. It is well known [10, Proposition 3.3] that
in this case the dimension of M must be even.

Next, for the case ` � �1 we check that p and q are even. Since J commutes
with R1, then it induces complex structures Jδ on R1�δ� for δ � �1. Besides, since b
is nondegenerate and b TR1�1��R1��1� � 0 (recall that R1 is symmetric for b), we have
that the form

bδ � b TR1�δ��R1�δ� (4)

is nondegenerate. We assume that δ � 1 (the case δ � �1 is analogous). The dimension
of R1 �1� is 2p. Now we check that the signature of b1 is �p, p�. In fact, the first p
vectors of the orthogonal basis

�v1 � v
1, . . . , vp � v

p, v1 � v
1, . . . , vp � v

p�
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are spatial and the remaining are temporal, where vi > B and vj > B� (we recall
that B is defined in (3)). On the other hand, J is skew-symmetric for b, hence J1 is
skew-symmetric for b1, in particular J1 is an isometry of b1. We have that b1 is the
real part of the Hermitian inner product h1 on the p-dimensional complex vector
spaces �R1�1�, J1� given by

h1�x, y� � b1�x, y� �º
�1 b1�J1x, y�. (5)

By The Basis Theorem of [12] there exists an orthonormal basis �x1, . . . , xs, y1, . . . , yt�
of �R1�1�, J1, h1� such that xi are spatial and yj are temporal vectors, with s� t � p.
Then, �x1, J1x1, . . . , xs, J1xs, y1, J1y1, . . . , yt, J1yt�
is an orthogonal basis of �R1�1�, b1�, where the first 2s vectors are spatial and
the remaining 2t are temporal. Since the signature of b1 is �p, p�, we obtain that
p � 2s � 2t. Analogously, we can see that q is an even number.

Let O �m,n� and U �m,n� be the groups of automorphisms of the Hermitian
symmetric form of signature �m,n� over R and C, respectively. Let Sp�2n,R� be
the group of automorphisms of the R-symplectic space of dimension 2n.

The next theorem is the main result of this section.

Theorem 4.2 Let �M,r� be a product manifold of dimension 2n and let p and q
be the dimensions of the eigendistributions r�1� and r��1� of r, respectively. Then,
integrable �λ, `�-structures on �M,r� are smooth sections of a fiber bundle over M
with typical fiber G~H, according to the following table:

λ ` G H

1 1 O �n,n� �O�n,n� O �n,n�
1 �1 Gl�2n,R� Sp�2n,R�
�1 1 Gl�2n,R� Gl�n,C�
�1 �1 O�p, p� �O�q, q� U�p~2, p~2� �U�q~2, q~2�

Before proving the theorem we introduce some notation and some forms obtained
combining appropriately b and Rk, which will be useful in the proof.

Let σ �λ, `� denote the set of all S > End R �E� satisfying

S2
� λ id, S is split and skew-symmetric for b and SRk � �λRkS with k � λ`.

Let L denote the ring of Lorentz numbers a � εb, where ε2
� 1 and a, b > R. The

conjugate of a Lorentz number a � εb is a � εb.
If Rk is split, then �E,Rk� is a free module over L via �a � εb� � x � ax � bRkx.

By abuse of language we think of it as an L-vector space.

Proposition 4.3 Let k � �1 and suppose that Rk is split. Let bk � E � E � L be
given by

bk �x, y� � b �x, y� � εkb �Rkx, y� . (6)

Then b�1 is an L-Hermitian symmetric form on �E,R�1� and b1 is an L-symmetric
bilinear form on �E,R1�.

Also, if S > EndR�E� satisfies S2
� λ id, then S > σ�λ, `� if and only if

bλ`�Sx,Sy� � T�λ�bλ`�x, y�� (7)

for any x, y > E, where T1 � id and T�1�z� � �z for any z > L.
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Proof Since R�1 and R1 are skew-symmetric and symmetric for b, respectively, we
have for all x, y > E that

bk�y, x� � b�y, x� � εkb�Rky, x� � b�x, y� � k2εb�Rkx, y�,
which equals bk�x, y� if k � 1 and bk�x, y� if k � �1. Also,

bk�εx, y� � bk�Rkx, y�
� b�Rkx, y� � εkb�RkRkx, y�
� b�Rkx, y� � εkb�x, y�
� kε�εkb�Rkx, y� � b�x, y��
� kεbk�x, y�.

