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Abstract

Gluck and Ziller proved that Hopf vector fields on S3 have
minimum volume among all unit vector fields. Thinking of S3 as
a Lie group, Hopf vector fields are exactly those with unit length
which are left or right invariant, and TS3 is a trivial vector bun-
dle with a connection induced by the adjoint representation. We
prove the analogue of the stated result of Gluck and Ziller for the
representation given by quaternionic multiplication. The result-
ing vector bundle over S3, with the Sasaki metric, has as well no
parallel unit sections. We provide an application of a double point
calibration, proving that the submanifolds determined by the left
and right invariant sections minimize volume in their homology
classes..

Introduction

Gluck and Ziller proved in [2] that Hopf vector fields on S3 have mini-
mum volume among all unit vector fields. Thinking of S3 as a Lie group,
Hopf vector fields are exactly those with unit length which are left or
right invariant, and TS3 is a trivial vector bundle with a connection
induced by the adjoint representation. This can be considered in the
following more general setting: Let G be a Lie group and (V, ρ) a finite
dimensional orthogonal real representation of G. Let π : E = G×V → G
be the trivial vector bundle. For v ∈ V, let Lv : G → E be the “con-
stant” section Lv (p) = (p, v) .

There exists a unique connection ∇ on E → G such that

∇ZLv = L 1
2
dρ(Z)v (1)

∗Partially supported by foncyt, ciem (conicet) and secyt (unc)
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for all v ∈ V and all left invariant vector fields Z of G. The connection is
easily seen to be compatible with the metric and is called the connection
induced by (V, ρ) .

On E one can define the canonical Sasaki metric induced by ∇ in
such a way that the map

(dπ,K)ξ : TξE → TqM ×Eq

is a linear isometry for each ξ ∈ E (here q = π (ξ) and K is the connec-
tion operator associated with ∇).

For example, the Levi Civita connection of a compact connected
simple Lie group G with a bi-invariant metric may be obtained in this
way: Let g be the Lie algebra of G and consider on E = G × g → G
the connection induced by the adjoint representation. If `p denotes left
multiplication by p, then the map

F : G× g → TG, F (p, v) = d`pv (2)

is an affine vector bundle isomorphism. Moreover, it is an isometry if
E and TG carry the corresponding Sasaki metrics.

For v ∈ V, let Rv the section of E defined by

Rv (g) =
(
g, ρ

(
g−1

)
v
)
.

The sections Lv and Rv are called left and right invariant, respectively,
since in the particular case above they correspond to left and right
invariant vector fields, respectively, via the isomorphism (2).

Let H denote the quaternions and consider on the sphere S3 =
{q ∈ H | ‖q‖ = 1} the canonical round metric induced from R4, or equiv-
alently, thinking of S3 as a Lie group, the bi-invariant metric with con-
stant sectional curvature one. We prove the following analogue of the
cited result of Gluck and Ziller.

Theorem. Let E = S3 ×H → S3 be the vector bundle with the con-
nection induced by the representation of S3 on H given by ρ (q) u = uq̄
and consider on E the associated Sasaki metric. Then the left and right
invariant unit sections have minimum volume among all unit sections
of E → S3 in their homology classes, and they are unique with this
property.

Let E1 = {(q, v) ∈ E | ‖v‖ = 1} be the associated sphere bundle,
which as a differentiable manifold is S3 × S3.
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Remarks. (a) The bundle E1 → S3 has no parallel sections. In par-
ticular, the Sasaki metric is not the product metric.

(b) We prove the Theorem using a single calibration which calibrates
both the left and right invariant sections. In particular, nonnegative
integer combinations of them are homology mass minimizing.

(c) The submanifolds of E1 determined by left and right invariant
sections are totally geodesic round spheres.

(d) The fibers {q} × S3 have smaller volume than the left and right
invariant sections, but perhaps the latter have minimum volume among
all sections of E1 → S3 (some of them determine submanifolds lying in
other homology classes).

(e) Calibrations are rare jewels: Let G be a compact connected sim-
ple Lie group with a bi-invariant metric and E → G the affine bundle
associated to a representation, as in the introduction. If E is endowed
with the Sasaki metric, the submanifolds of E1 determined by left in-
variant sections, in general are not critical points of the volume func-
tional, let alone minima (see for example [6], where we deal with the
case E = TG, that is ρ = Ad).

