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Abstract

Let M and N be two connected smooth manifolds, where M is
compact and oriented and N is Riemannian. Let £ be the Fréchet
manifold of all embeddings of M in N, endowed with the canonical
weak Riemannian metric.

Let ~ be the equivalence relation on £ defined by f ~ g if and
only if f = g o ¢ for some orientation preserving diffeomorphism ¢ of
M. The Fréchet manifold S = £/ of equivalence classes, which may
be thought of as the set of submanifolds of N diffeomorphic to M
and is called the nonlinear Grassmannian (or Chow manifold) of N of
type M, inherits from £ a weak Riemannian structure. Its geodesics,
although they are not good from the metric point of view, are distin-
guished curves and have proved to be useful in various situations.

We consider the following particular case: N is a compact irre-
ducible symmetric space and M is a reflective submanifold of N (that
is, a connected component of the set of fixed points of an involutive
isometry of V). Let C be the set of submanifolds of N which are con-
gruent to M. We prove that the natural inclusion of C in § is totally
geodesic.
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1 Introduction and statement of the result

1.1 Manifolds of embeddings

Let M, N be connected differentiable manifolds. If M is compact and oriented
and N is Riemannian, then the set £ of all embeddings of M into N is a
Fréchet manifold [3] which has a canonical weak Riemannian metric defined
as follows: If f € £ and u,v € TyE (that is, u,v are smooth vector fields
along f), then

(u,0) = /M (u(2) v (2) wy (), (1)

where wy is the volume element of the Riemannian metric on M induced by
f

Let ~ be the equivalence relation on &£ defined by f ~ ¢ if and only
if f = go ¢ for some orientation preserving diffeomorphism ¢ of M. The
set & = &£/ of equivalence classes is called the nonlinear Grassmannian
(or Chow manifold) of N of type M. It is a Fréchet manifold with a weak
Riemannian metric in such a way that the associated projection I : £ — §
is a principal bundle with structure group Diff, (M), and a Riemannian
submersion. Cf. [5], where much more general metrics on S are considered.

For any f € £ we have the decomposition Ty = H; @ V; in horizontal
and vertical subspaces at f, where V; = Ker (dIl;) and H is the orthogonal
complement of V;. They consist of all the smooth vector fields along f which
are tangent to f (M), respectively, normal, at each point of M.

1.2 Reflective submanifolds

A reflective submanifold M of a Riemannian manifold N is a connected com-
ponent of the set of fixed points of an involutive isometry of N. In particular,
M is closed and totally geodesic in V. Reflective submanifolds of symmetric
spaces have been extensively studied by Leung in a series of papers begin-
ning with [4]. For instance, every complete totally geodesic connected sub-
manifold of a simply connected space form is reflective. Also, the reflective
submanifolds of CP™ are exactly, up to isometry, CP* (1 < k < n) and
RP™ (canonical embedding). In particular, RP!, that is, a geodesic, is not a
reflective submanifold of CP™ if n > 2.



1.3 The nonlinear Grassmannian of a compact sym-
metric space

Let N be a compact connected symmetric space and let G be the identity
component of the isometry group of N. Let o € N and let K be the isotropy
subgroup at o. We have the canonical projection 7 : G — N, 7 (g) = ¢g (o).
For the sake of simplicity, we assume further that G is semisimple and 7 is
a Riemannian submersion, where G is endowed with the Riemannian metric
defined at the identity by the opposite of the Killing form.

Let M be a reflective submanifold of NV and let £, S be the spaces asso-
ciated to M, N as in 1.1. We may suppose that o € M.

Let H={g9g€ G| g(M)= M}.Since M is closed in G, then H is a closed
subgroup, and hence a Lie subgroup, of G.

Let C be the set of submanifolds of N which are G-congruent to M, that
is, C = {g (M) | g € G}. We may identify C = G/H.