Using that b�1�x, y� � b�1�y, x� and b�1�εx, y� � εb�1�x, y� we obtain that b�1�x, εy� �
εb�1�x, y�, for all x, y > E.

We now prove the second assertion. Let S be an element of σ�λ, `� and let k � λ`.
Since SRk � �λRkS and S is skew-symmetric for b we have

bk�Sx,Sy� � b�Sx,Sy� � εkb�RkSx,Sy�
� �b�SSx, y� � εkb��λSRkx,Sy�
� �λb�x, y� � εkb�λSSRkx, y�
� �λb�x, y� � εkb�λλRkx, y�
� �λb�x, y� � εkb�Rkx, y�
� �λ�b�x, y� � λεkb�Rkx, y��
� T�λ�bk�x, y��.

Now we assume that S2
� λ id and condition (7) holds. Note that

T�λ�bk�x,Sy�� � bk�Sx,SSy� � λbk�Sx, y�
for all x, y > E. Therefore, for all x, y > E,

�λb�x,Sy� � εkb�Rkx,Sy� � λb�Sx, y� � λεkb�RkSx, y�,
which implies that S is skew-symmetric for b and λb�RkSx, y� � b�Rkx,Sy�. It
follows that λb�RkSx, y� � �b�SRkx, y� and we have that �λRkS � SRk since b is a
nondegenerate bilinear form on E.

The proof is completed by showing that S is split if λ � 1 (this is always the case
if λ � �1). It follows from the fact that Rk induces an isomorphism between S�1�
and S��1�, since Rk anti-commutes with S.

Next we make explicit the automorphism groups of the forms b1 and b�1. They
can be better understood using null coordinates.

Let us denote e � 1
2�1 � ε�. The set �e, e� is an R-basis of L and the numbers e

and e satisfy
e2

� e, e2
� e, ee � 0, and εe � �e, εe � e. (8)

Any element of L2n can be written as ex � ey, with x, y > R2n. Let A be an L-linear
transformation of L2n. Then A can be expressed as

A�ex � ey� � ePx � eQy (9)
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for all x, y > R2n and some R-linear transformations P,Q of R2n, since A commutes
with the multiplication by ε. Similarly, an L-antilinear transformation A of L2n is
an R-linear transformation of L2n interchanging ε�1� � �ey S y > R2n� and ε��1� ��ex S x > R2n� and so it has the form

A�ex � ey� � ePy � eQx (10)

for some linear transformations P,Q of R2n.

Lemma 4.4 Let B1 be the nondegenerate L-symmetric bilinear form on L2n defined
by

B1��Z1,W1�, �Z2,W2�� � Zt
1Z2 �W

t
1W2, (11)

for all Z1, Z2,W1,W2 > Ln. Then B1 has the form

B1�ex1 � ey1, ex2 � ey2� � e`x1, x2en,n � e`y1, y2en,n (12)

where `�, �en,n is the canonical symmetric bilinear form with signature �n,n� on R2n.
Moreover, the group G1 of L-linear transformations preserving B1 consists of trans-
formations of the form (9) with P and Q isometries for `�, �en,n. In particular, it is
isomorphic to O�n,n� �O�n,n�.

Lemma 4.5 Let B�1 be the nondegenerate L-Hermitian symmetric form defined by

B�1�X,Y � �X tY (13)

for all X,Y > Lm. Then B�1 has the form

B�1�ex1 � ey1, ex2 � ey2� � e`y1, x2e � e`x1, y2e, (14)

where xi, yi > Rm for i � 1,2 and `�, �e is the canonical real inner product of Rm.
Moreover, a transformation A as in (9) preserves B�1 if and only if P is invertible
and Q � �P t��1, where P t denotes the transpose of P with respect to `�, �e. In par-
ticular, the group G�1 of L-linear transformations preserving B�1 is isomorphic to
Gl�m,R�.

