A dynamical approach to compactify the three dimensional Lorentz group

Marcos Salvai∗

Abstract

The Lorentz group acts on the projectivized light cone in the three dimensional Lorentz space as the group G of M"obius transformations of the circle. We find the closure of G in the space of all measurable functions of the circle into itself, obtaining a compactification of it as an open dense subset of the three-sphere, with a dynamical meaning related to generalized flows.

Mathematics Subject Classification 2000: 53C22, 57S20, 58D15, 74A05.

Key words and phrases: compactification, Lorentz group, M"obius transformation, generalized flow.

The canonical action of the Lorentz group $O_o(1, 2)$ on the projectivized light cone in the three dimensional Lorentz space is equivalent to the action of the group G on the circle $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$, where G consists of the M"obius transformations of the extended plane preserving the circle. The group G is isomorphic to $PSU(1, 1)$ and $PSL(2, \mathbb{R})$. In this note we compactify G as an open dense subset of the three-sphere, with a dynamical motivation.

The group G consists of maps of the form uT_α, where $u \in S^1$ and

$$T_\alpha(z) = \frac{z + \alpha}{1 + \bar{\alpha}z}$$

for $\alpha \in \mathbb{C}$, $|\alpha| < 1$ and all $z \in S^1$. The map $S^1 \times \Delta \to G$, $(u, \alpha) \mapsto uT_\alpha$ is a diffeomorphism. Although we are interested in the action of G on the circle, we recall that if the unit disc $\Delta = \{ z \in \mathbb{C} \mid |z| < 1 \}$ carries the canonical Poincaré metric of constant negative curvature -1 and $\alpha \neq 0$, then T_α is the

∗Partially supported by Antorchas, CIEM, CONICET, FONCYT and SECYT (UNC).
transvection translating the geodesic with end points $\pm \alpha/|\alpha|$, sending 0 to α.

Dynamical motivation. If $t \in \mathbb{R}, |t| < 1$, then T_t fixes $1, -1 \in S^1$ and if $z \in S^1, z \neq -1$, then

$$\lim_{t \to -1^-} T_t(z) = 1.$$

One can imagine that all particles of the circle (except -1) moving according to T_t concentrate in the point 1 at $t = 1$. It is natural to think that a particle coming to the point 1 at $t = 1$ from the upper half of the circle, will continue its way into the lower part of the circle for $t > 1$ (notice that T_t does not make sense for $|t| \geq 1$) and similarly for a particle coming to the point 1 from the lower part of the circle. This can be rendered precise with the compactification of G described in Theorem 0.1 below (see Proposition 0.3).

Let $\mathcal{F} = \{f : S^1 \rightarrow S^1 \mid f \text{ is measurable}\} / \sim$, where $f \sim g$ if and only if f and g coincide except on a set of measure zero, equipped with the distance

$$D(f, g) = \int_{S^1} d(f(z), g(z)) \, ds(z),$$

being s is an arc length parameter and d the associated distance on S^1 (we think of each function as representing its equivalence class). Let S^3 be the three dimensional sphere realized as the Lie group of unit vectors in the quaternions $\mathbb{H} = \mathbb{C} + \mathbb{C}j$. We recall that if q is an imaginary quaternion with $|q| = 1$, then $\exp(tq) = \cos t + (\sin t)q$. For $v \in S^1$, let c_v denote the constant map in \mathcal{F} with value v.

Theorem 0.1 The frontier of G in \mathcal{F} consists of the constant functions. Moreover, if one considers on the closure \overline{G} of G the relative topology from \mathcal{F}, then the map $F : \overline{G} \rightarrow S^3$ defined by

$$F(uT_\alpha) = u \exp\left(\frac{\pi}{2} \alpha j\right), \quad F(c_v) = vj,$$

is a homeomorphism and $F|_G : G \rightarrow S^3$ determines a submanifold.

