Force free conformal motions of the sphere

Marcos Salvai *
FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina
e-mail: salvai@mate.uncor.edu

Abstract

Let G be the Lie group of orientation preserving conformal diffeomorphisms of S^{n}. Suppose that the sphere has initially a homogeneous distribution of mass and that the particles are allowed to move only in such a way that two configurations differ in an element of G. There is a Riemannian metric on G, which turns out to be not complete (in particular not invariant), satisfying that a smooth curve in G is a geodesic, if and only if (thought of as a conformal motion) it is force free, i.e., it is a critical point of the kinetic energy functional. We study the force free motions which can be described in terms of the Lie structure of the configuration space.

MS classification: 22E43, 22E70, 53 C 22, 70 K 25.
Key words: Conformal transformation, Riemannian metric, Lie group, force free motion.

Introduction

In the spirit of the classical description of the force free motions of a rigid body in Euclidean space using an invariant metric on $S O$ (3) [1, Appendix 2], suitable Riemannian metrics on $S O_{o}(n, 1)(n=2,3)$ have proved to be useful to study the dynamics of a rigid body in the hyperbolic spaces of dimensions

[^0]2 and $3[3,4,5,7]$. In this note we define an appropriate metric on the Lorenz group $S O_{o}(n+1,1)$ to study force free conformal motions of the sphere S^{n}.

A diffeomorphism F of a Riemannian manifold (M, g) of dimension $n \geq 2$ is said to be conformal if $F^{*} g=f g$ for some positive function f on M. The conformal transformations of the circle S^{1} are defined below, by analogy with those of $S^{n}(n \geq 2)$. Following [2], if M is oriented, a conformal transformation of M will be called directly conformal if it preserves orientation. Throughout the paper, smooth means of class C^{∞}. The norm of a linear transformation T from one inner product vector space to another is defined by $\|T\|=\max \{\|T v\| \mid\|v\|=1\}$. If $T^{*} T$ is a multiple of the identity (the case when T is the differential of a conformal transformation), one has $\|T\|=\|T v\| /\|v\|$ for any $v \neq 0$.

Let S^{n} be the unit sphere centered at zero in \mathbb{R}^{n+1} with the usual metric and G the Lie group of directly conformal diffeomorphisms of S^{n}. Suppose that the sphere has initially a homogeneous distribution of mass of constant density 1 and that the particles are allowed to move only in such a way that two configurations differ in an element of G. The configuration space may be naturally identified with G.

The energy of conformal motions.

Let $g(s)$ be a smooth curve in G, which may be thought of as a conformal motion of S^{n}. The total kinetic energy $E(t)$ of the motion $g(s)$ at the instant t is given by

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{S^{n}} \rho_{t}(q)\left\|v_{t}(q)\right\|^{2} d q, \tag{1}
\end{equation*}
$$

where integration is taken with respect to the canonical volume form of S^{n} and, if $q=g(t)(p)$ for $p \in S^{n}$, then

$$
v_{t}(q)=\left.\frac{d}{d s}\right|_{t} g(s)(p) \in T_{q} S^{n}, \quad \rho_{t}(q)=1 /\left\|d g(t)_{p}\right\|^{n}
$$

are the velocity of the particle q and the density at q at the instant t, respectively. Applying to (1) the formula for change of variables, one obtains

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{S^{n}}\left\|\left.\frac{d}{d s}\right|_{t} g(s)(p)\right\|^{2} d p \tag{2}
\end{equation*}
$$

The following definition is based on the principle of least action.

Definition. A smooth curve $g(t)$ in G, thought of as a conformal motion of S^{n}, is said to be force free if it is a critical point of the kinetic energy functional.

A Riemannian metric on the configuration space.

The following Proposition actually defines two concepts that will be used throughout the paper.

Proposition 1 (a) Given $g \in G, X \in T_{g} G$, the function $\widetilde{X}: S^{n} \rightarrow T S^{n}$,

$$
\widetilde{X}(q)=\left.\frac{d}{d t}\right|_{0} \gamma(t)(q) \in T_{g(q)} S^{n}
$$

where γ is any smooth curve in G with $\gamma(0)=g$ and $\dot{\gamma}(0)=X$, is welldefined and smooth.
(b) A Riemannian metric on G is defined as follows: for $X, Y \in T G$ with the same footpoint,

$$
\langle X, Y\rangle=\int_{S^{n}}\langle\tilde{X}(q), \widetilde{Y}(q)\rangle d q
$$

Moreover, a curve $g(t)$ in G is a geodesic if and only if (thought of as a conformal motion) it is force free.

