A dynamical approach to compactify the three dimensional Lorentz group

Marcos Salvai*

Abstract

The Lorentz group acts on the projectivized light cone in the three dimensional Lorentz space as the group G of Möbius transformations of the circle. We find the closure of G in the space of all measurable functions of the circle into itself, obtaining a compactification of it as an open dense subset of the three-sphere, with a dynamical meaning related to generalized flows.

Mathematics Subject Classification 2000: 53C22, 57S20, 58D15, 74A05.
Key words and phrases: compactification, Lorentz group, Möbius transformation, generalized flow.

The canonical action of the Lorentz group $O_{o}(1,2)$ on the projectivized light cone in the three dimensional Lorentz space is equivalent to the action of the group G on the circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, where G consists of the Möbius transformations of the extended plane preserving the circle. The group G is isomorphic to $\operatorname{PSU}(1,1)$ and $\operatorname{PSl}(2, \mathbb{R})$. In this note we compactify G as an open dense subset of the three-sphere, with a dynamical motivation.

The group G consists of maps of the form $u T_{\alpha}$, where $u \in S^{1}$ and

$$
T_{\alpha}(z)=\frac{z+\alpha}{1+\bar{\alpha} z}
$$

for $\alpha \in \mathbb{C},|\alpha|<1$ and all $z \in S^{1}$. The map $S^{1} \times \Delta \rightarrow G,(u, \alpha) \mapsto u T_{\alpha}$ is a diffeomorphism. Although we are interested in the action of G on the circle, we recall that if the unit disc $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ carries the canonical Poincaré metric of constant negative curvature -1 and $\alpha \neq 0$, then T_{α} is the

[^0]transvection translating the geodesic with end points $\pm \alpha /|\alpha|$, sending 0 to α.
Dynamical motivation. If $t \in \mathbb{R},|t|<1$, then T_{t} fixes $1,-1 \in S^{1}$ and if $z \in S^{1}, z \neq-1$, then
$$
\lim _{t \rightarrow 1^{-}} T_{t}(z)=1
$$

One can imagine that all particles of the circle (except -1) moving according to T_{t} concentrate in the point 1 at $t=1$. It is natural to think that a particle coming to the point 1 at $t=1$ from the upper half of the circle, will continue its way into the lower part of the circle for $t>1$ (notice that T_{t} does not make sense for $|t| \geq 1$) and similarly for a particle coming to the point 1 from the lower part of the circle. This can be rendered precise with the compactification of G described in Theorem 0.1 below (see Proposition 0.3).

Let $\mathcal{F}=\left\{f: S^{1} \rightarrow S^{1} \mid f\right.$ is measurable $\} / \sim$, where $f \sim g$ if and only if f and g coincide except on a set of measure zero, equipped with the distance

$$
D(f, g)=\int_{S^{1}} d(f(z), g(z)) d s(z)
$$

being s is an arc length parameter and d the associated distance on S^{1} (we think of each function as representing its equivalence class). Let S^{3} be the three dimensional sphere realized as the Lie group of unit vectors in the quaternions $\mathbb{H}=\mathbb{C}+\mathbb{C} j$. We recall that if q is an imaginary cuaternion with $|q|=1$, then $\exp (t q)=\cos t+(\sin t) q$. For $v \in S^{1}$, let c_{v} denote the constant map in \mathcal{F} with value v.

Theorem 0.1 The frontier of G in \mathcal{F} consists of the constant functions. Moreover, if one considers on the closure \bar{G} of G the relative topology from \mathcal{F}, then the map $F: \bar{G} \rightarrow S^{3}$ defined by

$$
F\left(u T_{\alpha}\right)=u \exp \left(\frac{\pi}{2} \alpha j\right), \quad F\left(c_{v}\right)=v j
$$

is a homeomorphism and $\left.F\right|_{G}: G \rightarrow S^{3}$ determines a submanifold.
Remark. We recall that a Fermi coordinate system ϕ along a geodesic γ in a Riemannian manifold of dimension $n+1$ is given by

$$
\phi\left(t, t_{1}, \ldots, t_{n}\right)=\operatorname{Exp}_{\gamma(t)}\left({ }_{i=1}^{n} t_{i} v_{i}(t)\right)
$$