Remark. We recall that a Fermi coordinate system ϕ along a geodesic γ in a Riemannian manifold of dimension $n + 1$ is given by

$$\phi(t, t_1, \ldots, t_n) = \operatorname{Exp}_{\gamma(t)} \left(\sum_{i=1}^{n} t_i v_i(t) \right),$$

where Exp denotes the geodesic exponential map and $\{v_i\}$ is a parallel orthonormal frame along γ orthogonal to $\gamma'(t)$ at any t. Notice that since G
This sequence converges to zero as any \(u \) tends to \(0 \). Theorem, since \(\lim_{\alpha \to \infty} \exp(u (\alpha^2 \alpha j)) \), where \(u \in S^1 \subset S^3 \). The maps \(\bar{F} \) and \(F \) do not coincide on \(G \), since the mapping \(s \mapsto m_{e,i} \) is not a one-parameter subgroup of transvections translating that geodesic (their differentials do not realize the parallel transport along it).

Proof. Clearly \(G \) is a subset of \(F \). If \(u \in S^1 \), let \(m_u \) denote multiplication by \(u \). By abuse of notation we write \(T_\alpha m_u = T_\alpha u \). Notice that \(uT_\alpha = T_\alpha u \) for any \(u \in S^1 \), \(\alpha \in \Delta \). Let \(\alpha_n \) and \(u_n \) be sequences in \(\Delta \) and \(S^1 \), respectively. Suppose first that \(\alpha_n \to \alpha \in S^1 \) as \(n \to \infty \). We show that

\[
T_{\alpha_n} u_n \to c_\alpha \quad \text{in} \quad F \quad \text{as} \quad n \to \infty.
\]

Indeed, since \(ds \) is invariant by rotations, then \(D (T_{\alpha_n} u_n, c_\alpha) = D (T_\alpha, c_\alpha) \). This sequence converges to zero as \(n \to \infty \) by the Bounded Convergence Theorem, since \(\lim_{\alpha_n \to \infty} T_{\alpha_n} (z) = \alpha \) for any \(z \neq -\alpha \) (\(d \) and the euclidean distance are equivalent). In particular constant functions are in the frontier of \(G \). On the other hand, if \(u_n \to u \) and \(\alpha_n \to \alpha \in \Delta \), then \(T_{\alpha_n} u_n \to T_\alpha u \) pointwise, and hence in \(F \), again by the Bounded Convergence Theorem. Moreover, by the preceding, if \(T_{\alpha_n} u_n \) converges to \(f \) in \(F \), then \(f \in G \) or is constant, since by the compactness of \(\Delta \times S^1 \) there exists a subsequence of \((\alpha_n, u_n) \) converging in it. Then the frontier consist only of constant functions. Now, \(F \) is a bijection since a straightforward computation shows that \(F^{-1} : S^3 \to G \) is given by

\[
F^{-1} (v + w j) = \begin{cases}
 c_w & \text{if} \ v = 0, \\
 m_v & \text{if} \ w = 0 \\
 T_\alpha u & \text{if} \ v \neq 0 \neq w,
\end{cases}
\]

for \(v, w \in \mathbb{C} \), \(|v|^2 + |w|^2 = 1 \), where \(u = v/|v| \) and \(\alpha = \frac{2}{\pi} \arccos (|v|) \frac{w}{|w|} \).

Hence \(F^{-1} \) is smooth at \(v + w j \in S^3 \) with \(v \neq 0 \neq w \). Since \(F|_G \) is smooth and injective, to show that \(F|_G \) is an embedding it suffices to see that \(F^{-1} \) is smooth at \(v \in S^1 \subset S^3 \). This will follow from the Inverse Function Theorem if we check that

\[
dF_{m_v} : T_{m_v} G \to T_v S^3
\]

is an isomorphism. We can identify \(T_{m_v} G = T_{(v,0)} (S^1 \times \Delta) = T_v S^1 \oplus T_0 \Delta = \mathbb{R} iv \oplus \mathbb{C} \) and also \(T_v S^3 = \mathbb{R} iv \oplus \mathbb{C} j \), the orthogonal complement of \(v \) in \(\mathbb{H} \).
We compute
\[dF_v(xiv, z) = \left. \frac{d}{dt} \right|_0 F \left(ve^{txi}T_i z \right) = \left. \frac{d}{dt} \right|_0 ve^{txi} \exp \left(t \frac{\pi}{2} z j \right) = v \left(xi + \frac{\pi}{2} z j \right). \]

Hence, \(dF_v \) is an isomorphism.

