Force free conformal motions of the sphere

Marcos Salvai* FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina e-mail: salvai@mate.uncor.edu

Abstract

Let G be the Lie group of orientation preserving conformal diffeomorphisms of S^n . Suppose that the sphere has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of G. There is a Riemannian metric on G, which turns out to be not complete (in particular not invariant), satisfying that a smooth curve in G is a geodesic, if and only if (thought of as a conformal motion) it is force free, i.e., it is a critical point of the kinetic energy functional. We study the force free motions which can be described in terms of the Lie structure of the configuration space.

MS classification: 22E43, 22E70, 53 C 22, 70K25. Key words: Conformal transformation, Riemannian metric, Lie group, force free motion.

Introduction

In the spirit of the classical description of the force free motions of a rigid body in Euclidean space using an invariant metric on SO(3) [1, Appendix 2], suitable Riemannian metrics on $SO_o(n, 1)$ (n = 2, 3) have proved to be useful to study the dynamics of a rigid body in the hyperbolic spaces of dimensions

^{*}Partially supported by CONICOR, CIEM(CONICET) and SECYT(UNC).

2 and 3 [3, 4, 5, 7]. In this note we define an appropriate metric on the Lorenz group $SO_o(n+1, 1)$ to study force free conformal motions of the sphere S^n .

A diffeomorphism F of a Riemannian manifold (M, g) of dimension $n \ge 2$ is said to be conformal if $F^*g = fg$ for some positive function f on M. The conformal transformations of the circle S^1 are defined below, by analogy with those of S^n $(n \ge 2)$. Following [2], if M is oriented, a conformal transformation of M will be called *directly conformal* if it preserves orientation. Throughout the paper, smooth means of class C^{∞} . The norm of a linear transformation T from one inner product vector space to another is defined by $||T|| = \max \{||Tv|| \mid ||v|| = 1\}$. If T^*T is a multiple of the identity (the case when T is the differential of a conformal transformation), one has ||T|| = ||Tv|| / ||v|| for any $v \neq 0$.

Let S^n be the unit sphere centered at zero in \mathbb{R}^{n+1} with the usual metric and G the Lie group of directly conformal diffeomorphisms of S^n . Suppose that the sphere has initially a homogeneous distribution of mass of constant density 1 and that the particles are allowed to move only in such a way that two configurations differ in an element of G. The configuration space may be naturally identified with G.

The energy of conformal motions.

Let g(s) be a smooth curve in G, which may be thought of as a conformal motion of S^n . The total kinetic energy E(t) of the motion g(s) at the instant t is given by

$$E(t) = \frac{1}{2} \int_{S^n} \rho_t(q) \|v_t(q)\|^2 dq,$$
 (1)

where integration is taken with respect to the canonical volume form of S^n and, if q = g(t)(p) for $p \in S^n$, then

$$v_t(q) = \frac{d}{ds}\Big|_t g(s)(p) \in T_q S^n, \qquad \rho_t(q) = 1/ \|dg(t)_p\|^n$$

are the velocity of the particle q and the density at q at the instant t, respectively. Applying to (1) the formula for change of variables, one obtains

$$E(t) = \frac{1}{2} \int_{S^n} \left\| \frac{d}{ds} \right\|_t g(s)(p) \right\|^2 dp.$$
(2)

The following definition is based on the principle of least action.

Definition. A smooth curve g(t) in G, thought of as a conformal motion of S^n , is said to be *force free* if it is a critical point of the kinetic energy functional.

A Riemannian metric on the configuration space.

The following Proposition actually defines two concepts that will be used throughout the paper.

Proposition 1 (a) Given $g \in G, X \in T_gG$, the function $\widetilde{X} : S^n \to TS^n$,

$$\widetilde{X}(q) = \left. \frac{d}{dt} \right|_{0} \gamma\left(t \right)(q) \in T_{g(q)} S^{n},$$

where γ is any smooth curve in G with $\gamma(0) = g$ and $\dot{\gamma}(0) = X$, is welldefined and smooth.