I would like to thank the referees for improving the main result.

Calibrations

A calibration on a Riemannian manifold M is a closed k-form ω on M
such that for all p ∈ M one has

a) ωp (η) ≤ 1 for all η ∈ Gp (k) and
b) ωp (ξ) = 1 for some ξ ∈ Gp (k) ,

where Gp (k) denotes the Grassmannian of oriented k-planes in TpM. If
ξ is as in (b), one says that ωp calibrates ξ. The following well-known
proposition is a direct consequence of Stokes’ Theorem.

Proposition 1 If M and ω are as above, an oriented submanifold N
of M such that ω (TqN) = 1 for all q ∈ N, has minimum volume among
all k-dimensional submanifolds in its homology class.

The method of calibrations was developed in the fundamental paper
[4], see further important applications for instance in [3].
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Next we recall from [1] (see also [5]) a statement concerning 3-
calibrations with constant coefficients in R6. It is a special case of
double point calibrations of Λ3

(
R6

)∗ when the characterizing angles of
the calibrated 3-planes are all equal.

Proposition 2 [1, Theorem 8] Let {ei | i = 1, . . . , 6} be an orthonormal
basis of R6 and

{
ei | i = 1, . . . , 6

}
the dual basis. Let θ ∈ (0, 2π/3) ,

c = cos θ, s = sin θ and consider the oriented 3-plane

η (θ) = (ce1 + se4) ∧ (ce2 + se5) ∧ (ce3 + se6) .

There exists a unique calibration ω on R6 calibrating exactly the 3-planes
e1 ∧ e2 ∧ e3 and η (θ) . The 3-form ω is given by

ω = e123 + λ
(
e156 + e426 + e453

)
+ µe456,

where eijk = ei ∧ ej ∧ ek and

λ =
c

1 + c
and µ = − 1 + 2c

s (1 + c)
. (3)

Left and right invariant sections and the Sasaki metric

From now on, E = S3 × H with the connection ∇ induced by the
representation ρ of S3 on H given by ρ (q) u = uq̄ (quaternionic multi-
plication). We have

dρ (Z)u =
d

dt

∣∣∣∣
0

ρ (exp tZ) u =
d

dt

∣∣∣∣
0

u exp (−tZ) = −uZ.

Hence, in this particular case, (1) becomes

∇ZLv = L−vZ/2 (4)

Let g = ImH ∼= T1S
3 be the Lie algebra of S3.

Proposition 3 The connection operator K(q,v) : T(q,v)E → Eq = {q} ×
H is given by

K(q,v) (d`qZ, ξ) = (q,−vZ/2 + ξ) .
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Proof. By definition of Lu and ∇ we have for Z ∈ g, ξ ∈ H that

K(q,v) (d`qZ, ξ) = D
dt

∣∣
0
(q exp tZ, v + tξ)

= D
dt

∣∣
0
Lv (q exp tZ) + tLξ (q exp tZ)

=
(∇d`qZLv

)
(q) + Lξ (q)

= L− 1
2
vZ (q) + Lξ (q) ,

from which the proposition follows. q.e.d.

Let π : E → G be as before and Consider on E the Sasaki metric.
Since on each fiber {q}×H of E the Sasaki metric is given by the obvious
identification of it with H, one has clearly that E1 = S3 × S3, which is
a Lie group. We denote the elements of the first and second factors by
p, q, . . . and u, v, . . . , respectively. Correspondingly, the tangent vectors
to both factors will be denoted by Z or ξ, respectively, in order to
emphasize their horizontal and vertical natures.

Let us denote

φ(q,v) =
(
dπ(q,v),K(q,v)

)
: T(q,v)E

1 → TqS
3 × v⊥

(we identify {q}×H = H) and φ = φ(1,1) : g×g → g×g. By Proposition
3 these maps are given by

φ(q,v) (d`qZ, ξ) = (d`qZ,−vZ/2 + ξ) (5)
and φ (Z, ξ) = (Z,−Z/2 + ξ) . (6)

Proposition 4 The Sasaki metric on E1 = S3 × S3 is the unique left
invariant metric such that at the identity (1, 1) is the pull-back through
φ of the product metric on g× g.

