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Abstract

Let G be the Lie group of orientation preserving conformal diffeomor-
phisms of Sn. Suppose that the sphere has initially a homogeneous
distribution of mass and that the particles are allowed to move only
in such a way that two configurations differ in an element of G. There
is a Riemannian metric on G, which turns out to be not complete
(in particular not invariant), satisfying that a smooth curve in G is a
geodesic, if and only if (thought of as a conformal motion) it is force
free, i.e., it is a critical point of the kinetic energy functional. We
study the force free motions which can be described in terms of the
Lie structure of the configuration space.

MS classification: 22E43, 22E70, 53C 22, 70K25.
Key words: Conformal transformation, Riemannian metric, Lie group, force
free motion.

Introduction

In the spirit of the classical description of the force free motions of a rigid
body in Euclidean space using an invariant metric on SO (3) [1, Appendix 2],
suitable Riemannian metrics on SOo (n, 1) (n = 2, 3) have proved to be useful
to study the dynamics of a rigid body in the hyperbolic spaces of dimensions

∗Partially supported by conicor, ciem(conicet) and secyt(unc).
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2 and 3 [3, 4, 5, 7]. In this note we define an appropriate metric on the Lorenz
group SOo (n + 1, 1) to study force free conformal motions of the sphere Sn.

A diffeomorphism F of a Riemannian manifold (M, g) of dimension n ≥ 2
is said to be conformal if F ∗g = fg for some positive function f on M .
The conformal transformations of the circle S1 are defined below, by anal-
ogy with those of Sn (n ≥ 2). Following [2], if M is oriented, a conformal
transformation of M will be called directly conformal if it preserves orien-
tation. Throughout the paper, smooth means of class C∞. The norm of a
linear transformation T from one inner product vector space to another is
defined by ‖T‖ = max {‖Tv‖ | ‖v‖ = 1} . If T ∗T is a multiple of the identity
(the case when T is the differential of a conformal transformation), one has
‖T‖ = ‖Tv‖ / ‖v‖ for any v 6= 0.

Let Sn be the unit sphere centered at zero in Rn+1 with the usual metric
and G the Lie group of directly conformal diffeomorphisms of Sn. Suppose
that the sphere has initially a homogeneous distribution of mass of constant
density 1 and that the particles are allowed to move only in such a way that
two configurations differ in an element of G. The configuration space may be
naturally identified with G.

The energy of conformal motions.

Let g (s) be a smooth curve in G, which may be thought of as a conformal
motion of Sn. The total kinetic energy E (t) of the motion g (s) at the instant
t is given by

E (t) = 1
2

∫

Sn

ρt (q) ‖vt (q)‖2 dq, (1)

where integration is taken with respect to the canonical volume form of Sn

and, if q = g (t) (p) for p ∈ Sn, then

vt (q) =
d

ds

∣∣∣∣
t

g (s) (p) ∈ TqS
n, ρt (q) = 1/ ‖dg(t)p‖n

are the velocity of the particle q and the density at q at the instant t, respec-
tively. Applying to (1) the formula for change of variables, one obtains

E (t) = 1
2

∫

Sn

∥∥∥∥
d

ds

∣∣∣∣
t

g (s) (p)

∥∥∥∥
2

dp. (2)

The following definition is based on the principle of least action.
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Definition. A smooth curve g (t) in G, thought of as a conformal motion
of Sn, is said to be force free if it is a critical point of the kinetic energy
functional.

A Riemannian metric on the configuration space.

The following Proposition actually defines two concepts that will be used
throughout the paper.

Proposition 1 (a) Given g ∈ G,X ∈ TgG, the function X̃ : Sn → TSn,

X̃(q) =
d

dt

∣∣∣∣
0

γ (t) (q) ∈ Tg(q)S
n,

where γ is any smooth curve in G with γ (0) = g and γ̇ (0) = X, is well-
defined and smooth.

(b) A Riemannian metric on G is defined as follows: for X, Y ∈ TG with
the same footpoint,

〈X, Y 〉 =

∫

Sn

〈X̃(q), Ỹ (q)〉 dq.

Moreover, a curve g (t) in G is a geodesic if and only if (thought of as a
conformal motion) it is force free.

Remarks. (a) If X ∈ TgG, then X̃ is a vector field on Sn if and only if g is

the identity of the group. In this case, X̃ is conformal.

(b) For any n, the metric on G is neither left nor right invariant, since we
will see in Theorem below that it is not even complete.

Force free conformal motions.

Let K ∼= SO (n + 1) be the group of orientation preserving isometries of Sn.