In order to verify that \(F^{-1} \) is continuous at \(wj \) we consider the map \(F : G \to S^3, \) \(F = R_j \circ F \) (\(R_j \) denotes right multiplication by \(j \)), which, by the preceding, is a diffeomorphism onto its image \(S^3 - S^1 \). We have to show that \(F^{-1} \circ F \) is continuous at \(u \in S^1 \). Clearly, \(F(m_u) = uj \). If \(\alpha \neq 0 \), we compute \(F(uT_\alpha) = v + wj \), where \(v = -\frac{u\alpha}{|\alpha|} \sin \left(\frac{\pi}{2} |\alpha| \right) \) and \(w = u \cos \left(\frac{\pi}{2} |\alpha| \right) \). Since \(\cos \theta = \sin \left(\frac{\pi}{2} - \theta \right) \) for all \(\theta \), we have by (2) that
\[F^{-1} \left(F(uT_\alpha) \right) = T_u(1-|\alpha|) \left(-u\alpha/|\alpha| \right), \tag{3} \]
which by (1) converges to \(c_u = (F^{-1} \circ F)(m_u) \) as \(\alpha \to 0 \). Finally, since \(S^3 \) is compact and Hausdorff, \(F^{-1} \) is a homeomorphism. \(\diamond \)

Remark. If \(u_n = e^{2\pi x_n i} \) with \(x_n = 1/2, 1/4, 2/4, 3/4, 1/8, 2/8, 3/8, \ldots \), then \(T_{1-1/n}m_{u_n} \) converges to \(c_1 \) in \(F \) but it does not converge pointwise on a dense subset of \(S^1 \). This distinguishes our approach from that of Topological Dynamics.

Proposition 0.2 The canonical action of \(G \times G \) on \(G \), \((g, h).f = gfh^{-1} \), extends to a continuous action of \(G \times G \) on \(S^3 \) via \(F|_G : G \to S^3 \). If we call \(K = S^1 \subset G \), the restricted action of \(K \times K \) on \(S^3 \) is given by \(A(u, v, z_1 + z_2j) = u(\bar{v}z_1 + z_2j) \).

Proof. We define an action \(\tilde{A} \) of \(G \times G \) on \(\overline{G} \) by
\[\tilde{A}(g, h, f) = gfh^{-1}, \quad \tilde{A}(g, h, c_v) = c_{gv}, \]
for \(g, h, f \in G \), \(v \in S^1 \). Since \(F : \overline{G} \to S^3 \) is a homeomorphism, we have to show that \(\tilde{A} \) is continuous. Suppose that \(f_n \in G, v_n \in S^3 \) are sequences converging to \(c_v \in \overline{G}, \) and \(g_n, h_n \) are sequences in \(G \) converging to \(g, h \in G \), respectively. By arguments similar to those used in the proof of Theorem 0.1, \(g_nf_nh_n^{-1} \) and \(c_{g_nv_n} \) both converge to \(c_{gv} \) in \(F \).