The proofs of the lemmas are straightforward. For the second one, details and
extra information can be found for instance in [18, Section 1.3] (see also, [13, Section
3]). Regarding notation, in the important reference [13], Lorentz numbers are called
double numbers and denoted by D; the group G�1 is called the D-unitary group.

Proof of Theorem 4.2 First, we study the sets σ�λ, `�, for λ, ` � �1, working at
the algebraic level as in the beginning of this section. Afterwards, we present the
structure of fiber bundle in each case.

Case �1,1� By Proposition 4.1, R1 is split and so is r. Thus, p � q � n and by Propo-
sition 4.3 we have that �E,R1� is an L-vector space with an L-symmetric bilinear
form b1. Recalling the basis B given in (3), we have that �v1, . . . , vn, v1, . . . , vn� and�w1, . . . ,wn,w1, . . . ,wn� are bases of R1�1� and R1��1�, respectively. Calling

P � �v1 �w1 � v
1
�w1, . . . , vn �wn � v

n
�wn�

Q � �v1 �w1 � v
1
�w1, . . . , vn �wn � v

n
�wn�
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one can check that the juxtaposition C of P and Q is a basis of the L-vector space�E,R1� and the matrix of b1 with respect to C is a multiple of diag �In,�In�, where
In is the n � n-identity matrix. Therefore, there exist L-linear coordinates ϕ�1 ��E,R1�� L2n, such that ϕ�b1 � B1, where B1 is as in (11).

Let Σ�1,1� be the subset of EndR�L2n� corresponding to σ�1,1� via the isomor-
phism ϕ. We recall from Lemma 4.4 that the group G1 of transformations preserving
B1 is isomorphic to O�n,n� � O�n,n�. Using condition (7) of Proposition 4.3, we
check that G1 acts on Σ�1,1� by conjugation.

Let S be an element of Σ�1,1�. Let us see that S has the form

S�ex � ey� � ePy � eP �1x, (15)

where P is an anti-isometry of Rn,n. By definition of the set Σ�1,1�, S anti-commutes
with the multiplication by ε and so S has the form given in (10) for some linear
transformations P,Q of R2n. On the other hand, by (7), S satisfies B1�SX,SY � �
�B1�X,Y � for all X,Y > L2n. Setting X � ex� ey and Y � eu� ev, this is equivalent
to

B1�ePy � eQx, ePv � eQu� � �e`x,ue � e`y, ve,
which is the same as

e`Py,Pven,n � e`Qx,Quen,n � �e`y, ven,n � e`x,uen,n.

It follows that P,Q are anti-isometries of Rn,n. Since S2
� id, we have that PQ � id,

hence S is uniquely determined by P . Conversely, if P is an anti-isometry of Rn,n,
then P defines the element S of Σ�1,1� as in (15).

We fix S > Σ�1,1� and call H1,1 the isotropy subgroup at S of the action of G1.
This group is isomorphic to O�n,n�. Indeed, if f > G1, by (12) and (9), there exist
T,U > O�n,n� such that

f�ex � ey� � eTx � eUy
for all x, y > R2n. Since

fSf�1�ex � ey� � eTPU�1y � eUP �1T �1x,

we have that fSf�1
� S if and only if P � TPU�1. Thus,

H1,1 � �f > G1 S f�ex � ey� � eTx � eP �1TPy, with T > O�n,n�� � O�n,n�.
Now, we see that the action of G1 on Σ�1,1� is transitive. Let S1, S2 > Σ�1,1� and
let P1, P2 be the anti-isometries of Rn,n that determine S1 and S2, respectively. Let
U � P �1

2 P1, which is an isometry of Rn,n, and let f be defined by f�ex�ey� � ex�eUy.
Clearly f > G1 and it is a simple matter to check that fS1f�1

� S2.