Theorem 2 (a) K×K acts on G on the left, (h, k) .g = hgk−1, by isometries
of G.

(b) K is totally geodesic in G and the induced metric is bi-invariant.

(c) One-parameter subgroups of isometries of Sn are force free conformal
motions of Sn.
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Theorem 3 (a) The subgroup of directly conformal motions of Sn preserving
a fixed great sphere is totally geodesic in G.

(b) The subgroup of directly conformal motions of Sn preserving two fixed
antipodal points of the sphere is totally geodesic in G.

We shall give below details of the fact that G is isomorphic to SOo (n + 1, 1),
which is a simple Lie group and has K as a maximal compact subgroup.
Let k be the Lie algebra of K and p = [k, k], that is, g = k ⊕ p is a Cartan
decomposition of g, the Lie algebra of G.

Theorem 4 For any X ∈ p, X 6= 0, the curve t 7→ exp (tX) is the reparametriza-
tion of a maximal geodesic in G with finite length. Equivalently, the one-
parameter subgroup of conformal motions of the sphere fixing two antipodal
points and preserving the meridians joining them, is a reparametrization of
a maximal force free conformal motion of Sn defined on a finite interval of
time. In particular, G as Riemannian space is not complete for any n.

Proofs of the results

Proof of Proposition . (a) If α : G× Sn → Sn denotes the action of G on

Sn, which is smooth, then X̃ (q) = (d/dt)0 α (γ (t) , q) = dα(g,q) (X, 0q), where

0q is the zero of TqS
n. Hence, X̃ is well-defined and smooth.

(b) Let g ∈ G. The computations in (a) show that for any fixed q ∈ Sn, the

correspondence X ∈ TgG 7→ X̃(q) ∈ Tg(q)S
n is linear, hence 〈., .〉g is bilinear.

Next we verify that it is positive definite. Clearly, ‖X‖ ≥ 0. If ‖X‖ = 0,

by continuity of X̃, the vector field q 7→ X̂(q) = (dg−1)q X̃(q) must vanish
identically. If X = dLg (Xo), one can easily check that

X̂(q) = (d/dt)0 exp (tXo) (q)

for all q ∈ Sn. Since s 7→ exp (sXo) is a one-parameter group of diffeomor-

phisms of the sphere, it is the flow of the vector field X̂ = 0. Therefore,
exp (sXo) is constant and this implies that Xo (and hence X) is zero, since
the action of G is effective. Finally, the metric is smooth, since given a smooth
vector field Y on G, the function ‖Y ‖2 : G → R,

‖Y (g)‖2 =

∫

Sn

∥∥∥Ỹ (g) (q)
∥∥∥

2

dq =

∫

Sn

‖(dα) (Y (g), 0q)‖2 dq,
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is clearly smooth. The second assertion follows from the variational charac-
terization of the geodesics in a Riemannian manifold and the fact that if g (t)
is a smooth curve in G, then ‖ġ (t)‖2 = 2E (t) (see (2)). ¤

Next we recall from [6] some facts about the group of conformal transforma-
tions of the sphere, only we take a slightly different presentation of it.

The group G may be identified with the orientation preserving isometries
of the (n + 1)-dimensional hyperbolic space Hn+1 with constant sectional cur-
vature−1 as follows: Consider on Rn+2 the symmetric bilinear form β (u, v) =
u0v0 + · · ·+ unvn − un+1vn+1. Then {u ∈ Rn+2 | β (u, u) = −1, un+1 > 0} en-
dowed with the induced metric is a model for Hn+1. The asymptotic border
of Hn+1 is

∂Hn+1 =
{
u ∈ Rn+2 | β (u, u) = 0, u 6= 0

}
/ ∼ ,

where u ∼ v if and only if u = cv for some c 6= 0. Let SOo (n + 1, 1) be the
identity component of

{
g ∈ GL (n + 2,R) | β (gu, gv) = β (u, v) for all u, v ∈ Rn+2

}
.

We consider on ∂Hn+1 the metric induced by the diffeomorphism

Sn → ∂Hn+1, q 7→ [(q, 1)] , (3)

where [v] = {cv | c ∈ R, c 6= 0}. Via this identification, SOo (n + 1, 1), acting
on Hn+1 and on its asymptotic border in the standard way, is the identity
component of the isometry group of Hn+1 and the group G of directly confor-
mal transformations of Sn. For n = 1, the latter provides the definition of the
directly conformal transformations of the circle. Also by the identifications
above, K is the isotropy subgroup at (0, 1) of the action of G on Hn+1. We
have g = k⊕ p ⊂ gl (n + 2,R), with

k =

{(
A 0
0 0

)
| A ∈ so (n + 1)

}
and p =

{(
0 vt

v 0

)
| v ∈ Rn+1

}
.