where Exp denotes the geodesic exponential map and $\left\{v_{i}\right\}$ is a parallel orthonormal frame along γ orthogonal to $\gamma^{\prime}(t)$ at any t. Notice that since G
is diffeomorphic to $S^{1} \times \Delta$ via $u T_{\alpha} \mapsto(u, \alpha)$, if one looks just for a compactification of G as an open dense subset of the three-sphere, without extra properties, the simplest way is by using a slight modification of Fermi coordinates along the geodesic $s \mapsto e^{s i}$ in $S^{3}: \bar{F}\left(u T_{\alpha}\right)=\operatorname{Exp}_{u}\left(\frac{\pi}{2} \alpha j\right)$, where $u \in S^{1} \subset S^{3}$. The maps \bar{F} and F do not coincide on G, since the mapping $s \mapsto m_{e^{i s}}$ is not a one-parameter subgroup of transvections translating that geodesic (their differentials do not realize the parallel transport along it).
Proof. Clearly G is a subset of \mathcal{F}. If $u \in S^{1}$, let m_{u} denote multiplication by u. By abuse of notation we write $T_{\alpha} m_{u}=T_{\alpha} u$. Notice that $u T_{\alpha}=T_{u \alpha} u$ for any $u \in S^{1}, \alpha \in \Delta$. Let α_{n} and u_{n} be sequences in Δ and S^{1}, respectively. Suppose first that $\alpha_{n} \rightarrow \alpha \in S^{1}$ as $n \rightarrow \infty$. We show that

$$
\begin{equation*}
T_{\alpha_{n}} u_{n} \rightarrow c_{\alpha} \text { in } \mathcal{F} \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

Indeed, since $d s$ is invariant by rotations, then $D\left(T_{\alpha_{n}} u_{n}, c_{\alpha}\right)=D\left(T_{\alpha_{n}}, c_{\alpha}\right)$. This sequence converges to zero as $n \rightarrow \infty$ by the Bounded Convergence Theorem, since $\lim _{n \rightarrow \infty} T_{\alpha_{n}}(z)=\alpha$ for any $z \neq-\alpha$ (d and the euclidean distance are equivalent). In particular constant functions are in the frontier of G. On the other hand, if $u_{n} \rightarrow u$ and $\alpha_{n} \rightarrow \alpha \in \Delta$, then $T_{\alpha_{n}} u_{n} \rightarrow T_{\alpha} u$ pointwise, and hence in \mathcal{F}, again by the Bounded Convergence Theorem. Moreover, by the preceding, if $T_{\alpha_{n}} u_{n}$ converges to f in \mathcal{F}, then $f \in G$ or is constant, since by the compactness of $\bar{\Delta} \times S^{1}$ there exists a subsequence of $\left(\alpha_{n}, u_{n}\right)$ converging in it. Then the frontier consist only of constant functions. Now, F is a bijection since a straightforward computation shows that F^{-1} : $S^{3} \rightarrow \bar{G}$ is given by

$$
F^{-1}(v+w j)= \begin{cases}c_{w} & \text { if } v=0 \tag{2}\\ m_{v} & \text { if } w=0 \\ T_{\alpha} u & \text { if } v \neq 0 \neq w\end{cases}
$$

for $v, w \in \mathbb{C},|v|^{2}+|w|^{2}=1$, where $u=v /|v|$ and $\alpha=\frac{2}{\pi} \arccos (|v|) \frac{w}{|w|}$.
Hence F^{-1} is smooth at $v+w j \in S^{3}$ with $v \neq 0 \neq w$. Since $\left.F\right|_{G}$ is smooth and injective, to show that $\left.F\right|_{G}$ is an embedding it suffices to see that F^{-1} is smooth at $v \in S^{1} \subset S^{3}$. This will follow from the Inverse Function Theorem if we check that

$$
d F_{m_{v}}: T_{m_{v}} G \rightarrow T_{v} S^{3}
$$

is an isomorphism. We can identify $T_{m_{v}} G=T_{(v, 0)}\left(S^{1} \times \Delta\right)=T_{v} S^{1} \oplus T_{0} \Delta=$ $\mathbb{R} i v \oplus \mathbb{C}$ and also $T_{v} S^{3}=\mathbb{R} i v \oplus \mathbb{C} j$, the orthogonal complement of v in \mathbb{H}.