(b) A Riemannian metric on G is defined as follows: for $X, Y \in TG$ with the same footpoint,

$$\langle X, Y \rangle = \int_{S^n} \langle \widetilde{X}(q), \widetilde{Y}(q) \rangle \, dq.$$

Moreover, a curve g(t) in G is a geodesic if and only if (thought of as a conformal motion) it is force free.

Remarks. (a) If $X \in T_g G$, then \widetilde{X} is a vector field on S^n if and only if g is the identity of the group. In this case, \widetilde{X} is conformal.

(b) For any n, the metric on G is neither left nor right invariant, since we will see in Theorem below that it is not even complete.

Force free conformal motions.

Let $K \cong SO(n+1)$ be the group of orientation preserving isometries of S^n .

Theorem 2 (a) $K \times K$ acts on G on the left, $(h, k) \cdot g = hgk^{-1}$, by isometries of G.

(b) K is totally geodesic in G and the induced metric is bi-invariant.

(c) One-parameter subgroups of isometries of S^n are force free conformal motions of S^n .

Theorem 3 (a) The subgroup of directly conformal motions of S^n preserving a fixed great sphere is totally geodesic in G.

(b) The subgroup of directly conformal motions of S^n preserving two fixed antipodal points of the sphere is totally geodesic in G.

We shall give below details of the fact that G is isomorphic to $SO_o(n + 1, 1)$, which is a simple Lie group and has K as a maximal compact subgroup. Let \mathfrak{k} be the Lie algebra of K and $\mathfrak{p} = [\mathfrak{k}, \mathfrak{k}]$, that is, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} , the Lie algebra of G.

Theorem 4 For any $X \in \mathfrak{p}$, $X \neq 0$, the curve $t \mapsto \exp(tX)$ is the reparametrization of a maximal geodesic in G with finite length. Equivalently, the oneparameter subgroup of conformal motions of the sphere fixing two antipodal points and preserving the meridians joining them, is a reparametrization of a maximal force free conformal motion of S^n defined on a finite interval of time. In particular, G as Riemannian space is not complete for any n.

Proofs of the results

Proof of Proposition. (a) If $\alpha : G \times S^n \to S^n$ denotes the action of G on S^n , which is smooth, then $\widetilde{X}(q) = (d/dt)_0 \alpha(\gamma(t), q) = d\alpha_{(g,q)}(X, 0_q)$, where 0_q is the zero of $T_q S^n$. Hence, \widetilde{X} is well-defined and smooth.

(b) Let $g \in G$. The computations in (a) show that for any fixed $q \in S^n$, the correspondence $X \in T_g G \mapsto \widetilde{X}(q) \in T_{g(q)}S^n$ is linear, hence $\langle ., . \rangle_g$ is bilinear. Next we verify that it is positive definite. Clearly, $||X|| \ge 0$. If ||X|| = 0, by continuity of \widetilde{X} , the vector field $q \mapsto \widehat{X}(q) = (dg^{-1})_q \widetilde{X}(q)$ must vanish identically. If $X = dL_g(X_o)$, one can easily check that

$$X(q) = (d/dt)_0 \exp(tX_o)(q)$$

for all $q \in S^n$. Since $s \mapsto \exp(sX_o)$ is a one-parameter group of diffeomorphisms of the sphere, it is the flow of the vector field $\hat{X} = 0$. Therefore, $\exp(sX_o)$ is constant and this implies that X_o (and hence X) is zero, since the action of G is effective. Finally, the metric is smooth, since given a smooth vector field Y on G, the function $||Y||^2 : G \to \mathbb{R}$,

$$\|Y(g)\|^{2} = \int_{S^{n}} \left\|\widetilde{Y(g)}(q)\right\|^{2} dq = \int_{S^{n}} \|(d\alpha)(Y(g), 0_{q})\|^{2} dq,$$

is clearly smooth. The second assertion follows from the variational characterization of the geodesics in a Riemannian manifold and the fact that if g(t)is a smooth curve in G, then $\|\dot{g}(t)\|^2 = 2E(t)$ (see (2)).

Next we recall from [6] some facts about the group of conformal transformations of the sphere, only we take a slightly different presentation of it.