Let {e0, . . . , en} be the canonical basis of Rn+1. The sets
{
Xk | k = 0, . . . , n

}
and {Zi,j | 0 ≤ i < j ≤ n} are bases of p and k, respectively, where

Xk =

(
0 et

k

ek 0

)
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and Zi,j ∈ k is the matrix whose coefficients are all zero, except Zi,j
i,j = −1

and Zi,j
j,i = 1. Let us define for t ∈ R and |x| < 1,

f (t, x) = x sinh t + cosh t.

Lemma 5 Let q = (x0, . . . , xn) ∈ Sn.

(a) Z̃i,j (q) = −xjei + xiej, for all 0 ≤ i < j ≤ n.

(b) X̃k (q) = prq (ek), the orthogonal projection of ek onto TqS
n ∼= q⊥, for

all k = 0, . . . , n.

(c)
∥∥∥X̃k

(
exp

(
tXk

)
(q)

)∥∥∥
2

= (1− x2
k) /f (t, xk)

2, for all t ∈ R.

Proof. For the sake of simplicity, we take k = n, i = 0, j = 1 and write
X = Xn, Z = Z0,1 (the proof for the other cases is similar).

(a) Identifying k ∼= so (n + 1), we have

exp (tZ) =

(
Rt 0
0 I

)
∈ SO (n + 1) ∼= K, where Rt =

(
cos t − sin t
sin t cos t

)

and I is the (n− 1)× (n− 1)-identity matrix. Hence,

Z̃(q) =
d

dt

∣∣∣∣
0

exp (tZ) (q) =
d

dt

∣∣∣∣
0

(x0 cos t− x1 sin t) e0 +(x0 sin t + x1 cos t) e1.

Thus, Z̃ (q) = −x1e0 + x0e1.

(b) We have that

exp (tX) =

(
I 0
0 At

)
∈ SOo (n + 1, 1) , with At =

(
cosh t sinh t
sinh t cosh t

)
,

(4)
where I is now the (n× n)-identity matrix. Let u = (x0, . . . , xn−1) and v =
(xn, 1) (hence we can write (q, 1) = (u, v)). We compute

(
I 0
0 At

)(
ut

vt

)
=

(
ut

w

)
, with w =

(
f ′ (t, xn)
f (t, xn)

)
,

where the exponent t means transpose and the prime denotes the derivative
with respect to t. By the identification Sn ∼= ∂Hn+1 given in (3), we have

exp (tX) (q) = (x0, . . . , xn−1, f
′ (t, xn)) /f (t, xn) , (5)
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and hence,

X̃(q) =
d

dt

∣∣∣∣
0

exp (tX) (q) = en − 〈en, q〉 q = prq (en) , (6)

since f ′′ = f , f (0, x) = 1 and f ′ (0, x) = x for all x ∈ (−1, 1).

(c) By (6),
∥∥∥X̃(p)

∥∥∥
2

= 1 − y2
n if p = (y0, . . . , yn) ∈ Sn. The assertion

follows now from (5), since f (t, y)2− f ′ (t, y)2 = 1− y2 for all y ∈ (−1, 1). ¤

Lemma 6 With respect to the metric on G defined in the introduction,
〈k, p〉 = 0.

Proof. Let k ∈ {0, . . . , n} and let h : Sn → R be the function defined by

h (q) =
〈
Z̃ (q) , X̃k (q)

〉
, where we have abbreviated as above Z = Z0,1. By

Lemma we have

h (q) =
〈−x1e0 + x0e1, prq (ek)

〉
= 〈−x1e0 + x0e1, ek〉 ,

which equals −x1 if k = 0, x0 if k = 1 and 0 otherwise. In any case, h is
odd with respect to the reflection of Sn fixing some great sphere. Therefore,〈
Z,Xk

〉
=

∫
Sn h (q) dq = 0. Similar computations yield that 〈k, p〉 = 0. ¤

Proof of Theorem . (a) Let U ∈ TG, h, k ∈ K and V = dLhdRk−1U , where
Lg, Rg denote left and right multiplication by g, respectively. If γ is a smooth
curve in G with γ̇ (0) = U , then (d/dt)0 hγ (t) k−1 = V . We compute

‖V ‖2 =

∫

Sn

∥∥∥∥
d

dt

∣∣∣∣
0

hγ (t) k−1 (q)

∥∥∥∥
2

dq =

∫

Sn

∥∥∥(dh)
(
Ũ (p)

)∥∥∥
2

‖dkp‖n dp

(we substituted q = k (p)). Now, (dh)γ(0)(p) preserves inner products and
‖dkp‖ = 1, since h, k are isometries of Sn. Therefore, ‖V ‖ = ‖U‖ and thus
K ×K acts on G by isometries.

