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Abstract

Let G be the Lie group of orientation preserving conformal diffeomor-
phisms of S™. Suppose that the sphere has initially a homogeneous
distribution of mass and that the particles are allowed to move only
in such a way that two configurations differ in an element of G. There
is a Riemannian metric on G, which turns out to be not complete
(in particular not invariant), satisfying that a smooth curve in G is a
geodesic, if and only if (thought of as a conformal motion) it is force
free, i.e., it is a critical point of the kinetic energy functional. We
study the force free motions which can be described in terms of the
Lie structure of the configuration space.

MS classification: 22E43, 22E70, 53 C 22, 7T0K25.
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Introduction

In the spirit of the classical description of the force free motions of a rigid
body in Euclidean space using an invariant metric on SO (3) [1, Appendix 2],
suitable Riemannian metrics on SO, (n, 1) (n = 2, 3) have proved to be useful
to study the dynamics of a rigid body in the hyperbolic spaces of dimensions
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2 and 3 [3, 4, 5, 7]. In this note we define an appropriate metric on the Lorenz
group SO, (n + 1,1) to study force free conformal motions of the sphere S™.

A diffeomorphism F of a Riemannian manifold (M, g) of dimension n > 2
is said to be conformal if F*g = fg for some positive function f on M.
The conformal transformations of the circle S are defined below, by anal-
ogy with those of S™ (n > 2). Following [2], if M is oriented, a conformal
transformation of M will be called directly conformal if it preserves orien-
tation. Throughout the paper, smooth means of class C*°. The norm of a
linear transformation 7' from one inner product vector space to another is
defined by ||T'|| = max {||Tv|| | ||v|| = 1}. If T*T is a multiple of the identity
(the case when T is the differential of a conformal transformation), one has
|7l = | Toll / flo] for any v £ 0.

Let S™ be the unit sphere centered at zero in R"*! with the usual metric
and G the Lie group of directly conformal diffeomorphisms of S™. Suppose
that the sphere has initially a homogeneous distribution of mass of constant
density 1 and that the particles are allowed to move only in such a way that
two configurations differ in an element of G. The configuration space may be
naturally identified with G.

The energy of conformal motions.

Let g (s) be a smooth curve in GG, which may be thought of as a conformal
motion of S™. The total kinetic energy F (t) of the motion g (s) at the instant
t is given by

EQ =1 i@l da (1)

where integration is taken with respect to the canonical volume form of S™
and, if ¢ = g (t) (p) for p € S™, then

d

v (q) = ds

g(s) (p) € 5", pe(q) =1/ || dg(®), "

are the velocity of the particle ¢ and the density at ¢ at the instant ¢, respec-
tively. Applying to (1) the formula for change of variables, one obtains

B -1

The following definition is based on the principle of least action.

2

d dp. (2)

=1 9() )

t

2



Definition. A smooth curve g (¢) in G, thought of as a conformal motion
of S™, is said to be force free if it is a critical point of the kinetic energy
functional.

A Riemannian metric on the configuration space.

The following Proposition actually defines two concepts that will be used
throughout the paper.

Proposition 1 (a) Given g € G, X € T,G, the function X : 8" — TS,

X)= &

v (t)(q) € Tg(q)Sn,
0

where v is any smooth curve in G with v (0) = g and ¥ (0) = X, is well-
defined and smooth.
(b) A Riemannian metric on G is defined as follows: for X, Y € TG with

the same footpoint,

Y = [ (K@) V(@) da

Moreover, a curve g(t) in G is a geodesic if and only if (thought of as a
conformal motion) it is force free.

Remarks. (a) If X € T,G, then X is a vector field on ™ if and only if ¢ is
the identity of the group. In this case, X is conformal.

(b) For any n, the metric on G is neither left nor right invariant, since we
will see in Theorem below that it is not even complete.

Force free conformal motions.
Let K = SO (n+ 1) be the group of orientation preserving isometries of S™.

Theorem 2 (a) K x K acts on G on the left, (h,k).g = hgk™!, by isometries
of G.
(b) K is totally geodesic in G and the induced metric is bi-invariant.

(c) One-parameter subgroups of isometries of S™ are force free conformal
motions of S™.



Theorem 3 (a) The subgroup of directly conformal motions of S™ preserving
a fixed great sphere is totally geodesic in G.

(b) The subgroup of directly conformal motions of S™ preserving two fized
antipodal points of the sphere is totally geodesic in G.

We shall give below details of the fact that G is isomorphic to SO, (n + 1,1),
which is a simple Lie group and has K as a maximal compact subgroup.
Let € be the Lie algebra of K and p = [¢, €], that is, g = € ® p is a Cartan
decomposition of g, the Lie algebra of G.