The group G may be identified with the orientation preserving isometries of the (n + 1)-dimensional hyperbolic space H^{n+1} with constant sectional curvature -1 as follows: Consider on \mathbb{R}^{n+2} the symmetric bilinear form $\beta(u, v) =$ $u_0v_0 + \cdots + u_nv_n - u_{n+1}v_{n+1}$. Then $\{u \in \mathbb{R}^{n+2} \mid \beta(u, u) = -1, u_{n+1} > 0\}$ endowed with the induced metric is a model for H^{n+1} . The asymptotic border of H^{n+1} is

$$\partial H^{n+1} = \left\{ u \in \mathbb{R}^{n+2} \mid \beta\left(u, u\right) = 0, u \neq 0 \right\} / \sim ,$$

where $u \sim v$ if and only if u = cv for some $c \neq 0$. Let $SO_o(n+1,1)$ be the identity component of

$$\left\{g \in GL\left(n+2,\mathbb{R}\right) \mid \beta\left(gu,gv\right) = \beta\left(u,v\right) \text{ for all } u,v \in \mathbb{R}^{n+2}\right\}.$$

We consider on ∂H^{n+1} the metric induced by the diffeomorphism

$$S^n \to \partial H^{n+1}, \quad q \mapsto [(q,1)],$$
(3)

where $[v] = \{cv \mid c \in \mathbb{R}, c \neq 0\}$. Via this identification, $SO_o(n + 1, 1)$, acting on H^{n+1} and on its asymptotic border in the standard way, is the identity component of the isometry group of H^{n+1} and the group G of directly conformal transformations of S^n . For n = 1, the latter provides the definition of the directly conformal transformations of the circle. Also by the identifications above, K is the isotropy subgroup at (0, 1) of the action of G on H^{n+1} . We have $\mathbf{g} = \mathbf{\mathfrak{k}} \oplus \mathbf{p} \subset gl(n+2, \mathbb{R})$, with

$$\mathfrak{k} = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right) \mid A \in so\left(n+1\right) \right\} \quad \text{and} \quad \mathfrak{p} = \left\{ \left(\begin{array}{cc} 0 & v^t \\ v & 0 \end{array} \right) \mid v \in \mathbb{R}^{n+1} \right\}.$$

Let $\{e_0, \ldots, e_n\}$ be the canonical basis of \mathbb{R}^{n+1} . The sets $\{X^k \mid k = 0, \ldots, n\}$ and $\{Z^{i,j} \mid 0 \le i < j \le n\}$ are bases of \mathfrak{p} and \mathfrak{k} , respectively, where

$$X^k = \left(\begin{array}{cc} 0 & e_k^t \\ e_k & 0 \end{array}\right)$$

and $Z^{i,j} \in \mathfrak{k}$ is the matrix whose coefficients are all zero, except $Z^{i,j}_{i,j} = -1$ and $Z^{i,j}_{j,i} = 1$. Let us define for $t \in \mathbb{R}$ and |x| < 1,

$$f(t, x) = x \sinh t + \cosh t$$

Lemma 5 Let $q = (x_0, ..., x_n) \in S^n$.

(a) $\widetilde{Z^{i,j}}(q) = -x_j e_i + x_i e_j$, for all $0 \le i < j \le n$.

(b) $\widetilde{X^k}(q) = \operatorname{pr}_q(e_k)$, the orthogonal projection of e_k onto $T_q S^n \cong q^{\perp}$, for all $k = 0, \ldots, n$.

(c)
$$\left\|\widetilde{X^{k}}\left(\exp\left(tX^{k}\right)\left(q\right)\right)\right\|^{2} = \left(1 - x_{k}^{2}\right) / f\left(t, x_{k}\right)^{2}$$
, for all $t \in \mathbb{R}$.

Proof. For the sake of simplicity, we take k = n, i = 0, j = 1 and write $X = X^n$, $Z = Z^{0,1}$ (the proof for the other cases is similar).