(b) By the preceding, the metric induced on K is bi-invariant. Let Z ∈
k, X ∈ p arbitrary. Since pe = (TeK)⊥ by Lemma and K ×K acts on G by
isometries by (a), for K being totally geodesic in G, it suffices to prove that
the second fundamental form at the identity vanishes, that is, that

〈αe (Ze, Ze) , Xe〉 = 〈(∇ZZ)e , Xe〉 = 0
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(recall that αe is symmetric). By the formula for the Levi-Civita connection,

2 〈(∇ZZ)e , Xe〉 = 2Ze 〈X, Z〉 − 2 〈[Z, X]e , Ze〉 −Xe ‖Z‖2 . (7)

Now, since K ×K acts by isometries on G, we have

〈X,Z〉exp(tZ) =
〈
dLexp(tZ)Xe, dLexp(tZ)Ze

〉
= 〈Xe, Ze〉

for all t. On the other hand, it is well-known that if g = k ⊕ p is a Cartan
decomposition of a simple Lie algebra, then [k, p] ⊂ p. Hence, the first two
terms of the right-hand side of (7) are zero. Next, we compute

‖Z (exp (tX))‖2 =
∥∥dLexp(tX) (Ze)

∥∥2

=

∫

Sn

∥∥∥∥
d

ds

∣∣∣∣
0

exp (tX) exp (sZ) (q)

∥∥∥∥
2

dq

=

∫

Sn

∥∥∥d exp (tX)q

∥∥∥
2 ∥∥∥Z̃e (q)

∥∥∥
2

dq.

By the (K ×K)-invariance, at this point we may suppose without loss of

generality that Z = Z0,1 and X = Xk. Since X ∈ TeG, X̃ is a vector field on
Sn. By the proof of Proposition , its flow is t 7→ exp (tX). Hence,

(d exp (tX))q X̃ (q) = X̃ (exp (tX) (q)) (8)

for all q ∈ Sn, t ∈ R. Therefore, by Lemma (c), on has
∥∥∥(d exp (tX))q

∥∥∥ =

1/f (t, xk) if X̃ (q) 6= 0. By continuity, this formula holds everywhere, since

the support of
∥∥∥X̃

∥∥∥ is dense in Sn. Thus, by Lemma (a),

d

dt

∣∣∣∣
0

‖Z (exp (tX))‖2 =

∫

Sn

d

dt

∣∣∣∣
0

x2
0 + x2

1

f (t, xk)
2 dq

= −2

∫

Sn

xk

(
x2

0 + x2
1

)
dq = 0,

since the integrand is an odd function on Sn with respect to the reflection
fixing e⊥k . Therefore, the last term of the right-hand side of (7) is zero. Thus,
K is totally geodesic in G.

(c) is an immediate consequence of the well-known fact that smooth one-
parameter subgroups are geodesics of a Lie group endowed with a bi-invariant
metric. ¤
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Proof of Theorem . We may suppose without loss of generality that the
great sphere is S = Sn∩e⊥0 and the fixed antipodal points are e0,−e0. Let r be
the reflection of Sn fixing S and let r̄ = −r. Let Φ, Φ be the automorphisms
of G defined by Φ (g) = r ◦ g ◦ r and Φ (g) = r̄ ◦ g ◦ r̄, respectively. By an
argument similar to that of the proof of Theorem (a), Φ and Φ are isometries
of G (notice that r, r̄ are isometries of Sn but they are not in K). Therefore,
F = {g ∈ G | Φ (g) = g} and F =

{
g ∈ G | Φ (g) = g

}
are totally geodesic

submanifolds of G.
Next, we check that F is the subgroup of G preserving S. Indeed, if r◦g =

g◦r and q ∈ S, then g (q) = g (r (q)) = r (g (q)) and so g (q) ∈ S. Reciprocally,
if g (q) ∈ S for all q ∈ S, then (r ◦ g ◦ r) (q) = g (q) for all q ∈ S. Hence r ◦
g ◦r = g, since by [2, Theorem 3.2.4], two directly conformal transformations
of Sn coincide, provided that they coincide on a great sphere (stated for a
hyperplane of Rn but equivalent, via the stereographic projection). Thus, (a)
is proved.