Case ��1,�1� In this case the arguments are slightly more involved, since Propo-
sition 4.3 does not apply, due to the fact that R1 is not necessarily split and so R1

does not induce a free L-module on E.
We recall that σ��1,�1� denotes the set of S > End R �E� satisfying

S2
� � id, S is split and skew-symmetric for b and SR1 � R1S.

Let S > σ��1,�1�. Since S and R1 commute, S preserves the eigenspaces of R1. So,
we can consider Sδ � S TR1�δ� , for δ � �1. Besides, by the hypothesis, S2

δ � �id TR1�δ�

9



and Sδ is skew-symmetric for bδ (here, bδ is as in (4)). Hence, Sδ > Iso�R1�δ�, bδ�. As
we saw in the proof of Proposition 4.1, the signatures of b1 and b�1 are �p, p� and�q, q�, respectively. Therefore,

S > Iso�R1�1�, b1� � Iso�R1��1�, b�1� � O�p, p� �O�q, q�.
Conversely, given complex structures Sδ of R1�δ�, which are isometries of �R1�δ�, bδ�,
they determine an element S > σ��1,�1�.

Let G � Iso�R1�1�, b1� � Iso�R1��1�, b�1�. This group acts by conjugation on
σ��1,�1�. We want to verify that the action is transitive. Let S,T > σ��1,�1� and we
denote by h̃δ the Hermitian inner product as in (5) induced by Tδ. So, �R1�1�, S1, h1�
and �R1�1�, T1, h̃1� are Hermitian complex vector spaces, where h1 and h̃1 have
signature �p~2, p~2� (recall that, by Proposition 4.1, p and q are even numbers). By
The Basis Theorem in [12] we have that they are isometric. Thus, there exists an
isometry g1 � �R1�1�, h1� � �R1�1�, h̃1� such that g1 X S1 � T1 X g1. In particular,
g1 > Iso�R1�1�, b1�. In the same manner, there exists g�1 > Iso�R1��1�, b�1� such that
g�1 XS�1 � T�1 X g�1. Therefore, there exists g � �g1, g�1� > G such that g XS X g�1

� T .
Finally, we compute the isotropy subgroup at S > σ��1,�1� of the action of G.

Let g � �g1, g�1� > G such that g X S X g�1
� S. Hence, gδ X Sδ � Sδ X gδ and gδ >

Iso�R1�δ�, bδ�. This implies that gδ is an isometry of the Hermitian complex vector
space �R1�δ�, Sδ, hδ�, where h1 and h�1 have signature �p~2, p~2� and �q~2, q~2�,
respectively. Then,

g > Iso�R1�1�, S1, h
1� � Iso�R1��1�, S�1, h

�1� � U�p~2, p~2� �U�q~2, q~2�,
as we stated.

In order to deal with the remaining cases, we suppose now that λ` � �1. Since R�1

is split, by Proposition 4.3 we have that �E,R�1� is an L-vector space and b�1 is an
L-Hermitian bilinear form. From [18, Proposition 1.3.3] we have that �E,R�1, b�1� is
isometric to �Lm,B�1� where B�1 is as in (13). More precisely, there exist an L-linear
isomorphism ϕ�1 � E� Lm such that B�1 � ϕ�b�1.

Let Σ�λ, `� be the set of EndR�Lm� corresponding to σ�λ, `� via the isomorphism
ϕ.

We recall that the dimension of M is m � 2n (see Proposition 4.1) and the group
G�1 of transformations preserving B�1 is isomorphic to Gl�m,R�, by Lemma 4.5.

Case �1,�1� Let S > Σ�1,�1�. By definition, S anti-commutes with the multipli-
cation by ε, so S is as in (10), that is, there exist linear transformations P,Q of
Rm such that S�ex � ey� � ePy � eQx, for all x, y > Rm. On the other hand, by
Proposition 4.3, we have that

B�1�SX,SY � � �B�1�X,Y �,
for all X,Y > Lm. Using (14), with X � ex� ey and Y � eu� ev, this is equivalent to

e`Qx,Pve � e`Py,Que � �e`x, ve � e`y, ue,
and hence, P tQ � � id. Besides, S2

� id, so PQ � id. Combining the above rela-
tions we have that P and Q are invertible transformations of Rm which are skew-
symmetric for `�, �e. More precisely, S > Σ�1,�1� if and only if

S�ex � ey� � ePy � eP �1x,
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where P is skew-symmetric for the canonical inner product on Rm. In particular, P
induces a symplectic structure ωP ��, �� � `P �, �e on Rm.