Theorem 4 Forany X € p, X # 0, the curvet — exp (tX) is the reparametriza-
tion of a maximal geodesic in G with finite length. Equivalently, the one-
parameter subgroup of conformal motions of the sphere fizing two antipodal
points and preserving the meridians joining them, is a reparametrization of

a maximal force free conformal motion of S™ defined on a finite interval of
time. In particular, G as Riemannian space is not complete for any n.

Proofs of the results

Proof of Proposition . (a) If o : G x S™ — 5™ denotes the action of G on
57 which is smooth, then X (¢) = (d/dt)y o (v (t),q) = doggq) (X, 04), where
04 is the zero of T;S™. Hence, X is well-defined and smooth.

(b) Let g € G. The computations in (a) show that for any fixed ¢ € S, the
correspondence X € T,G — X(q) € Ty(q)S™ is linear, hence (., .), is bilinear.
Next we verify that it is positive definite. Clearly, ||X|| > 0. If || X = 0,
by continuity of X, the vector field ¢ — )A((q) = (dgfl)q)z(q) must vanish
identically. If X = dL, (X,), one can easily check that

X(q) = (d/dt), exp (tX,) (q)

for all ¢ € S™. Since s — exp (sX,) is a one-parameter group of diffeomor-
phisms of the sphere, it is the flow of the vector field X = 0. Therefore,
exp (sX,) is constant and this implies that X, (and hence X) is zero, since

the action of G is effective. Finally, the metric is smooth, since given a smooth
vector field Y on G, the function ||Y]*: G — R,

YOI = |

Vo) (@) do= [ 1) (v (),0,)] dg

I
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is clearly smooth. The second assertion follows from the variational charac-
terization of the geodesics in a Riemannian manifold and the fact that if ¢ (¢)
is a smooth curve in G, then ||g (t)||* = 2E (t) (see (2)). O

Next we recall from [6] some facts about the group of conformal transforma-
tions of the sphere, only we take a slightly different presentation of it.

The group G may be identified with the orientation preserving isometries
of the (n + 1)-dimensional hyperbolic space H™"! with constant sectional cur-
vature —1 as follows: Consider on R"™ the symmetric bilinear form 3 (u,v) =
UgUo + + * * + UpVp — Up11Vnt1- Then {u € R"2 | B (u,u) = —1,u,41 > 0} en-
dowed with the induced metric is a model for H"*!. The asymptotic border
of H™ ! is

OH™ ={ueR"™ | B (u,u) =0,u#0}/~,

where u ~ v if and only if u = cv for some ¢ # 0. Let SO, (n + 1,1) be the
identity component of

{9 € GL(n+2,R) |3 (gu,gv) =B (u,v) for all u,v € R"}.
We consider on 9H™ ! the metric induced by the diffeomorphism
S" — OH™, g (g, 1)], (3)

where [v] = {cv | ¢ € R, ¢ # 0}. Via this identification, SO, (n + 1,1), acting
on H"™! and on its asymptotic border in the standard way, is the identity
component of the isometry group of H"™! and the group G of directly confor-
mal transformations of S™. For n = 1, the latter provides the definition of the
directly conformal transformations of the circle. Also by the identifications
above, K is the isotropy subgroup at (0,1) of the action of G on H""!. We
have g=¢® p C gl (n + 2,R), with

E:{<’§ 8)|A€so(n—l—1)} and p:{(g %t)weR"“}.

Let {eg, ..., e,} be the canonical basis of R"™!. The sets {Xk | k=0,... ,n}
and {Z% | 0 <i < j < n} are bases of p and ¢, respectively, where

k_ (0 e
X_(ek 0
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and Z% € £ is the matrix whose coefficients are all zero, except Z;JJ =1
and Z;7] = 1. Let us define for £ € R and [z] < 1,

f(t,z) = xsinht + cosht.

Lemma 5 Let ¢ = (zo,...,x,) € S™.
(a) Zii (q) = —xje; + xiej, for all0 <i < j<n.

(b) X+ (q) =pr, (ex), the orthogonal projection of ey onto T,S™ = ¢*, for
all k=0,...,n.

(c) Hﬁf (exp (tX*) (¢)) H2 = (1—a2) /f (t, 1), for all t € R.

Proof. For the sake of simplicity, we take k = n, ¢ = 0, 7 = 1 and write
X = X" Z = 7% (the proof for the other cases is similar).