Finally, we verify that F is the subgroup of G preserving {e0,−e0}. In-
deed, if r̄ ◦ g = g ◦ r̄, then g (e0) = g (r̄ (e0)) = r̄ (g (e0)). Hence, g (e0) = ±e0

(similarly, g (−e0) = ±e0). Reciprocally, let us suppose first that g (e0) = e0

and g (−e0) = −e0. Then, γ (t) = (exp tX0) (0, 1) is the geodesic in Hn+1

through (0, 1) satisfying γ (∞) = [e0] and γ (−∞) = [−e0]. By standard facts
in hyperbolic geometry, g translates γ and g = k exp (tX0) for some k ∈ K
fixing {e0,−e0} and some t ∈ R. Now suppose that g interchanges e0 and
−e0 and let R ∈ K with R (ei) = −ei for i = 0, 1 and R (ei) = ei for i > 1.
Then R ◦ g is in the hypothesis of the first case and hence g = Rk exp (tX0) .
In both cases r̄ ◦ g = g ◦ r̄, since r̄ is the reflection with respect to the axis
Re0. This completes the proof of (b). ¤

Remark. Let Gm denote the group of directly conformal motions of Sm

and Fm the subgroup of Gm preserving a fixed great sphere S of Sm. By
the Poincaré Extension Theorem [2, Section 3.3], S induces an isomorphism
Gm−1

∼= Fm. In general, the associated inclusion Gm−1 ⊂ Gm is not confor-
mal, let alone isometric, although its image is totally geodesic by Theorem
(a) (for m = 2, one can easily check using Lemma that ‖X0‖2 = ‖Z0,1‖2

and ‖X0‖1 < ‖Z0,1‖1, where ‖.‖k denotes the norm on TeGk).

Proof of Theorem . As above, we may suppose that X = X0. For m =
0, . . . , n, let Sm = Sn∩e⊥m and Fm the subgroup of G preserving Sm. By The-
orem (a), Fm (and hence also F0 = ∩n

m=1Fm) is a totally geodesic submani-
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fold of G. Now, if g ∈ F0, then g preserves each sphere Sm for m = 1, . . . , n.
Hence g preserves the set {e0,−e0} . Let γ (t) = exp (tX) and let F0

o be the
identity component of F0, which is also a totally geodesic submanifold of
G. Next, we verify that F0

o coincides with the image of γ. A given h ∈ F0
o

fixes e0 and −e0, hence (thought of as an isometry of Hn+1) it translates the
geodesic t 7→ exp (tX) (0, 1) in Hn+1 and may be written as h = exp (t0X) k
for some t0 ∈ R and k ∈ K commuting with γ (t) for all t. Now, since h
preserves each sphere Sm for m = 1, . . . , n, we conclude that k = e. Hence,
F0

o is contained in the image of γ. The other inclusion is obvious. Thus, γ is
the reparametrization of a geodesic in G.

Next, we verify that the length of γ is finite. We compute

‖γ̇ (t)‖2 =

∫

Sn

∥∥∥ ˜̇γ (t) (q)
∥∥∥

2

dq =

∫

Sn

∥∥∥∥
d

ds

∣∣∣∣
t

exp (sX) (q)

∥∥∥∥
2

dq

=

∫

Sn

∥∥∥d exp (tX)q X̃ (q)
∥∥∥

2

dq.

Now, by (8) and Lemma (c),

‖γ̇ (t)‖2 =

∫

Sn

∥∥∥X̃ (exp (tX) q)
∥∥∥

2

dq =

∫

Sn

1− x2
0

f (t, x0)
2 dq.

Let F : (−π/2, π/2) × Sn−1 → Sn be defined by F (θ, v) = (sin θ, (cos θ) v) .
One easily computes det

(
dF(θ,v)

)
= cosn−1 θ. Setting V = vol (Sn−1), by the

formula for change of variables, one obtains

‖γ̇ (t)‖2 = V

∫ π/2

−π/2

cosn+1 θ

f (t, sin θ)2 dθ ≤ V

∫ π/2

−π/2

cos2 θ

f (t, sin θ)2 dθ =
πV

1 + cosh t

(we have used Maple to compute the last integral). Therefore, γ has finite
length. Moreover, the arc length reparametrization of γ cannot be extended
properly, since limt→∞ γ (t) does not exist in G (see (4)).

The equivalent statement, as well as the fact that the metric on G is not
complete, are immediate consequences of the preceding. ¤
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