Now, the group G�1 of transformations preserving B�1 acts by conjugation on
Σ�1,�1� (this follows checking condition (7) of Proposition 4.3). Let us see that the
isotropy subgroup of the action of G�1 at S, which we call H1,�1, is isomorphic to
Sp�m,R�. Indeed, by Lemma 4.5, given f > G�1 there exists A > Gl�m,R� such that

f�ex � ey� � eAx � e �At��1y.

Since fSf�1�ex � ey� � eAPAty � e�At��1P �1A�1x, we have that f > H1,�1 if and
only if APAt � P . This is equivalent to the fact that A is a symplectomorphism of�Rm, ωP �.

It remains to show that G�1 acts transitively on Σ�1,�1�. Let S1 and S2 be in
Σ�1,�1� and let P1 and P2 be the linear transformations that define S1 and S2,
respectively. Since �Rm, ωP1� and �Rm, ωP2� are symplectic vector spaces, it follows
from [12, The Basis Theorem] that there exist a symplectomorphism A between
them, and so �A�1��ωP1 � ωP2 (here, P2 � �A�1�tP1A�1). It is straightforward to
verify that f defined by

f�ex � ey� � eAx � e �At��1y

satisfies that fS1f�1
� S2.

Case ��1,1� Let S > Σ��1,1�. Since S is an R-linear transformation of L2n and
commutes with the multiplication by ε, we have that S is an L-linear map. Moreover,
Proposition 4.3 implies that S > G�1. Therefore, using Lemma 4.5, S has the form

S�ex � ey� � eJx � e �J t��1y, ¦x, y > R2n, (16)

where J is a linear transformation of R2n such that J2
� � id (since S2

� � id).
Again, verifying that condition (7) of Proposition 4.3 is fulfilled, we have that

G�1 acts by conjugation on Σ��1,1�.
We fix S > Σ��1,1� and call H�1,1 the isotropy subgroup of the action of G�1 at

S. We have that H�1,1 is isomorphic to Gl�n,C�. In fact, for f > G�1 there exists
A > Gl�2n,R� such that

f�ex � ey� � eAx � e �At��1y

for all x, y > R2n (see Lemma 4.5). Since

fSf�1�ex � ey� � eAJA�1x � e ��AJA�1�t��1y,

we have that fSf�1
� S if and only if A commutes with J . That is, A is an invertible

linear transformation of the complex vector space �R2n, J�.
The proof is completed by showing that G�1 acts transitively on Σ��1,1�. Let

S1 and S2 in Σ��1,1�, and let J1 and J2 be the associated linear complex structures
on R2n. Let A be an isomorphism between the complex vector spaces �R2n, J1� and�R2n, J2�. We have that AJ1 � J2A. Therefore, f defined by f�ex � ey� � eAx �
e�At��1y satisfies fS1f�1

� S2.

Fiber bundle structure For k � �1, let Fk be the bundle of all b1-orthonormal
or b�1-unitary frames over M , that is,

Fk � �f � L2n
� TxM S bk �f �z� , f �w�� � Bk �z,w� for all z,w > L2n, x >M� .
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This is a principal Gk-bundle with the right action given by

Fκ �Gk � Fk, f � g � f X g̃,

where g̃ is as in Lemmas 4.4 and 4.5, for k � 1 and k � �1, respectively. More
precisely, if g � �P,Q� > G1 � O �n,n� �O �n,n�, then

g̃ �ex � ey� � ePx � eQy
and if g > G�1 � Gl �2n,R�, then

g̃ �ex � ey� � eg �x� � e �gt��1 �y� .