(a) Identifying € = so (n + 1), we have

R, 0O

exp(tZ):( 0 I)GSO(nle)%’K’ where Rt:(COSt —smt)

sint cost

and I is the (n — 1) x (n — 1)-identity matrix. Hence,

)=

(rgcost — xysint) eg+ (xgsint 4+ 1 cost) e;.

v (12) () = 0

0

Thus, Z (q) = —x1e0 + Toer.
(b) We have that

L 0 : cosht sinht
exp(tX)—(O At)GSOO(n+1’1)’WlthAt_(sinht cosht)’
(4)

where I is now the (n x n)-identity matrix. Let u = (zq,...,z,_1) and v =
(2, 1) (hence we can write (¢, 1) = (u,v)). We compute

I 0 ut ut : I (t, z,)
(o a) ()= (o) wme= (5050
where the exponent ¢t means transpose and the prime denotes the derivative
with respect to t. By the identification S™ = 9H™ ! given in (3), we have

exp (tX) (q) = (w0, -, Znr, [ (t,0)) / f (E,20) ()
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and hence,

exp (tX) (q) = en — (en, q) ¢ = pry(en), (6)

since f”" = f, f(0,z) =1 and f'(0,z) =z for all x € (—1,1).
~ 2
(c) By (6), HX(p)H =1—92if p= (yo,...,yn) € S™ The assertion
follows now from (5), since f (t,y)° — f' (t,y)* =1 —y? for all y € (—1,1). O

Lemma 6 With respect to the metric on G defined in the introduction,

(e,p) =0.

Proof. Let £ € {0,...,n} and let A : S — R be the function defined by

h(q) = <Z (q),XF (q)>, where we have abbreviated as above Z = Z%!. By

Lemma we have

h(q) = <—l’1€0 + Zo€r, PT, (ek)> = (—z1€0 + To€1, €41) |

which equals —zy if £ = 0, 29 if £ = 1 and 0 otherwise. In any case, h is
odd with respect to the reflection of S™ fixing some great sphere. Therefore,
(Z,X*) = [4.h(q) dg = 0. Similar computations yield that (¢,p) =0. O

Proof of Theorem . (a) Let U € TG, h,k € K and V = dL,dR;-1U, where
L,, Ry denote left and right multiplication by g, respectively. If v is a smooth
curve in G with 4 (0) = U, then (d/dt), hy (t) k~' = V. We compute

i = [
Sn

(we substituted ¢ = k(p)). Now, (dh), ), Preserves inner products and
|dk,|| = 1, since h,k are isometries of S™. Therefore, |V|| = ||U]| and thus
K x K acts on G by isometries.

d

7 (n) (T @) k)" dp

n

Oh’y (t) k! (Q)H2dq=/

(b) By the preceding, the metric induced on K is bi-invariant. Let Z €
t, X € p arbitrary. Since p, = (TeK)L by Lemma and K x K acts on G by
isometries by (a), for K being totally geodesic in G, it suffices to prove that
the second fundamental form at the identity vanishes, that is, that

<ae (Zea Ze) 7Xe> = <(VZZ)5 7Xe> =0
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(recall that c, is symmetric). By the formula for the Levi-Civita connection,
2((Vz2),,X.) =27.(X,Z) - 2{(|Z,X],, Z.) — X. | Z|*. (7)
Now, since K x K acts by isometries on GG, we have
(X, Z) expiezy = (dLexp(ez) Xe: ALexpiez) Ze) = (Xe, Ze)

for all £. On the other hand, it is well-known that if g = €@ p is a Cartan
decomposition of a simple Lie algebra, then [¢,p] C p. Hence, the first two
terms of the right-hand side of (7) are zero. Next, we compute

|dLexpiex) (Z2)]°

— /Sn exp (tX)exp (sZ) (q)

0
/ 2

dexp (tX),
By the (K x K)-invariance, at this point we may suppose without loss of
generality that Z = Z%! and X = X*. Since X € T,G, X is a vector field on
S™. By the proof of Proposition , its flow is ¢ — exp (¢X). Hence,

1Z (exp (¢X))]

2

dq

ds

2

dq.

—

Ze(q)

(dexp (1X)), X (¢) = X (exp (1X) (¢)) (8)

for all ¢ € S™,t € R. Therefore, by Lemma (c), on has H(dexp (tX)),

1/f (t,z3) if X (q) # 0. By continuity, this formula holds everywhere, since
the support of HXH is dense in S™. Thus, by Lemma (a),

d| x2+ 22
Z (exp (tX 2 = / — 2Ly
1Z @@l = [ G o

- —2/ o (a2 4 22) dg =0,

since the integrand is an odd function on S™ with respect to the reflection
fixing ei. Therefore, the last term of the right-hand side of (7) is zero. Thus,
K is totally geodesic in G.

dt

0

(c) is an immediate consequence of the well-known fact that smooth one-
parameter subgroups are geodesics of a Lie group endowed with a bi-invariant
metric. UJ



Proof of Theorem . We may suppose without loss of generality that the
great sphere is S = S™Ney and the fixed antipodal points are ey, —eg. Let 7 be
the reflection of S” fixing S and let 7 = —r. Let ®, ® be the automorphisms
of G defined by ® (g) = rogor and ®(g) = 7 o g o 7, respectively. By an
argument similar to that of the proof of Theorem (a), ® and ® are isometries
of G (notice that r, 7 are isometries of S™ but they are not in K). Therefore,
F={9geG|P(g)=g}and F = {g€ G| P(g9) =g} are totally geodesic
submanifolds of G.