We compute

$$
d F_{v}(x i v, z)=\left.\frac{d}{d t}\right|_{0} F\left(v e^{t x i} T_{t z}\right)=\left.\frac{d}{d t}\right|_{0} v e^{t x i} \exp \left(t \frac{\pi}{2} z j\right)=v\left(x i+\frac{\pi}{2} z j\right) .
$$

Hence, $d F_{v}$ is an isomorphism.
In order to verify that F^{-1} is continuous at $w j$ we consider the map $\bar{F}: G \rightarrow S^{3}, \bar{F}=R_{j} \circ F\left(R_{j}\right.$ denotes right multiplication by $\left.j\right)$, which, by the preceding, is a diffeomorphism onto its image $S^{3}-S^{1}$. We have to show that $F^{-1} \circ \bar{F}$ is continuous at $u \in S^{1}$. Clearly, $\bar{F}\left(m_{u}\right)=u j$. If $\alpha \neq 0$, we compute $\bar{F}\left(u T_{\alpha}\right)=v+w j$, where $v=-\frac{u \alpha}{|\alpha|} \sin \left(\frac{\pi}{2}|\alpha|\right)$ and $w=u \cos \left(\frac{\pi}{2}|\alpha|\right)$. Since $\cos \theta=\sin \left(\frac{\pi}{2}-\theta\right)$ for all θ, we have by (2) that

$$
\begin{equation*}
F^{-1}\left(\bar{F}\left(u T_{\alpha}\right)\right)=T_{u(1-|\alpha|)}(-u \alpha /|\alpha|), \tag{3}
\end{equation*}
$$

which by (1) converges to $c_{u}=\left(F^{-1} \circ \bar{F}\right)\left(m_{u}\right)$ as $\alpha \rightarrow 0$. Finally, since S^{3} is compact and Hausdorff, F^{-1} is a homeomorphism.

Remark. If $u_{n}=e^{2 \pi x_{n} i}$ with $x_{n}=1 / 2,1 / 4,2 / 4,3 / 4,1 / 8,2 / 8,3 / 8, \ldots$, then $T_{1-1 / n} m_{u_{n}}$ converges to c_{1} in \mathcal{F} but it does not converge pointwise on a dense subset of S^{1}. This distinguishes our approach from that of Topological Dynamics.

Proposition 0.2 The canonical action of $G \times G$ on $G,(g, h) . f=g f h^{-1}$, extends to a continuous action of $G \times G$ on S^{3} via $\left.F\right|_{G}: G \rightarrow S^{3}$. If we call $K=S^{1} \subset G$, the restricted action of $K \times K$ on S^{3} is given by $A\left(u, v, z_{1}+z_{2} j\right)=u\left(\bar{v} z_{1}+z_{2} j\right)$.
Proof. We define an action \bar{A} of $G \times G$ on \bar{G} by

$$
\bar{A}(g, h, f)=g f h^{-1}, \quad \bar{A}\left(g, h, c_{v}\right)=c_{g v}
$$

for $g, h, f \in G, v \in S^{1}$. Since $F: \bar{G} \rightarrow S^{3}$ is a homeomorphism, we have to show that \bar{A} is continuous. Suppose that $f_{n} \in G, v_{n} \in S^{1}$ are sequences converging to $c_{v} \in \bar{G}$, and g_{n}, h_{n} are sequences in G converging to $g, h \in G$, respectively. By arguments similar to those used in the proof of Theorem 0.1, $g_{n} f_{n} h_{n}^{-1}$ and $c_{g_{n} v_{n}}$ both converge to $c_{g v}$ in \mathcal{F}.

Next we verify the second assertion. We have to show that the following diagram is commutative.

For $u, v, w \in S^{1}, \alpha \in \Delta$, we compute

$$
(F \circ \bar{A})\left(u, v, c_{w}\right)=F\left(c_{u w}\right)=u w j=A(u, v, w j)=A\left(u, v, F\left(c_{w}\right)\right) .
$$

Besides, $(F \circ \bar{A})\left(u, v, w T_{\alpha}\right)=F\left(u w T_{\alpha} \bar{v}\right)=F\left(u w \bar{v} T_{v \alpha}\right)=A\left(u, v, F\left(w T_{\alpha}\right)\right)$, since $\exp \left(\frac{\pi}{2} \beta j\right)=\cos \left(\frac{\pi}{2}|\beta|\right)+\sin \left(\frac{\pi}{2}|\beta|\right) \frac{\beta}{|\beta|} j$ for any $\beta \in \Delta$.

Next we make precise the comment at the beginning of the article concerning moving particles in the circle.