We already know that Gλ` acts transitively on σ �λ, `� with isotropy subgroup
Hλ,`.

Now, for �λ, `� x ��1,�1� we define the equivalence relation �λ,` on Fλ` by

f1 �λ,` f2 if and only if f2 � f1 � h for some h >Hλ,`.

Since Hλ,` is closed in Gλ`, we have from Section 1 of Chapter 6 in [15] that the
set of equivalence classes is the total space of a fiber bundle over M with typical
fiber Gλ`~Hλ,`.

We observe that the arguments at the algebraic level in the first part of the proof
give a natural identification between σ �λ, `� and the fiber at x of Fλ`~ �λ,`. For
instance in the case ��1,1�, for f > F�1, the class �f� corresponds with S > σ ��1,1�
given by

S �f �ex � ey�� � f �ej �x� � e �jt��1
y�

for all x, y > R2n, where j � � 0 �In
In 0

� > R2n�2n.

Finally, we recall that in the case ��1,�1�, the extended tangent bundle TM
splits as the Whitney sum R1 �1�`R1 ��1� and each summand has a neutral metric.
One considers the O �p, p� �O �q, q�-principal bundle of all maps of the form

�f1, f2� � Rp,p
�Rq,q

� R1 �1�x �R1 ��1�x
with fi preserving the corresponding inner products, for x >M , and proceeds as in
the other cases.

5 Examples

I) Given λ, ` � �1, we find conditions on closed 2-forms on M implying that the
associated B-fields preserve integrable �λ, `�-structures. Let ω be a closed 2-form on
a smooth manifold M and let Bω be the vector bundle isomorphism of TM defined
by

Bω�u � σ� � u � σ � ω¬�u�,
which is called a B-field transformation. It is well known that Bω is an isometry for
b and preserves generalized complex and paracomplex structures (acting by conju-
gation S ( Bω � S � Bω X S XB�ω).
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Proposition 5.1 Let �M,r� be a product manifold and let ω be a closed 2-form
on M . If r is symmetric for ω, then Bω preserves integrable �1,1�- and ��1,�1�-
structures on M . Also, if r is skew-symmetric for ω, then Bω preserves integrable�1,�1�- and ��1,1�-structures on M .

For example, if �M,r, g� is a para-Kähler manifold, then ω¬ � g X r on �M,r�
provides a B-field transformation of integrable �1,�1�- and ��1,1�-structures of�M,r�. In general, ω may be degenerate.

Proof Let ω be a closed 2-form on M . To see that Bω preserves integrable �λ, `�-
structures on M , it suffices to check that Bω commutes with Rλ`. This is equivalent
to show that

ω¬r � λ` r�ω¬.

If r is symmetric for ω this equality holds for λ` � 1 and if r is skew-symmetric for
ω this equality holds for λ` � �1, and the proof is concluded.

II) a) We address the question whether the existence of both integrable �λ,0�- and�0, `�-structures on the product manifold �M,r� can be used to construct a curve of
integrable �λ, `�-structures on �M,r�.
Proposition 5.2 Let s and ω be an integrable �λ,0�- and an integrable �0, `�-
structure on �M,r�, respectively, and for µ � �1 call

S � � s 0
0 �s�

� and Qµ � � 0 µ �ω¬��1

ω¬ 0
� .

Then the following assertions are equivalent.

a) For all t > R, cos t S � sin t Qλ is an integrable �λ, `�-structure on �M,r�.

b) For all t > R, cosh t S � sinh t Q�λ is an integrable �λ, `�-structure on �M,r�.

c) The integrable �λ,0�-structure s is symmetric for ω.

Moreover, for almost all t the structures in (a) and (b) are not induced by in-
tegrable �λ,0�- or �0, `�-structures on M as in Example 3.3, and also they are not
obtained from them via B-field transformations.

Notice that Q�λ is not a �λ, `�-structure on �M,r�, but it does not yield a con-
tradiction, since Q�λ does not belong to the curve.