Remarks. (a) If $X \in T_{g} G$, then \widetilde{X} is a vector field on S^{n} if and only if g is the identity of the group. In this case, \widetilde{X} is conformal.
(b) For any n, the metric on G is neither left nor right invariant, since we will see in Theorem below that it is not even complete.

Force free conformal motions.

Let $K \cong S O(n+1)$ be the group of orientation preserving isometries of S^{n}.
Theorem 2 (a) $K \times K$ acts on G on the left, $(h, k) . g=h g k^{-1}$, by isometries of G.
(b) K is totally geodesic in G and the induced metric is bi-invariant.
(c) One-parameter subgroups of isometries of S^{n} are force free conformal motions of S^{n}.

Theorem 3 (a) The subgroup of directly conformal motions of S^{n} preserving a fixed great sphere is totally geodesic in G.
(b) The subgroup of directly conformal motions of S^{n} preserving two fixed antipodal points of the sphere is totally geodesic in G.

We shall give below details of the fact that G is isomorphic to $S O_{o}(n+1,1)$, which is a simple Lie group and has K as a maximal compact subgroup. Let \mathfrak{k} be the Lie algebra of K and $\mathfrak{p}=[\mathfrak{k}, \mathfrak{k}]$, that is, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}, the Lie algebra of G.

Theorem 4 For any $X \in \mathfrak{p}, X \neq 0$, the curve $t \mapsto \exp (t X)$ is the reparametrization of a maximal geodesic in G with finite length. Equivalently, the oneparameter subgroup of conformal motions of the sphere fixing two antipodal points and preserving the meridians joining them, is a reparametrization of a maximal force free conformal motion of S^{n} defined on a finite interval of time. In particular, G as Riemannian space is not complete for any n.

Proofs of the results

Proof of Proposition. (a) If $\alpha: G \times S^{n} \rightarrow S^{n}$ denotes the action of G on S^{n}, which is smooth, then $\widetilde{X}(q)=(d / d t)_{0} \alpha(\gamma(t), q)=d \alpha_{(g, q)}\left(X, 0_{q}\right)$, where 0_{q} is the zero of $T_{q} S^{n}$. Hence, \widetilde{X} is well-defined and smooth.
(b) Let $g \in G$. The computations in (a) show that for any fixed $q \in S^{n}$, the correspondence $X \in T_{g} G \mapsto \widetilde{X}(q) \in T_{g(q)} S^{n}$ is linear, hence $\langle., .\rangle_{g}$ is bilinear. Next we verify that it is positive definite. Clearly, $\|X\| \geq 0$. If $\|X\|=0$, by continuity of \widetilde{X}, the vector field $q \mapsto \widehat{X}(q)=\left(d g^{-1}\right)_{q} \widetilde{X}(q)$ must vanish identically. If $X=d L_{g}\left(X_{o}\right)$, one can easily check that

$$
\widehat{X}(q)=(d / d t)_{0} \exp \left(t X_{o}\right)(q)
$$

for all $q \in S^{n}$. Since $s \mapsto \exp \left(s X_{o}\right)$ is a one-parameter group of diffeomorphisms of the sphere, it is the flow of the vector field $\widehat{X}=0$. Therefore, $\exp \left(s X_{o}\right)$ is constant and this implies that X_{o} (and hence X) is zero, since the action of G is effective. Finally, the metric is smooth, since given a smooth vector field Y on G, the function $\|Y\|^{2}: G \rightarrow \mathbb{R}$,

$$
\|Y(g)\|^{2}=\int_{S^{n}}\|\widetilde{Y(g)}(q)\|^{2} d q=\int_{S^{n}}\left\|(d \alpha)\left(Y(g), 0_{q}\right)\right\|^{2} d q
$$

is clearly smooth. The second assertion follows from the variational characterization of the geodesics in a Riemannian manifold and the fact that if $g(t)$ is a smooth curve in G, then $\|\dot{g}(t)\|^{2}=2 E(t)$ (see (2)).

Next we recall from [6] some facts about the group of conformal transformations of the sphere, only we take a slightly different presentation of it.