(a) Identifying $\mathfrak{k} \cong so(n+1)$, we have

$$\exp(tZ) = \begin{pmatrix} R_t & 0\\ 0 & 1 \end{pmatrix} \in SO(n+1) \cong K, \quad \text{where} \quad R_t = \begin{pmatrix} \cos t & -\sin t\\ \sin t & \cos t \end{pmatrix}$$

and I is the $(n-1) \times (n-1)$ -identity matrix. Hence,

$$\widetilde{Z}(q) = \frac{d}{dt}\Big|_{0} \exp(tZ)(q) = \frac{d}{dt}\Big|_{0} (x_{0}\cos t - x_{1}\sin t)e_{0} + (x_{0}\sin t + x_{1}\cos t)e_{1}.$$

Thus, $\widetilde{Z}(q) = -x_1 e_0 + x_0 e_1$.

(b) We have that

$$\exp(tX) = \begin{pmatrix} I & 0\\ 0 & A_t \end{pmatrix} \in SO_o(n+1,1), \text{ with } A_t = \begin{pmatrix} \cosh t & \sinh t\\ \sinh t & \cosh t \end{pmatrix},$$
(4)

where I is now the $(n \times n)$ -identity matrix. Let $u = (x_0, \ldots, x_{n-1})$ and $v = (x_n, 1)$ (hence we can write (q, 1) = (u, v)). We compute

$$\begin{pmatrix} I & 0 \\ 0 & A_t \end{pmatrix} \begin{pmatrix} u^t \\ v^t \end{pmatrix} = \begin{pmatrix} u^t \\ w \end{pmatrix}, \quad \text{with} \ w = \begin{pmatrix} f'(t, x_n) \\ f(t, x_n) \end{pmatrix},$$

where the exponent t means transpose and the prime denotes the derivative with respect to t. By the identification $S^n \cong \partial H^{n+1}$ given in (3), we have

$$\exp(tX)(q) = (x_0, \dots, x_{n-1}, f'(t, x_n)) / f(t, x_n), \qquad (5)$$

and hence,

$$\widetilde{X}(q) = \frac{d}{dt}\Big|_{0} \exp(tX)(q) = e_n - \langle e_n, q \rangle q = \operatorname{pr}_q(e_n), \qquad (6)$$

since f'' = f, f(0, x) = 1 and f'(0, x) = x for all $x \in (-1, 1)$.

(c) By (6), $\|\widetilde{X}(p)\|^2 = 1 - y_n^2$ if $p = (y_0, \dots, y_n) \in S^n$. The assertion follows now from (5), since $f(t, y)^2 - f'(t, y)^2 = 1 - y^2$ for all $y \in (-1, 1)$. \Box

Lemma 6 With respect to the metric on G defined in the introduction, $\langle \mathfrak{k}, \mathfrak{p} \rangle = 0.$

Proof. Let $k \in \{0, ..., n\}$ and let $h : S^n \to \mathbb{R}$ be the function defined by $h(q) = \langle \widetilde{Z}(q), \widetilde{X^k}(q) \rangle$, where we have abbreviated as above $Z = Z^{0,1}$. By Lemma we have

$$h(q) = \langle -x_1 e_0 + x_0 e_1, \operatorname{pr}_q(e_k) \rangle = \langle -x_1 e_0 + x_0 e_1, e_k \rangle,$$

which equals $-x_1$ if k = 0, x_0 if k = 1 and 0 otherwise. In any case, h is odd with respect to the reflection of S^n fixing some great sphere. Therefore, $\langle Z, X^k \rangle = \int_{S^n} h(q) dq = 0$. Similar computations yield that $\langle \mathfrak{k}, \mathfrak{p} \rangle = 0$. \Box

Proof of Theorem. (a) Let $U \in TG$, $h, k \in K$ and $V = dL_h dR_{k^{-1}}U$, where L_g, R_g denote left and right multiplication by g, respectively. If γ is a smooth curve in G with $\dot{\gamma}(0) = U$, then $(d/dt)_0 h\gamma(t) k^{-1} = V$. We compute

$$\|V\|^{2} = \int_{S^{n}} \left\| \frac{d}{dt} \right|_{0} h\gamma(t) k^{-1}(q) \right\|^{2} dq = \int_{S^{n}} \left\| (dh) \left(\widetilde{U}(p) \right) \right\|^{2} \|dk_{p}\|^{n} dp$$

(we substituted q = k(p)). Now, $(dh)_{\gamma(0)(p)}$ preserves inner products and $||dk_p|| = 1$, since h, k are isometries of S^n . Therefore, ||V|| = ||U|| and thus $K \times K$ acts on G by isometries.