Proof For κ � �1 we call cos � cos1, sin � sin1, cosh � cos�1 and sinh � sin�1. Also,
we set Sκ,t � cosκ t S � sinκ t Qκλ and compute

S2
κ,t � cos2

κ t S
2
� sin2

κ t Q
2
κλ � cosκ t sinκ t �SQκλ �QκλS� .

Now, since cos2
κ t λI � sin2

κ t κλI � λI, we have that S2
κ,t � λI if and only if SQκλ �

QκλS � 0. But this happens if and only if ω¬s � s�ω¬, or equivalently, that s is
symmetric for ω.

In this case, it remains to check that the rest of the conditions for Sκ,t to be
an integrable �λ, `�-structure are satisfied. In order to see that (2) holds, by the
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linearity of the equation, since S is a �λ, `�-structure and Qµ is a �µ, `�-structure
(by Example 3.3), we have only to verify that

Q�λRλ` � �λRλ`Q�λ.

This is equivalent to ω¬r � �`r�ω¬, and this is true, since ω is an integrable �0, `�-
structure.

We have that Sκ,t is skew-symmetric for b and split due to the fact that S and
Qκλ satisfy these two conditions.

Next, we check the integrability condition. By [22], the set of smooth sections
of the ��ºλ�-eigenspace of Sκ,t is closed under the Courant bracket if and only if
NSκ,t � 0, where for any Φ > End �TM� (with Φ2

� λ id)

NΦ�X,Y � � �Φ�X�,Φ�Y �� �Φ��X,Φ�Y �� � �Φ�X�, Y �� � λ�X,Y �, (17)

for all X,Y smooth sections of TM . Since NS � 0 and NQκλ � 0, a lengthy but
straightforward computation yields thatNSκ,t�X,Y � � 0 if and only ifNS,Qκλ�X,Y � �
0, where 2NS,Q�X,Y � equals (see [17, page 37])

�S�X�,Q�Y ����Q�X�, S�Y ���S��X,Q�Y ����Q�X�, Y ���Q��X,S�Y ����S�X�, Y ��.
On the other hand, calling Jκλ � SQκλ (which also satisfies J2

κλ � �κ id) and
following the computations in the context of the hypercomplex [24] (see also [4])
and hyper paracomplex manifolds (Proposition 6.1 in [16]), we have that NJκλ � 0
and

2λJκλNS,Qκλ�X,Y � � NJκλ�S�X�, S�Y �� � κNS�X,Y � �NQκλ�X,Y �
for all X,Y smooth sections of TM . Thus, the integrability condition is proved. In
particular, we observe that Jλ is a generalized complex structure on M .

The assertion regarding B-fields is clear once one conjugates each of the extremal

structures as in Example 3.3 by � id 0
θ¬ id

�.

b) As an application of the above proposition, we exhibit a concrete example of
a curve of integrable �1,1�-structures on a non-flat Lie group endowed with a left
invariant paracomplex structure.

Let M be the Lie group H � R, where H is the three dimensional Heisenberg
group. Let B � �e1, e2, e3, e4� be an ordered basis of Lie �M� satisfying

�e1, e2� � e3,

and �ei, ej� � 0 for the remaining Lie brackets. Let B� � �e1, e2, e3, e4� be the basis
dual to B. Consider the matrices

r � � r0 0
0 r0

� and j � � i 0
0 i

� ,

where r0 � � 1 0
0 �1

� and i � � 0 �1
1 0

� .

Example 6.4 and Proposition 6.5 in [2] tell us that r and j are the matrices (with
respect to B) of a paracomplex and a complex structure on M , respectively, yielding
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a complex product structure on M (all of them left invariant). Hence, s � jr is an
integrable �1,0�-structure on �M,r�. Now, we consider the left invariant symplectic
structure on M (see [19]) given by

ω � e1
, e4

� e2
, e3,

for which r is skew-symmetric. Hence, ω is an integrable �0,1�-structure on �M,r�.
Then

S � � s 0
0 �s�

� and Q1 � � 0 �ω¬��1

ω¬ 0
�

are the matrices of left invariant integrable �1,1�-structures on �M,r�, with respect
to the ordered basis C of TeM ` TeM� obtained by juxtaposition of B with B�.