The group G may be identified with the orientation preserving isometries of the $(n+1)$-dimensional hyperbolic space H^{n+1} with constant sectional curvature -1 as follows: Consider on \mathbb{R}^{n+2} the symmetric bilinear form $\beta(u, v)=$ $u_{0} v_{0}+\cdots+u_{n} v_{n}-u_{n+1} v_{n+1}$. Then $\left\{u \in \mathbb{R}^{n+2} \mid \beta(u, u)=-1, u_{n+1}>0\right\}$ endowed with the induced metric is a model for H^{n+1}. The asymptotic border of H^{n+1} is

$$
\partial H^{n+1}=\left\{u \in \mathbb{R}^{n+2} \mid \beta(u, u)=0, u \neq 0\right\} / \sim,
$$

where $u \sim v$ if and only if $u=c v$ for some $c \neq 0$. Let $S O_{o}(n+1,1)$ be the identity component of

$$
\left\{g \in G L(n+2, \mathbb{R}) \mid \beta(g u, g v)=\beta(u, v) \text { for all } u, v \in \mathbb{R}^{n+2}\right\} .
$$

We consider on ∂H^{n+1} the metric induced by the diffeomorphism

$$
\begin{equation*}
S^{n} \rightarrow \partial H^{n+1}, \quad q \mapsto[(q, 1)] \tag{3}
\end{equation*}
$$

where $[v]=\{c v \mid c \in \mathbb{R}, c \neq 0\}$. Via this identification, $S O_{o}(n+1,1)$, acting on H^{n+1} and on its asymptotic border in the standard way, is the identity component of the isometry group of H^{n+1} and the group G of directly conformal transformations of S^{n}. For $n=1$, the latter provides the definition of the directly conformal transformations of the circle. Also by the identifications above, K is the isotropy subgroup at $(0,1)$ of the action of G on H^{n+1}. We have $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \subset g l(n+2, \mathbb{R})$, with

$$
\mathfrak{k}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in \operatorname{so}(n+1)\right\} \quad \text { and } \quad \mathfrak{p}=\left\{\left.\left(\begin{array}{cc}
0 & v^{t} \\
v & 0
\end{array}\right) \right\rvert\, v \in \mathbb{R}^{n+1}\right\} .
$$

Let $\left\{e_{0}, \ldots, e_{n}\right\}$ be the canonical basis of \mathbb{R}^{n+1}. The sets $\left\{X^{k} \mid k=0, \ldots, n\right\}$ and $\left\{Z^{i, j} \mid 0 \leq i<j \leq n\right\}$ are bases of \mathfrak{p} and \mathfrak{k}, respectively, where

$$
X^{k}=\left(\begin{array}{cc}
0 & e_{k}^{t} \\
e_{k} & 0
\end{array}\right)
$$

and $Z^{i, j} \in \mathfrak{k}$ is the matrix whose coefficients are all zero, except $Z_{i, j}^{i, j}=-1$ and $Z_{j, i}^{i, j}=1$. Let us define for $t \in \mathbb{R}$ and $|x|<1$,

$$
f(t, x)=x \sinh t+\cosh t
$$

Lemma 5 Let $q=\left(x_{0}, \ldots, x_{n}\right) \in S^{n}$.
(a) $\widetilde{Z^{i, j}}(q)=-x_{j} e_{i}+x_{i} e_{j}$, for all $0 \leq i<j \leq n$.
(b) $\widetilde{X^{k}}(q)=\operatorname{pr}_{q}\left(e_{k}\right)$, the orthogonal projection of e_{k} onto $T_{q} S^{n} \cong q^{\perp}$, for all $k=0, \ldots, n$.
(c) $\left\|\widetilde{X^{k}}\left(\exp \left(t X^{k}\right)(q)\right)\right\|^{2}=\left(1-x_{k}^{2}\right) / f\left(t, x_{k}\right)^{2}$, for all $t \in \mathbb{R}$.