(b) By the preceding, the metric induced on K is bi-invariant. Let $Z \in \mathfrak{k}, X \in \mathfrak{p}$ arbitrary. Since $\mathfrak{p}_e = (T_e K)^{\perp}$ by Lemma and $K \times K$ acts on G by isometries by (a), for K being totally geodesic in G, it suffices to prove that the second fundamental form at the identity vanishes, that is, that

$$\langle \alpha_e \left(Z_e, Z_e \right), X_e \rangle = \langle \left(\nabla_Z Z \right)_e, X_e \rangle = 0$$

(recall that α_e is symmetric). By the formula for the Levi-Civita connection,

$$2\langle (\nabla_Z Z)_e, X_e \rangle = 2Z_e \langle X, Z \rangle - 2\langle [Z, X]_e, Z_e \rangle - X_e ||Z||^2.$$
⁽⁷⁾

Now, since $K \times K$ acts by isometries on G, we have

$$\langle X, Z \rangle_{\exp(tZ)} = \left\langle dL_{\exp(tZ)} X_e, dL_{\exp(tZ)} Z_e \right\rangle = \left\langle X_e, Z_e \right\rangle$$

for all t. On the other hand, it is well-known that if $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of a simple Lie algebra, then $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$. Hence, the first two terms of the right-hand side of (7) are zero. Next, we compute

$$\begin{aligned} \left\| Z\left(\exp\left(tX\right)\right) \right\|^2 &= \left\| dL_{\exp(tX)}\left(Z_e\right) \right\|^2 \\ &= \int_{S^n} \left\| \frac{d}{ds} \right|_0 \exp\left(tX\right) \exp\left(sZ\right)\left(q\right) \right\|^2 dq \\ &= \int_{S^n} \left\| d\exp\left(tX\right)_q \right\|^2 \left\| \widetilde{Z_e}\left(q\right) \right\|^2 dq. \end{aligned}$$

By the $(K \times K)$ -invariance, at this point we may suppose without loss of generality that $Z = Z^{0,1}$ and $X = X^k$. Since $X \in T_eG$, \widetilde{X} is a vector field on S^n . By the proof of Proposition , its flow is $t \mapsto \exp(tX)$. Hence,

$$(d\exp(tX))_{q}\widetilde{X}(q) = \widetilde{X}(\exp(tX)(q))$$
(8)

for all $q \in S^n, t \in \mathbb{R}$. Therefore, by Lemma (c), on has $\left\| (d \exp(tX))_q \right\| = 1/f(t, x_k)$ if $\widetilde{X}(q) \neq 0$. By continuity, this formula holds everywhere, since the support of $\left\| \widetilde{X} \right\|$ is dense in S^n . Thus, by Lemma (a),

$$\frac{d}{dt}\Big|_{0} \|Z\left(\exp\left(tX\right)\right)\|^{2} = \int_{S^{n}} \frac{d}{dt}\Big|_{0} \frac{x_{0}^{2} + x_{1}^{2}}{f\left(t, x_{k}\right)^{2}} dq$$
$$= -2 \int_{S^{n}} x_{k} \left(x_{0}^{2} + x_{1}^{2}\right) dq = 0,$$

since the integrand is an odd function on S^n with respect to the reflection fixing e_k^{\perp} . Therefore, the last term of the right-hand side of (7) is zero. Thus, K is totally geodesic in G.