Standard computations show that s is symmetric for ω. Then, by Proposition
5.2 a), we obtain that cos t S � sin t Q1 is a curve of integrable �1,1�-structures on�M,r�.

III) We present an example of a left invariant integrable ��1,�1�-structure on a
Lie group G with a product structure r, such that G admits neither complex nor
symplectic left invariant structures compatible with r, that is, integrable ��1,0�-
and �0,�1�-structures.

Let G be the simply connected six-dimensional Lie group whose Lie algebra g in
the ordered basis B � �e1, e2, e3, e4, e5, e6� satisfies

�e1, e2� � �2 e2, �e1, e3� � e2 � e3, �e1, e4� � �e4, �e1, e5� � e2 � e5, �e1, e6� � e2 � e6

and �ei, ej� � 0 for the remaining Lie brackets. Let B� � �e1, e2, e3, e4, e5, e6� be the
dual basis of B.

We consider the left invariant product structure r onG whose matrix with respect
to B is given by �r�B � diag �I2,�I4�.
By Section 3 of [3], a left invariant generalized complex structure on G is the same
as a left invariant complex structure on the cotangent Lie group T �G which is skew-
symmetric with respect to the bi-invariant canonical split metric on it.

In our case, the cotangent Lie algebra g %ad� g� is given by the Lie brackets of
the Lie algebra g together with �e1, e2� � 2 e2 � e3 � e5 � e6 and

�e1, e3� � �e3, �e1, e4� � e4, �e1, e5� � �e5, �e1, e6� � �e6,�e2, e2� � �2 e1, �e3, e2� � e1, �e3, e3� � e1, �e4, e4� � �e1,�e5, e2� � e1, �e5, e5� � e1, �e6, e2� � e1, �e6, e6� � e1.

Let J be the linear complex structure on g %ad� g� defined by

J �e1� � e2,J �e2� � �e1,J �e3� � e4,J �e4� � �e3,J �e5� � e6 and J �e5� � e6.

Then J induces a left invariant complex structure on T �G, which is skew-symmetric
with respect to the bi-invariant canonical split metric and commutes with R1. That
is, J is an integrable ��1,�1�-structure on �G, r�.

Now, suppose that there exists a left invariant integrable complex structure j
on G such that jr � rj. This is equivalent to the fact that the eigenspaces of r are
j-invariant. Thus,

j�e1� � ae1 � be2, j�e2� � ce1 � de2
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for some real numbers a, b, c and d, and also j�ei� > span �e3,�, e6� for i � 3,�,6.
Computing Nj�e2, e3� (here, the definition of Nj is as in (17) with λ � �1), since j is
integrable and B is a basis of g, we obtain that c � 0. But this implies that d2

� �1,
which yields a contradiction.

Finally, we prove that g does not admit a left invariant symplectic structure. We
have that

de1
� 0, de2

� 2e1,2 � e1,3 � e1,5 � e1,6, de3
� �e1,3,

de4
� e1,4, de5

� �e1,5, de6
� �e1,6,

where ei,j � ei , ej. Thus, if ω is a 2-form, that is ω � Pi@j cij ei , ej, we obtain that
ω is closed if and only if ω � β � α, where

β �Q
1@j

c1j e
1
, ej and α � c34 e

3
, e4

� c45 e
4
, e5

� c46 e
4
, e6.

But a straightforward computation shows that ω3 vanishes, so ω can not be a sym-
plectic form on g. In particular, G does not admit any left invariant integrable�0,�1�-structure.
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[7] F. Etayo, R. Santamaŕıa, U.J. Tŕıas, The geometry of a bi-Lagrangian manifold,
Differ. Geom. Appl. 24 (2006) 33–59.

[8] Fernández-Culma, E.A., Godoy, Y., Salvai, M.: Interpolation of geometric struc-
tures compatible with a pseudo Riemannian metric. Manuscripta Math. 151,
453–468 (2016)
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