Proof. For the sake of simplicity, we take $k=n, i=0, j=1$ and write $X=X^{n}, Z=Z^{0,1}$ (the proof for the other cases is similar).
(a) Identifying $\mathfrak{k} \cong s o(n+1)$, we have
$\exp (t Z)=\left(\begin{array}{cc}R_{t} & 0 \\ 0 & \mathrm{I}\end{array}\right) \in S O(n+1) \cong K, \quad$ where $\quad R_{t}=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$
and I is the $(n-1) \times(n-1)$-identity matrix. Hence,
$\widetilde{Z}(q)=\left.\frac{d}{d t}\right|_{0} \exp (t Z)(q)=\left.\frac{d}{d t}\right|_{0}\left(x_{0} \cos t-x_{1} \sin t\right) e_{0}+\left(x_{0} \sin t+x_{1} \cos t\right) e_{1}$.
Thus, $\widetilde{Z}(q)=-x_{1} e_{0}+x_{0} e_{1}$.
(b) We have that

$$
\exp (t X)=\left(\begin{array}{cc}
\mathrm{I} & 0 \tag{4}\\
0 & A_{t}
\end{array}\right) \in S O_{o}(n+1,1), \text { with } A_{t}=\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)
$$

where I is now the $(n \times n)$-identity matrix. Let $u=\left(x_{0}, \ldots, x_{n-1}\right)$ and $v=$ $\left(x_{n}, 1\right)$ (hence we can write $(q, 1)=(u, v)$). We compute

$$
\left(\begin{array}{cc}
I & 0 \\
0 & A_{t}
\end{array}\right)\binom{u^{t}}{v^{t}}=\binom{u^{t}}{w}, \quad \text { with } w=\binom{f^{\prime}\left(t, x_{n}\right)}{f\left(t, x_{n}\right)}
$$

where the exponent t means transpose and the prime denotes the derivative with respect to t. By the identification $S^{n} \cong \partial H^{n+1}$ given in (3), we have

$$
\begin{equation*}
\exp (t X)(q)=\left(x_{0}, \ldots, x_{n-1}, f^{\prime}\left(t, x_{n}\right)\right) / f\left(t, x_{n}\right) \tag{5}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\widetilde{X}(q)=\left.\frac{d}{d t}\right|_{0} \exp (t X)(q)=e_{n}-\left\langle e_{n}, q\right\rangle q=\operatorname{pr}_{q}\left(e_{n}\right) \tag{6}
\end{equation*}
$$

since $f^{\prime \prime}=f, f(0, x)=1$ and $f^{\prime}(0, x)=x$ for all $x \in(-1,1)$.
(c) By (6), $\|\widetilde{X}(p)\|^{2}=1-y_{n}^{2}$ if $p=\left(y_{0}, \ldots, y_{n}\right) \in S^{n}$. The assertion follows now from (5), since $f(t, y)^{2}-f^{\prime}(t, y)^{2}=1-y^{2}$ for all $y \in(-1,1)$.

Lemma 6 With respect to the metric on G defined in the introduction, $\langle\mathfrak{k}, \mathfrak{p}\rangle=0$.

Proof. Let $k \in\{0, \ldots, n\}$ and let $h: S^{n} \rightarrow \mathbb{R}$ be the function defined by $h(q)=\left\langle\widetilde{Z}(q), \widetilde{X^{k}}(q)\right\rangle$, where we have abbreviated as above $Z=Z^{0,1}$. By Lemma we have

$$
h(q)=\left\langle-x_{1} e_{0}+x_{0} e_{1}, \operatorname{pr}_{q}\left(e_{k}\right)\right\rangle=\left\langle-x_{1} e_{0}+x_{0} e_{1}, e_{k}\right\rangle,
$$

which equals $-x_{1}$ if $k=0, x_{0}$ if $k=1$ and 0 otherwise. In any case, h is odd with respect to the reflection of S^{n} fixing some great sphere. Therefore, $\left\langle Z, X^{k}\right\rangle=\int_{S^{n}} h(q) d q=0$. Similar computations yield that $\langle\mathfrak{k}, \mathfrak{p}\rangle=0$.

Proof of Theorem . (a) Let $U \in T G, h, k \in K$ and $V=d L_{h} d R_{k^{-1}} U$, where L_{g}, R_{g} denote left and right multiplication by g, respectively. If γ is a smooth curve in G with $\dot{\gamma}(0)=U$, then $(d / d t)_{0} h \gamma(t) k^{-1}=V$. We compute

$$
\|V\|^{2}=\int_{S^{n}}\left\|\left.\frac{d}{d t}\right|_{0} h \gamma(t) k^{-1}(q)\right\|^{2} d q=\int_{S^{n}}\|(d h)(\widetilde{U}(p))\|^{2}\left\|d k_{p}\right\|^{n} d p
$$