(c) is an immediate consequence of the well-known fact that smooth one-parameter subgroups are geodesics of a Lie group endowed with a bi-invariant metric. $\hfill \Box$

Proof of Theorem. We may suppose without loss of generality that the great sphere is $S = S^n \cap e_0^{\perp}$ and the fixed antipodal points are $e_0, -e_0$. Let r be the reflection of S^n fixing S and let $\bar{r} = -r$. Let $\Phi, \overline{\Phi}$ be the automorphisms of G defined by $\Phi(g) = r \circ g \circ r$ and $\overline{\Phi}(g) = \bar{r} \circ g \circ \bar{r}$, respectively. By an argument similar to that of the proof of Theorem (a), Φ and $\overline{\Phi}$ are isometries of G (notice that r, \bar{r} are isometries of S^n but they are not in K). Therefore, $\mathcal{F} = \{g \in G \mid \Phi(g) = g\}$ and $\overline{\mathcal{F}} = \{g \in G \mid \overline{\Phi}(g) = g\}$ are totally geodesic submanifolds of G.

Next, we check that \mathcal{F} is the subgroup of G preserving S. Indeed, if $r \circ g = g \circ r$ and $q \in S$, then g(q) = g(r(q)) = r(g(q)) and so $g(q) \in S$. Reciprocally, if $g(q) \in S$ for all $q \in S$, then $(r \circ g \circ r)(q) = g(q)$ for all $q \in S$. Hence $r \circ g \circ r = g$, since by [2, Theorem 3.2.4], two directly conformal transformations of S^n coincide, provided that they coincide on a great sphere (stated for a hyperplane of \mathbb{R}^n but equivalent, via the stereographic projection). Thus, (a) is proved.

Finally, we verify that $\overline{\mathcal{F}}$ is the subgroup of G preserving $\{e_0, -e_0\}$. Indeed, if $\overline{r} \circ g = g \circ \overline{r}$, then $g(e_0) = g(\overline{r}(e_0)) = \overline{r}(g(e_0))$. Hence, $g(e_0) = \pm e_0$ (similarly, $g(-e_0) = \pm e_0$). Reciprocally, let us suppose first that $g(e_0) = e_0$ and $g(-e_0) = -e_0$. Then, $\gamma(t) = (\exp tX^0)(0,1)$ is the geodesic in H^{n+1} through (0,1) satisfying $\gamma(\infty) = [e_0]$ and $\gamma(-\infty) = [-e_0]$. By standard facts in hyperbolic geometry, g translates γ and $g = k \exp(tX^0)$ for some $k \in K$ fixing $\{e_0, -e_0\}$ and some $t \in \mathbb{R}$. Now suppose that g interchanges e_0 and $-e_0$ and let $R \in K$ with $R(e_i) = -e_i$ for i = 0, 1 and $R(e_i) = e_i$ for i > 1. Then $R \circ g$ is in the hypothesis of the first case and hence $g = Rk \exp(tX^0)$. In both cases $\overline{r} \circ g = g \circ \overline{r}$, since \overline{r} is the reflection with respect to the axis $\mathbb{R}e_0$. This completes the proof of (b).

Remark. Let G_m denote the group of directly conformal motions of S^m and \mathcal{F}_m the subgroup of G_m preserving a fixed great sphere S of S^m . By the Poincaré Extension Theorem [2, Section 3.3], S induces an isomorphism $G_{m-1} \cong \mathcal{F}_m$. In general, the associated inclusion $G_{m-1} \subset G_m$ is not conformal, let alone isometric, although its image is totally geodesic by Theorem (a) (for m = 2, one can easily check using Lemma that $||X^0||_2 = ||Z^{0,1}||_2$ and $||X^0||_1 < ||Z^{0,1}||_1$, where $||.||_k$ denotes the norm on T_eG_k).