Next, we check that F is the subgroup of G preserving S. Indeed, if rog =
gorand g € S,then g(q) = g(r(q)) =r(g(¢)) andso g (q) € S. Reciprocally,
if g(q) € S for all g € S, then (rogor)(q) =g(q) for all ¢ € S. Hence r o
gor = g, since by [2, Theorem 3.2.4], two directly conformal transformations
of S™ coincide, provided that they coincide on a great sphere (stated for a
hyperplane of R but equivalent, via the stereographic projection). Thus, (a)
is proved.

Finally, we verify that F is the subgroup of G preserving {eg, —eo}. In-
deed, if Fog=goT, then g(eq) = g (7 (eg)) =7 (g (eo)). Hence, g (eg) = +eq
(similarly, g (—eg) = £eg). Reciprocally, let us suppose first that g (eg) = eg
and g (—ep) = —eg. Then, v (t) = (exptX?)(0,1) is the geodesic in H" !
through (0, 1) satisfying «y (00) = [eg] and v (—o0) = [—ep]. By standard facts
in hyperbolic geometry, g translates v and g = kexp (tX°) for some k € K
fixing {eg, —€p} and some t € R. Now suppose that ¢ interchanges ey and
—ep and let R € K with R (e;) = —e; for i = 0,1 and R (e;) = e; for i > 1.
Then Ro g is in the hypothesis of the first case and hence g = Rkexp (tX?).
In both cases 7o g = g o, since 7 is the reflection with respect to the axis
Reg. This completes the proof of (b). O

Remark. Let G,, denote the group of directly conformal motions of S™
and F,, the subgroup of G,, preserving a fixed great sphere S of S™. By
the Poincaré Extension Theorem [2, Section 3.3], S induces an isomorphism
Gm-1 = F,u. In general, the associated inclusion G,,_1 C G,, is not confor-
mal, let alone isometric, although its image is totally geodesic by Theorem
(a) (for m = 2, one can easily check using Lemma that || X°||, = || Z%]],
and || X°||, < [|Z%|,, where |.]|, denotes the norm on T.G}).

Proof of Theorem . As above, we may suppose that X = X° For m =
0,...,n,let S, = S"Nek and F,, the subgroup of G preserving S,,. By The-
orem (a), 5, (and hence also F° = N"_,F,,) is a totally geodesic submani-



fold of G. Now, if g € F°, then g preserves each sphere S,, for m =1,...,n.
Hence g preserves the set {eg, —eg} . Let v () = exp (tX) and let F? be the
identity component of F°, which is also a totally geodesic submanifold of
G. Next, we verify that F° coincides with the image of 7. A given h € F?°
fixes g and —ep, hence (thought of as an isometry of H"!) it translates the
geodesic t — exp (tX) (0,1) in H™™ and may be written as h = exp (tc.X) k
for some t; € R and k € K commuting with ~y (¢) for all t. Now, since h
preserves each sphere S, for m = 1,...,n, we conclude that £ = e. Hence,
F? is contained in the image of 7. The other inclusion is obvious. Thus, 7 is
the reparametrization of a geodesic in G.
Next, we verify that the length of ~ is finite. We compute

ror = [ o] -
= /n dexp(tX)q)?(q)H2 dq.

Now, by (8) and Lemma (c),
1 — 22

= s

Let F: (—7/2,7/2) x S"™1 — 8" be defined by F (0,v) = (sin6, (cos ) v).
One easily computes det (dF(g,v)) = cos" 6. Setting V = vol (S"1), by the
formula for change of variables, one obtains

/2 n+1 /2 2
||7(t)||2:V/ cos" " 0 d@SV/ cos” 0 o VvV

w2 f(t,5in0)° oo f(tsin@)? 1+ coshi

2
dgq

| exp(sX) (0)

n

t

X (exp (tX) g dg =

dq.

(we have used Maple to compute the last integral). Therefore, v has finite
length. Moreover, the arc length reparametrization of v cannot be extended
properly, since lim;_., v (t) does not exist in G (see (4)).

The equivalent statement, as well as the fact that the metric on G is not
complete, are immediate consequences of the preceding. 0
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