(we substituted $q=k(p)$). Now, $(d h)_{\gamma_{(0)(p)}}$ preserves inner products and $\left\|d k_{p}\right\|=1$, since h, k are isometries of S^{n}. Therefore, $\|V\|=\|U\|$ and thus $K \times K$ acts on G by isometries.
(b) By the preceding, the metric induced on K is bi-invariant. Let $Z \in$ $\mathfrak{k}, X \in \mathfrak{p}$ arbitrary. Since $\mathfrak{p}_{e}=\left(T_{e} K\right)^{\perp}$ by Lemma and $K \times K$ acts on G by isometries by (a), for K being totally geodesic in G, it suffices to prove that the second fundamental form at the identity vanishes, that is, that

$$
\left\langle\alpha_{e}\left(Z_{e}, Z_{e}\right), X_{e}\right\rangle=\left\langle\left(\nabla_{Z} Z\right)_{e}, X_{e}\right\rangle=0
$$

(recall that α_{e} is symmetric). By the formula for the Levi-Civita connection,

$$
\begin{equation*}
2\left\langle\left(\nabla_{Z} Z\right)_{e}, X_{e}\right\rangle=2 Z_{e}\langle X, Z\rangle-2\left\langle[Z, X]_{e}, Z_{e}\right\rangle-X_{e}\|Z\|^{2} \tag{7}
\end{equation*}
$$

Now, since $K \times K$ acts by isometries on G, we have

$$
\langle X, Z\rangle_{\exp (t Z)}=\left\langle d L_{\exp (t Z)} X_{e}, d L_{\exp (t Z)} Z_{e}\right\rangle=\left\langle X_{e}, Z_{e}\right\rangle
$$

for all t. On the other hand, it is well-known that if $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of a simple Lie algebra, then $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$. Hence, the first two terms of the right-hand side of (7) are zero. Next, we compute

$$
\begin{aligned}
\|Z(\exp (t X))\|^{2} & =\left\|d L_{\exp (t X)}\left(Z_{e}\right)\right\|^{2} \\
& =\int_{S^{n}}\left\|\left.\frac{d}{d s}\right|_{0} \exp (t X) \exp (s Z)(q)\right\|^{2} d q \\
& =\int_{S^{n}}\left\|d \exp (t X)_{q}\right\|^{2}\left\|\widetilde{Z_{e}}(q)\right\|^{2} d q .
\end{aligned}
$$

By the $(K \times K)$-invariance, at this point we may suppose without loss of generality that $Z=Z^{0,1}$ and $X=X^{k}$. Since $X \in T_{e} G, \widetilde{X}$ is a vector field on S^{n}. By the proof of Proposition, its flow is $t \mapsto \exp (t X)$. Hence,

$$
\begin{equation*}
(d \exp (t X))_{q} \widetilde{X}(q)=\widetilde{X}(\exp (t X)(q)) \tag{8}
\end{equation*}
$$

for all $q \in S^{n}, t \in \mathbb{R}$. Therefore, by Lemma (c), on has $\left\|(d \exp (t X))_{q}\right\|=$ $1 / f\left(t, x_{k}\right)$ if $\widetilde{X}(q) \neq 0$. By continuity, this formula holds everywhere, since the support of $\|\tilde{X}\|$ is dense in S^{n}. Thus, by Lemma (a),

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{0}\|Z(\exp (t X))\|^{2} & =\left.\int_{S^{n}} \frac{d}{d t}\right|_{0} \frac{x_{0}^{2}+x_{1}^{2}}{f\left(t, x_{k}\right)^{2}} d q \\
& =-2 \int_{S^{n}} x_{k}\left(x_{0}^{2}+x_{1}^{2}\right) d q=0
\end{aligned}
$$

since the integrand is an odd function on S^{n} with respect to the reflection fixing e_{k}^{\perp}. Therefore, the last term of the right-hand side of (7) is zero. Thus, K is totally geodesic in G.
(c) is an immediate consequence of the well-known fact that smooth oneparameter subgroups are geodesics of a Lie group endowed with a bi-invariant metric.