Proof of Theorem. As above, we may suppose that $X = X^0$. For $m = 0, \ldots, n$, let $S_m = S^n \cap e_m^{\perp}$ and \mathcal{F}_m the subgroup of G preserving S_m . By Theorem (a), \mathcal{F}_m (and hence also $\mathcal{F}^0 = \bigcap_{m=1}^n \mathcal{F}_m$) is a totally geodesic submani-

fold of G. Now, if $g \in \mathcal{F}^0$, then g preserves each sphere S_m for $m = 1, \ldots, n$. Hence g preserves the set $\{e_0, -e_0\}$. Let $\gamma(t) = \exp(tX)$ and let \mathcal{F}_o^0 be the identity component of \mathcal{F}^0 , which is also a totally geodesic submanifold of G. Next, we verify that \mathcal{F}_o^0 coincides with the image of γ . A given $h \in \mathcal{F}_o^0$ fixes e_0 and $-e_0$, hence (thought of as an isometry of H^{n+1}) it translates the geodesic $t \mapsto \exp(tX)(0,1)$ in H^{n+1} and may be written as $h = \exp(t_0X) k$ for some $t_0 \in \mathbb{R}$ and $k \in K$ commuting with $\gamma(t)$ for all t. Now, since h preserves each sphere S_m for $m = 1, \ldots, n$, we conclude that k = e. Hence, \mathcal{F}_o^0 is contained in the image of γ . The other inclusion is obvious. Thus, γ is the reparametrization of a geodesic in G.

Next, we verify that the length of γ is finite. We compute

$$\begin{aligned} \|\dot{\gamma}(t)\|^2 &= \int_{S^n} \left\|\widetilde{\dot{\gamma}(t)}(q)\right\|^2 dq = \int_{S^n} \left\|\frac{d}{ds}\right|_t \exp(sX)(q)\right\|^2 dq \\ &= \int_{S^n} \left\|d\exp(tX)_q \widetilde{X}(q)\right\|^2 dq. \end{aligned}$$

Now, by (8) and Lemma (c),

$$\|\dot{\gamma}(t)\|^{2} = \int_{S^{n}} \left\| \widetilde{X}(\exp(tX) q) \right\|^{2} dq = \int_{S^{n}} \frac{1 - x_{0}^{2}}{f(t, x_{0})^{2}} dq.$$

Let $F : (-\pi/2, \pi/2) \times S^{n-1} \to S^n$ be defined by $F(\theta, v) = (\sin \theta, (\cos \theta) v)$. One easily computes det $(dF_{(\theta,v)}) = \cos^{n-1} \theta$. Setting $V = \operatorname{vol}(S^{n-1})$, by the formula for change of variables, one obtains

$$\|\dot{\gamma}(t)\|^{2} = V \int_{-\pi/2}^{\pi/2} \frac{\cos^{n+1}\theta}{f(t,\sin\theta)^{2}} \, d\theta \le V \int_{-\pi/2}^{\pi/2} \frac{\cos^{2}\theta}{f(t,\sin\theta)^{2}} \, d\theta = \frac{\pi V}{1+\cosh t}$$

(we have used Maple to compute the last integral). Therefore, γ has finite length. Moreover, the arc length reparametrization of γ cannot be extended properly, since $\lim_{t\to\infty} \gamma(t)$ does not exist in G (see (4)).

The equivalent statement, as well as the fact that the metric on G is not complete, are immediate consequences of the preceding.

References

 V.I. Arnold, Mathematical methods of classical Mechanics, Graduate Texts in Math. 60 (Springer, Berlin, 1989).

- [2] A. Beardon, The geometry of discrete groups, Graduate Texts in Math. 91 (Springer, Berlin, 1983).
- [3] P. Dombrowski and J. Zitterbarth, On the planetary motion in the 3dimensional standard spaces M_{κ}^3 of constant curvature $\kappa \in \mathbb{R}$, Demonstratio Math. 24 nos. 3-4 (1991) 375–458.
- [4] P.T. Nagy, Dynamical invariants of rigid motions on the hyperbolic plane, Geom. Dedicata 37 no. 2 (1991) 125–139.
- [5] M. Salvai, On the dynamics of a rigid body in the hyperbolic space, J. Geom. Phys. 36 (2000) 126–139.
- [6] W.A. Poor, Differential geometric structures, (McGraw-Hill, New York, 1981).
- [7] J. Zitterbarth, Some remarks on the motion of a rigid body in a space of constant curvature without external forces, *Demonstratio Math.* 25 nos. 3-4 (1991) 465–494.