Proof. By definition of the Sasaki metric, we must show that in the
commutative diagram

T(1,1)E
1

d`(q,v)−→ T(q,v)E
1

↓ φ ↓ φ(q,v)

g× g
f−→ TqS

3 × v⊥,

the isomorphism f is a linear isometry. By (6), for (Z, ξ) ∈ T(1,1)E
1 we

compute f (φ (Z, ξ)) = f (Z,−Z/2 + ξ). On the other hand, by (5),

φ(q,v)d`(q,v) (Z, ξ) = φ(q,v) (d`qZ, vξ) = (d`qZ,−vZ/2 + vξ) .

Hence f (Z, η) = (d`qZ, vη) for all (Z, η) ∈ g×g, which is clearly a linear
isometry. q.e.d.
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Lemma 5 (∇ZRv) (q) = (q, vqZ/2) .

Proof. We may assume that Z 6= 0, otherwise the assertion is trivial.
For t ∼ 0, let us define

V (q exp tZ) = (cos t) Lvq (q exp tZ) + (sin t) LvqZ (q exp tZ)
= (q exp tZ, (cos t) vq + (sin t) vqZ) .

A straightforward computation shows that V (q) = (q, vq) = Rv (q) and

d

dt

∣∣∣∣
0

V (q exp tZ) = (d`qZ, vqZ) =
d

dt

∣∣∣∣
0

Rv (q exp tZ) .

Hence by (4) we have

(∇ZRv) (q) = (∇ZV ) (q) = (∇ZLvq) (q) + (LvqZ) (q) = L− 1
2
vqZ+vqZ (q) ,

from which the statement follows. q.e.d.

Let Lv = Lv

(
S3

)
and Rv = Rv

(
S3

)
be the submanifolds of E1 de-

termined by the sections Lv and Rv, respectively, with the corresponding
orientations induced by that of S3.

Proposition 6 (a) The submanifolds L1 and R1 of E1 meet at e =
(1, 1) ∈ E1 and one has

φ (TeL1) = φ (g× {0}) = {(Z,−Z/2) | Z ∈ g} and (7)
φ (TeR1) = φ ({(Z, Z) | Z ∈ g}) = {(Z,Z/2) | Z ∈ g} .

(b) The submanifolds Lv and Rvq̄ of E1 meet at e = (q, v) ∈ E1 and
one has

T(q,v)Lv =
(
d`(q,v)

)
e
(TeL1) and T(q,v)Rvq̄ =

(
d`(q,v)

)
e
TeR1.

Proof. A generic element of T(q,v)Rvq̄ has the form

d

dt

∣∣∣∣
0

(q exp tZ, vq̄q exp tZ) = (d`qZ, vZ) ,

for Z ∈ g. Hence, if (q, v) = e one obtains the expression for φ (TeR1) in
(7), since by (6) one has φ (Z, Z) = (Z, Z/2) . Similarly for left invariant
sections. The second statement is clear from the preceding. q.e.d.
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Proof of the Theorem

The Theorem is an immediate consequence of Proposition 1 and the
following.

Proposition 7 Let Ω be the left invariant 3-form on S3×S3 such that
Ωe = φ∗ω, where ω is the 3-form of Proposition 2 with c = 3/5 and
s = 4/5, for an appropriate identification of R6 with g×g. Then Ω is a
calibration which calibrates exactly the left and right invariant sections
of E1 → S3.

Proof. Let {f1, f2, f3} be a positively oriented orthonormal basis of
g and r =

√
5/2. If ei = (fi,−fi/2) /r and ei+3 = (fi/2, fi) /r for

i = 1, 2, 3, then {e1, . . . , e6} is an orthonormal basis of g × g. By (7),
{e1, e2, e3} and

{(fi, fi/2) /r | i = 1, 2, 3} = {(3ei + 4ei+3) /5 | i = 1, 2, 3}
are positively oriented orthonormal bases of φ (TeL1) and φ (TeR1), re-
spectively. Hence the characteristic angles of this pair of 3-planes are
all equal to arccos (3/5) . Thus, by Proposition 2, Ωe calibrates exactly
TeL1 and TeR1. Now, by Proposition 6 (b), Ω calibrates exactly the
left and right invariant unit sections. It remains only to show that Ω is
closed.