Proof of Theorem . We may suppose without loss of generality that the great sphere is $S=S^{n} \cap e_{0}^{\perp}$ and the fixed antipodal points are $e_{0},-e_{0}$. Let r be the reflection of S^{n} fixing S and let $\bar{r}=-r$. Let $\Phi, \bar{\Phi}$ be the automorphisms of G defined by $\Phi(g)=r \circ g \circ r$ and $\bar{\Phi}(g)=\bar{r} \circ g \circ \bar{r}$, respectively. By an argument similar to that of the proof of Theorem (a), Φ and $\bar{\Phi}$ are isometries of G (notice that r, \bar{r} are isometries of S^{n} but they are not in K). Therefore, $\mathcal{F}=\{g \in G \mid \Phi(g)=g\}$ and $\overline{\mathcal{F}}=\{g \in G \mid \bar{\Phi}(g)=g\}$ are totally geodesic submanifolds of G.

Next, we check that \mathcal{F} is the subgroup of G preserving S. Indeed, if $r \circ g=$ $g \circ r$ and $q \in S$, then $g(q)=g(r(q))=r(g(q))$ and so $g(q) \in S$. Reciprocally, if $g(q) \in S$ for all $q \in S$, then $(r \circ g \circ r)(q)=g(q)$ for all $q \in S$. Hence $r \circ$ $g \circ r=g$, since by [2, Theorem 3.2.4], two directly conformal transformations of S^{n} coincide, provided that they coincide on a great sphere (stated for a hyperplane of \mathbb{R}^{n} but equivalent, via the stereographic projection). Thus, (a) is proved.

Finally, we verify that $\overline{\mathcal{F}}$ is the subgroup of G preserving $\left\{e_{0},-e_{0}\right\}$. Indeed, if $\bar{r} \circ g=g \circ \bar{r}$, then $g\left(e_{0}\right)=g\left(\bar{r}\left(e_{0}\right)\right)=\bar{r}\left(g\left(e_{0}\right)\right)$. Hence, $g\left(e_{0}\right)= \pm e_{0}$ (similarly, $\left.g\left(-e_{0}\right)= \pm e_{0}\right)$. Reciprocally, let us suppose first that $g\left(e_{0}\right)=e_{0}$ and $g\left(-e_{0}\right)=-e_{0}$. Then, $\gamma(t)=\left(\exp t X^{0}\right)(0,1)$ is the geodesic in H^{n+1} through $(0,1)$ satisfying $\gamma(\infty)=\left[e_{0}\right]$ and $\gamma(-\infty)=\left[-e_{0}\right]$. By standard facts in hyperbolic geometry, g translates γ and $g=k \exp \left(t X^{0}\right)$ for some $k \in K$ fixing $\left\{e_{0},-e_{0}\right\}$ and some $t \in \mathbb{R}$. Now suppose that g interchanges e_{0} and $-e_{0}$ and let $R \in K$ with $R\left(e_{i}\right)=-e_{i}$ for $i=0,1$ and $R\left(e_{i}\right)=e_{i}$ for $i>1$. Then $R \circ g$ is in the hypothesis of the first case and hence $g=R k \exp \left(t X^{0}\right)$. In both cases $\bar{r} \circ g=g \circ \bar{r}$, since \bar{r} is the reflection with respect to the axis $\mathbb{R} e_{0}$. This completes the proof of (b).

Remark. Let G_{m} denote the group of directly conformal motions of S^{m} and \mathcal{F}_{m} the subgroup of G_{m} preserving a fixed great sphere S of S^{m}. By the Poincaré Extension Theorem [2, Section 3.3], S induces an isomorphism $G_{m-1} \cong \mathcal{F}_{m}$. In general, the associated inclusion $G_{m-1} \subset G_{m}$ is not conformal, let alone isometric, although its image is totally geodesic by Theorem (a) (for $m=2$, one can easily check using Lemma that $\left\|X^{0}\right\|_{2}=\left\|Z^{0,1}\right\|_{2}$ and $\left\|X^{0}\right\|_{1}<\left\|Z^{0,1}\right\|_{1}$, where $\|\cdot\|_{k}$ denotes the norm on $\left.T_{e} G_{k}\right)$.