Next we verify the second assertion. We have to show that the following diagram is commutative.
\[
\begin{array}{ccc}
K \times K \times \overline{G} & \xrightarrow{\tilde{A}} & \overline{G} \\
\downarrow (\text{id}_{K \times K}, F) & & \downarrow F \\
K \times K \times S^3 & \xrightarrow{A} & S^3
\end{array}
\]
For \(u, v, w \in S^1, \alpha \in \Delta \), we compute
\[
(F \circ \bar{A})(u, v, c_w) = F(c_{uw}) = uwj = A(u, v, wj) = A(u, v, F(c_w)).
\]

Besides, \((F \circ \bar{A})(u, v, wT_\alpha) = F(uwT_\alpha \bar{v}) = F(uw\bar{v}T_{wT_\alpha}) = A(u, v, F(wT_\alpha))\), since \(\exp\left(\frac{\pi}{2}\beta j\right) = \cos\left(\frac{\pi}{2}|\beta|\right) + \sin\left(\frac{\pi}{2}|\beta|\right)\frac{\beta}{|\beta|}j \) for any \(\beta \in \Delta \).

Next we make precise the comment at the beginning of the article concerning moving particles in the circle.

Proposition 0.3 If \(G \) is endowed with the differentiable structure and the Riemannian metric induced from \(S^3 \) via the homeomorphism \(F \), then the curve \(\gamma : \mathbb{R} \to G \) defined by
\[
\gamma(s) = \begin{cases}
(-1)^k T_{s-2k} & \text{if } |s - 2k| < 1, k \in \mathbb{Z} \\
c_{(-1)^\ell} & \text{if } s = 2\ell + 1, \ell \in \mathbb{Z}
\end{cases}
\]
is a complete geodesic in \(\overline{G} \). Moreover, if \(z \neq \pm 1 \), then the curve \(\gamma_z(s) := \gamma(s)(z) \) in \(S^1 \), describing the motion of the particle \(z \) under \(\gamma(s) \), is continuous with period 4 and runs \(n \) times around the circle in any interval of time of length \(4n \) (clockwise if \(\text{Re } z > 0 \) and counterclockwise if \(\text{Re } z < 0 \)).

Proof. A straightforward computation shows that \(F(\gamma(s)) = \exp\left(\frac{\pi}{2}s\beta j\right) \). Hence \(\gamma \) is a geodesic. The remaining facts are easily verified.

Remark. The situations of particles concentrating in a point or a point spreading instantaneously onto the whole space, is present in the literature in a different context, the study of volume preserving flows by geometric means, with the notions of polymorphisms [8] and generalized flows [3]. An overview of the subject can be found in [1].

Finally, we comment on the compactifications known to us of classical groups whose identity component is isomorphic to \(G \) or its double covering. The classical one is obtained as follows: Let \(SL(2, \mathbb{C}) = SU(2) AN \) be an Iwasawa decomposition. Since \(SU(1, 1) \) intersects \(AN \) only at the identity, its projection \(P \) to \(SU(2) \cong S^3 \) is an embedding, which is given explicitly by
\[
P\left(\begin{array}{cc} u & \bar{v} \\ v & \bar{u} \end{array} \right) = \frac{u + vj}{|u + vj|^2}, \quad (u, v \in \mathbb{C}, \ |u|^2 - |v|^2 = 1).
\]
The image of \(P \) is the interior of the solid torus \(\{ u + vj \in S^3 \mid |v| \leq |u| \} \). If one wants \(SU(1, 1) \) to be dense in its compactification, one can consider
for instance $p \circ P$ instead of P, where $p : S^3 \to S^3/\{1, j\}$ is the canonical projection. In this case, the frontier of the image of $SU(1, 1)$ is a torus.

On the other hand, recently, H. He, based on suggestions of D. Vogan, obtained a general method to compactify the classical simple Lie groups [5, 6] (see also [2, 7]). The groups $O(1, 2)$ and $Sl(2, \mathbb{R}) \cong Sp(2, \mathbb{R})$ are embedded as open dense subsets of $O(3)$ and of a manifold double covered by $S^2 \times S^1$, respectively. In both cases the frontier is a surface.

References

[9] Oshima, Toshio; Sekiguchi, Jiro

FaMAF - CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina.
salvai@mate.uncor.edu