For i = 1, 2, 3, let Xi = (fi, 0) and Xi+3 = (0, fi). We compute
(
φ∗ej

)
(Xi) = ejφ (fi, 0) = ej (fi,−fi/2) = ej (rei) = rδi,j

and (0, fi) = 2r (−ei + 2ei+3) /5, from which
(
φ∗ej

)
(Xi+3) = ejφ (0, fi) = ej (0, fi) = 2r (−δi,j + 2δi+3,j) /5.

Therefore, if
{
ξi | i = 1, . . . , 6

}
is the dual basis of {Xi | i = 1, . . . , 6},

calling a = 2/5, we have

φ∗ej =
{

r
(
ξj − aξj+3

)
if 1 ≤ j ≤ 3,

rsξj if 4 ≤ j ≤ 6.
(8)

From now on we think of ξj as a left invariant form on E1. Let us denote
ξijk = ξi ∧ ξj ∧ ξk, θ1 = ξ156 + ξ426 + ξ453 and θ2 = ξ423 + ξ153 + ξ126.
By (8), a straightforward computation yields

Ω = r3
(
ξ123 + µ̄ξ456 +

(
a2 + λs2

)
θ1 − aθ2

)
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for some µ̄ ∈ R. Now, λ = 3/8 by (3) and one easily computes a2+λs2 =
a. Denoting ω1 = ξ156− ξ423, ω2 = ξ426− ξ153 and ω3 = ξ453− ξ126, one
has

Ω = r3
(
ξ123 + µ̄ξ456 + a (θ1 − θ2)

)

= r3
(
ξ123 + µ̄ξ456 + a (ω1 + ω2 + ω3)

)
.

We compute dξ1 = −2ξ2∧ξ3 (X2, X3 may be thought of as orthonormal
left invariant vector fields on S3, hence [X2, X3] = 2X1). Similarly,
dξ4 = −2ξ5 ∧ ξ6, hence d

(
ξ5 ∧ ξ6

)
= 0. Therefore

dξ156 = dξ1 ∧ (
ξ5 ∧ ξ6

)− ξ1 ∧ d
(
ξ5 ∧ ξ6

)

= −2ξ2 ∧ ξ3 ∧ ξ5 ∧ ξ6.

Analogously, dξ423 = −2ξ5 ∧ ξ6 ∧ ξ2 ∧ ξ3 and consequently dω1 = 0. In
the same way one obtains dω2 = dω3 = 0. On the other hand, clearly
ξ123 and ξ456 are closed, since they are pull-backs of 3-forms on the first
and second factors of S3×S3, respectively. This implies that Ω is closed.
q.e.d.

Remark. The submanifolds Lu andRv lie in different homology classes.
Although the second remark to the Theorem shows the convenience
of calibrating them simultaneously, one can ask oneself whether they
can be calibrated separately. We do not know if this is possible. For
instance, the 3-form on E1 obtained by projecting orthogonally onto
TLu or TRv is not closed. In particular, the fibrations of E1 with
fibers Lu or Rv (which are totally geodesic by the second remark to the
Theorem) is not the fibration of parallel submanifolds N ×{x} induced
by a Riemannian product decomposition of E1. Next we check the
validity of these assertions.

Let θ be the volume form on S3 and π2 : S3×S3 → S3 the projection
onto the second factor. One computes easily that π2 ◦ Lu ≡ u and
π2 ◦Rv = `v. Hence,

∫

Lu

π∗2θ =
∫

S3

L∗uπ∗2θ = 0 and
∫

Rv

π∗2θ =
∫

S3

R∗
vπ
∗
2θ =

∫

S3

`∗vθ =
∫

S3

θ = vol
(
S3

)
.