Now we can state the main result of the paper: C is totally geodesic in S.
More precisely,

Theorem 1. Let v : M — N be the inclusion and let
F:C=G/H — S, F(gH)=1logo.
(a well-defined map). Then (C, F) is a totally geodesic submanifold of S.

Remark 2. a) Although geodesics in S are not good from the metric point
of view [6, 1], they are distinguished curves. For instance, the case M = S,
N = 53 [8] has been useful in a characterization of the Hopf fibrations of S3.

b) We do not know whether the Riemannian metric induced on C from S
is normal with respect to G (i.e., whether the canonical projection 7@ : G — C
1s a Riemannian submersion for some bi-invariant Riemannian metric on
G), but at least in the simplest case it is:

Proposition 3. Let M be a refletive submanifold of S™, that is, M is a great
sphere. Then the metric on C induced from § is normal.

Proof. Let {e; |i=0,...,n} be the canonical basis of R"™™ and suppose
M = S"Mspan{e; |i=0,...,m} = S™ Given 0 <i < j <nandt € R,
let RyY € SO(n+1) = G fixing e for k # 4,7 and satisfying R;’e; =



(cost)e; + (sint) e;. Let B = £| R If we take 0 = ey and call b the Lie
algebra of H, then h* = span {E* |0 <i<m < j < n}.
The corresponding vector fields along the inclusion ¢ : S™ — S™ are

Vi (q) = % . (cost) x; (q) e; + (sint) x; (q) e; = i (q) e,

where ¢ € S™. Now we apply the definition (1). We compute

Vi@ =@, (VY (@), V™ (@) = b (q) i 0)-

Since y; =qer Tilgm (1 = 0,...,m) are elements of the canonical orthogonal
basis of spherical harmonics on S™, we have <Vi’j VL > = 0if 7 # k. Besides,

wen [ d@a@=3 [ Fwuw= [ =)

Therefore, ||V#|? = —vol (S™). Now, the Proposition follows from the

fact that {E% |0 <i < j <n} is an orthogonal basis of the Lie algebra of
SO (n + 1) with respect to a multiple of the Killing form. O

2 Proof of the main result

2.1 The structure of C

H. Naitoh proved that if M, N are as in Subsection 1.3, then (G, H) is a
symmetric pair. We recall here the more recent and general version by H.
Tasaki. Let g = £+ p be the Cartan decomposition of the Lie algebra of G
associated to the point o € N.

Theorem 4 ([7, 11]). Let b be the Lie algebra on H and let m_ C p be such
that drem_ = T,M. Then t =€, +€_ and p = m; +m_ in such a way that

b=t +m_ and TyC=b- =, +m,. (2)

Moreover,

[b,6%] bt and [b7,57] Ch. (3)



2.2 The evolution equation for geodesics

Let M, N be as in Subsection 1.1. G. Kainz obtained in [2] a necessary and
sufficient condition for a curve f : I — £ to be a geodesic, where [ is an
interval of the real line.

In the very particular case when f (t) is a totally geodesic embedding and
1’ (t) is a normal vector field along f (¢) for all ¢ € I, the condition simplifies
as follows [6, Subsection 4.2]: f is a geodesic if and only if

D

a@l, f1(@) (z) € d(f (to)), (T:M) (4)

for all t, and all x € M, where % denotes covariant derivative along the curve
I>t— f(t)(x).

2.3 The acceleration of an orbit in a normal space

When applying the criterion above in our case, we will need an expression for
the covariant acceleration of the orbit of a one-parameter group of isometries.

Let G be a connected Lie group endowed with a bi-invariant Riemannian
metric and let K be a closed connected Lie subgroup of G with Lie algebra
t. Consider on P = (/K the Riemannian metric such that the canonical
projection 7 : G — P is a Riemannian submersion (the normal metric on
P). In these conditions, the geodesics of G are one-parameter subgroups; in
particular, the fibers are totally geodesic.