Proof of Theorem . As above, we may suppose that $X=X^{0}$. For $m=$ $0, \ldots, n$, let $S_{m}=S^{n} \cap e_{m}^{\perp}$ and \mathcal{F}_{m} the subgroup of G preserving S_{m}. By Theorem (a), \mathcal{F}_{m} (and hence also $\mathcal{F}^{0}=\cap_{m=1}^{n} \mathcal{F}_{m}$) is a totally geodesic submani-
fold of G. Now, if $g \in \mathcal{F}^{0}$, then g preserves each sphere S_{m} for $m=1, \ldots, n$. Hence g preserves the set $\left\{e_{0},-e_{0}\right\}$. Let $\gamma(t)=\exp (t X)$ and let \mathcal{F}_{o}^{0} be the identity component of \mathcal{F}^{0}, which is also a totally geodesic submanifold of G. Next, we verify that \mathcal{F}_{o}^{0} coincides with the image of γ. A given $h \in \mathcal{F}_{o}^{0}$ fixes e_{0} and $-e_{0}$, hence (thought of as an isometry of H^{n+1}) it translates the geodesic $t \mapsto \exp (t X)(0,1)$ in H^{n+1} and may be written as $h=\exp \left(t_{0} X\right) k$ for some $t_{0} \in \mathbb{R}$ and $k \in K$ commuting with $\gamma(t)$ for all t. Now, since h preserves each sphere S_{m} for $m=1, \ldots, n$, we conclude that $k=e$. Hence, \mathcal{F}_{o}^{0} is contained in the image of γ. The other inclusion is obvious. Thus, γ is the reparametrization of a geodesic in G.

Next, we verify that the length of γ is finite. We compute

$$
\begin{aligned}
\|\dot{\gamma}(t)\|^{2} & =\int_{S^{n}}\|\widetilde{\dot{\gamma}(t)}(q)\|^{2} d q=\int_{S^{n}}\left\|\left.\frac{d}{d s}\right|_{t} \exp (s X)(q)\right\|^{2} d q \\
& =\int_{S^{n}}\left\|d \exp (t X)_{q} \widetilde{X}(q)\right\|^{2} d q
\end{aligned}
$$

Now, by (8) and Lemma (c),

$$
\|\dot{\gamma}(t)\|^{2}=\int_{S^{n}}\|\widetilde{X}(\exp (t X) q)\|^{2} d q=\int_{S^{n}} \frac{1-x_{0}^{2}}{f\left(t, x_{0}\right)^{2}} d q
$$

Let $F:(-\pi / 2, \pi / 2) \times S^{n-1} \rightarrow S^{n}$ be defined by $F(\theta, v)=(\sin \theta,(\cos \theta) v)$. One easily computes $\operatorname{det}\left(d F_{(\theta, v)}\right)=\cos ^{n-1} \theta$. Setting $V=\operatorname{vol}\left(S^{n-1}\right)$, by the formula for change of variables, one obtains

$$
\|\dot{\gamma}(t)\|^{2}=V \int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{n+1} \theta}{f(t, \sin \theta)^{2}} d \theta \leq V \int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} \theta}{f(t, \sin \theta)^{2}} d \theta=\frac{\pi V}{1+\cosh t}
$$

(we have used Maple to compute the last integral). Therefore, γ has finite length. Moreover, the arc length reparametrization of γ cannot be extended properly, since $\lim _{t \rightarrow \infty} \gamma(t)$ does not exist in G (see (4)).

The equivalent statement, as well as the fact that the metric on G is not complete, are immediate consequences of the preceding.

References

[1] V.I. Arnold, Mathematical methods of classical Mechanics, Graduate Texts in Math. 60 (Springer, Berlin, 1989).
[2] A. Beardon, The geometry of discrete groups, Graduate Texts in Math. 91 (Springer, Berlin, 1983).
[3] P. Dombrowski and J. Zitterbarth, On the planetary motion in the 3dimensional standard spaces M_{κ}^{3} of constant curvature $\kappa \in \mathbb{R}$, Demonstratio Math. 24 nos. 3-4 (1991) 375-458.
[4] P.T. Nagy, Dynamical invariants of rigid motions on the hyperbolic plane, Geom. Dedicata 37 no. 2 (1991) 125-139.
[5] M. Salvai, On the dynamics of a rigid body in the hyperbolic space, J. Geom. Phys. 36 (2000) 126-139.
[6] W.A. Poor, Differential geometric structures, (McGraw-Hill, New York, 1981).
[7] J. Zitterbarth, Some remarks on the motion of a rigid body in a space of constant curvature without external forces, Demonstratio Math. 25 nos. 3-4 (1991) 465-494.

[^0]: *Partially supported by CONICOR, CIEM(CONICET) and SECYT(UNC).