Proposition 0.3 If \bar{G} is endowed with the differentiable structure and the Riemannian metric induced from S^{3} via the homeomorphism F, then the curve $\gamma: \mathbb{R} \rightarrow \bar{G}$ defined by

$$
\gamma(s)= \begin{cases}(-1)^{k} T_{s-2 k} & \text { if }|s-2 k|<1, k \in \mathbb{Z} \\ c_{(-1)^{\ell}} & \text { if } s=2 \ell+1, \ell \in \mathbb{Z}\end{cases}
$$

is a complete geodesic in \bar{G}. Moreover, if $z \neq \pm 1$, then the curve $\gamma_{z}(s):=$ $\gamma(s)(z)$ in S^{1}, describing the motion of the particle z under $\gamma(s)$, is continuous with period 4 and runs n times around the circle in any interval of time of length $4 n$ (clockwise if $\operatorname{Re} z>0$ and counterclockwise if $\operatorname{Re} z<0$).

Proof. A straightforward computation shows that $F(\gamma(s))=\exp \left(\frac{\pi}{2} s j\right)$. Hence γ is a geodesic. The remaining facts are easily verified.

Remark. The situations of particles concentrating in a point or a point spreading instantaneously onto the whole space, is present in the literature in a different context, the study of volume preserving flows by geometric means, with the notions of polymorphisms [8] and generalized flows [3]. An overview of the subject can be found in [1].

Finally, we comment on the compactifications known to us of classical groups whose identity component is isomorphic to G or its double covering. The classical one is obtained as follows: Let $S l(2, \mathbb{C})=S U(2) A N$ be an Iwasawa decomposition. Since $S U(1,1)$ intersects $A N$ only at the identity, its projection P to $S U(2) \cong S^{3}$ is an embedding, which is given explicitly by

$$
P\left(\begin{array}{cc}
u & \bar{v} \\
v & \bar{u}
\end{array}\right)=\frac{u+v j}{|u+v j|}, \quad\left(u, v \in \mathbb{C},|u|^{2}-|v|^{2}=1\right)
$$

The image of P is the interior of the solid torus $\left\{u+v j \in S^{3}| | v|\leq|u|\}\right.$. If one wants $S U(1,1)$ to be dense in its compactification, one can consider
for instance $p \circ P$ instead of P, where $p: S^{3} \rightarrow S^{3} /\{1, j\}$ is the canonical projection. In this case, the frontier of the image of $S U(1,1)$ is a torus.

On the other hand, recently, H. He, based on suggestions of D. Vogan, obtained a general method to compactify the classical simple Lie groups [5, 6] (see also $[2,7]$). The groups $O(1,2)$ and $S l(2, \mathbb{R}) \cong S p(2, \mathbb{R})$ are embedded as open dense subsets of $O(3)$ and of a manifold double covered by $S^{2} \times S^{1}$, respectively. In both cases the frontier is a surface.

References

[1] V.I. Arnold and B.A. Khesin, Topological methods in hydrodynamics, Applied Math. Sciences 125, New York, Springer, 1998.
[2] W. Bertram, The geometry of Jordan and Lie structures, Lecture Notes in Math. 1754, Berlin, Springer (2000).
[3] Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Commun. Pure Appl. Math. 52 No.4, 411-452 (1999).
[4] Gol'dshejd, I.Ya.; Margulis, G.A., Lyapunov indices of a product of random matrices, Russ. Math. Surv. 44, No.5, 11-71 (1989)
[5] H. L. He, An analytic compactification of symplectic group, J. Diff. Geom. 51, 375-399 (1999).
[6] H. L. He, Compactification of classical groups, Comm. Anal. Geom. 10 No. 4, 709-740 (2002).
[7] Y.A. Neretin, Pseudo-Riemannian symmetric spaces: Uniform realizations and open embeddings into Grassmannians, J. Math. Sci., New York 107, No.5, 4248-4264 (2001).
[8] Y.A. Neretin, Spreading maps (polymorphims), symmetries of Poisson processes, and matching summation, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov (POMI) 292 (2002), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 7, 62-91, 178-179.
[9] Oshima, Toshio; Sekiguchi, Jiro
Eigenspaces of invariant differential operators on an affine symmetric space. Invent. Math. 57, 1-81 (1980).

Famaf - Ciem, Ciudad Universitaria, 5000 Córdoba, Argentina.
salvai@mate.uncor.edu

[^0]: *Partially supported by Antorchas, CIEM, CONICET, FONCyT and SECyT (UNC).