Lemma 5. Let G and P be as above, and let 8 be the curve in P defined by
B=moa, where a(t) =expt (U+ V), with U € € and V € €. Then

Dj

i (0) = dm.|U, V]e.

Before proving the Lemma we recall from [9] some definitions and state-
ments about submersions and parallel transport.

Let 7 : B — P be a Riemannian submersion with totally geodesic fibers.
For F € TB, let HE and VFE denote the horizontal and vertical parts of F,
respectively. The O’Neill tensor field A on B, of type (0,2), is defined by

ApF = VVyp (HF) + HVyp (VF).



Let E be a vector field along a curve o in B. By the main result in [9],
H(E') = £ ((dr (E)) ) + Awp (V) + Ay (VE), (5)

where the prime denotes covariant derivative (along « or 7 o «v, accordingly)
and, if W is a vector field along 7 o «, then £ (W) is the horizontal vector
field along « projecting to F.

Proof of Lemma 5.  We consider the Riemannian submersion 7 : G — P
and apply equation (5) to £ = & = Uoa+ V o, whose covariant derivative
vanishes since « is a geodesic of G (the metric is bi-invariant). We obtain

0=L(p)+241s (Va). (6)

Hence, by definition of the tensor A and using that VU =
metric on G is bi-invariant, one has

[V, U] since the

1
2

L(B) = =2H(VpaVa) = 2H (VU)o a) = H(([U,V]) e ).

Applying dr and evaluating at ¢ = 0, one gets the desired formula for 5 (0).
O

Proof of Theorem 1.  We consider on C = GG/H the metric induced from
S (which in principle may not be normal). Let F': G/H — & be defined by
F (gH) = g o, that is, the following diagram is commutative.

a/H 5 €
N LT

F
s

Given a geodesic v in C, we will prove that F o+ is a horizontal geodesic
in £. Hence, F o~ is a geodesic in § and so (C, F') is totally geodesic, as
desired. Since F' is G-equivariant and the action of GG preserves the metrics
on C and & and also the vertical and horizontal distributions on £ (see above
their description in terms of vector fields along the embeddings), it suffices
to prove the assertion only for v with v (0) = H.

Now, by Theorem 4, since the metric of C is G-invariant, the geodesics of
C are the same as the geodesics of C endowed with the normal metric (see
Exercise 10)b) on page 330 of [10]). Hence, v (t) = 7e!X, for some X € ht.
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We call f = Fov:R — & Now we check that we can apply the criterion
of Kainz. First, f (¢) is totally geodesic for any ¢ € R, since f () = e'X f (0),
with e/ an isometry of N and f (0) = ¢: M — N, which is totally geodesic
since it is reflective. Secondly, the vector field f’(¢) along f (¢) is normal to
f(t). Again by e*X-invariance, one can take t = 0. Let ¢ € M. Since M
is a totally geodesic submanifold of the symmetric space G/H through o,
g =eY .o for some Y € m_. We compute

1(0)(q) = % ) g = % ) e o= % Oeyetz.o = (dey)odwo (7)),
where
Z=Ad (e)X = Z n' (ady)" X.
n=0

Now, [V, X] € [m_,ht] C bt by (3). Hence, Z € b+ and so dn. (Z) LT, M.
Therefore f'(0) (¢) L (de"") dm (m_) = T,M (this last equality is well-known
to hold for totally geodesic submanifolds of a symmetric space).

Now we can use Kainz evolution equation (4). Again by e¥-invariance,
without loss of generality we may check it only at ¢ = 0. Let c(t) = e*¥.0
and suppose, by Theorem 4, that X =U +V, with U € ¢, and V € m . We
can apply Lemma 5 to G/K, with M in the role of P:

D

21 () = dr U, V] € dr[ey, m.],
dt|,

which belongs to p (smce [&,p] C p) and also to b, since [h1, h1] C b by (3).

Therefore, by (2), dt}o (t) € dm. (m_) € T,M, as desired. O
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