Therefore Lu andRv lie in different homology classes, since π∗2θ is clearly
closed. On the other hand, the 3-form on E1 obtained by projecting
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orthogonally at (q, v) onto T(q,v)Lv is the left invariant form on E1 given
at the identity (with the notation of the proof of the Theorem) by

φ∗
(
e1 ∧ e2 ∧ e3

)
= r3

(
ξ1 − aξ4

) ∧ (
ξ2 − aξ5

) ∧ (
ξ3 − aξ6

)
,

which is not closed by the same arguments used in the proof of the
Theorem. Similarly for Rv instead of Lu, by Lemma 8 below.

Lemma 8 The map F : E1 → E1 defined by F (q, v) = (q̄,−vq̄) is an
isometry satisfying F (Lu) = R−u for all u ∈ T1S

3.

Proof. Fix (q, v) ∈ E1 and let F̃ : TqS
3×v⊥ → Tq̄S

3×(vq̄)⊥ be defined
by

F̃ (d`qZ, vξ) = − (drq̄Z, vξq̄) ,

for Z, ξ ∈ T1S
3, where rp denotes right multiplication by p. The map

F̃ is clearly an isometry with respect to the product metric. By defi-
nition of the Sasaki metric, we must verify that the following diagram
commutes:

T(q,v)E
1

dF(q,v)−→ T(q̄,−vq̄)E
1

↓ φ(q,v) ↓ φ(q̄,−vq̄)

TqS
3 × v⊥ F̃−→ Tq̄S

3 × (vq̄)⊥ .

In fact, by (5), the image of

dF(q,v) (d`qZ, vξ) = d
dt

∣∣
0
F (q exp tZ, v exp tξ)

= d
dt

∣∣
0
(exp (−tZ) q̄,−v exp (tξ) exp (−tZ) q̄)

= (−d`q̄ (qZq̄) ,−vξq̄ + vZq̄) ,

under φ(q̄,−vq̄) is F̃ ◦ φ(q,v) (d`qZ, vξ), as desired. q.e.d.

Comments on the remarks to the Theorem. (a) Let V any smooth
unit section of E1 → S3 with V (1) = (1, v) . Let {x, y} be an orthonor-
mal subset of T 1S3 = ImH and let X, Y be the corresponding left
invariant vector fields. By definition of ∇ (see (4)), and using that
xy = −yx since 〈x, y〉 = 0, the curvature

R (x, y) (1, v) =
(∇X∇Y Lv −∇Y∇XLv −∇[X,Y ]Lv

)
(1)

=
(
1, 1

4vyx− 1
4vxy + 1

2v (xy − yx)
)

=
(
1, 1

2vxy
)
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does not vanish. Hence V is not parallel.
(c) Clearly L1 : S3 → L1 is a diffeomorphism. By (7),

‖(dL1)1 Z‖S = ‖(Z, 0)‖S = ‖φ (Z, 0)‖ = ‖(Z,−Z/2)‖ =
√

5 ‖Z‖ /2,

where ‖‖S denotes the norm on TE1 associated to the Sasaki metric.
By left invariance, the metric on S3 induced by L1 is 5/4 times the
canonical one. Thus, L1 (and hence also Lu for any u) is a round sphere
of Riemannian diameter

√
5π/2.

Next we compute the shape operator of L1 at e. We know that
TeL1 = {(Z, 0) | Z ∈ g}. Hence,

(TeL1)
⊥ = {(U, 5U/2) | U ∈ g} ,

since it has dimension three and

〈φ (Z, 0) , φ (U, 5U/2)〉 = 〈(Z,−Z/2) , (U, 2U)〉 = 0.

By the well-known formula for the Levi Civita connection, which sim-
plifies if the metric and the vector fields are left invariant, if z = (Z, 0) ,
u = (U, 5U/2) and x = (X, 0) , we have

2 〈∇zu, x〉 = 〈φ [z, u] , φx〉 − 〈φ [u, x] , φz〉+ 〈φ [x, z] , φu〉 .

A straightforward computation using (6) yields

2
〈∇(Z,0) (U, 5U/2) , (X, 0)

〉
= 5

4 (〈[Z, U ] , X〉 − 〈[U,X] , Z〉) ,

which vanishes, since adU is skew symmetric. Therefore L1 (and also
Lu for all unit u) is totally geodesic in E1, since it is a Lie subgroup
and the metric is left invariant. By Lemma 8, all the facts above are
valid for the submanifolds determined by right invariant sections.
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