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Abstract

By a generalization of the method developed by Gluck and Warner
to characterize the oriented great circle fibrations of the three-sphere,
we give, for any compact connected semisimple Lie group G, a general
procedure to obtain the continuous fibrations of G by Weyl-oriented
affine maximal tori, find conditions for smoothness and provide infinite
dimensional spaces of concrete examples.
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1 Introduction

Let G be a compact connected semisimple Lie group. A maximal torus in
G is a maximal abelian Lie subgroup of G. A subset S of G is an affine
maximal torus if there exist g, h ∈ G such that gSh−1 is a maximal torus of
G. Equivalently, it is a maximal connected totally geodesic flat submanifold
of G, provided that the group is endowed with a bi-invariant Riemannian
metric.

The problem we deal with in this article is, roughly, in which manners
(other than the obvious left- or right-invariant ones) G can be expressed as
a disjoint union of affine maximal tori. In the spirit of Gluck and Warner
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[2], who considered oriented great circle fibrations of the three-sphere, we
will study fibrations of G by affine maximal tori which are oriented in the
sense of Weyl (see below). That will make our first definitions look rather
complicated, but the statements of the results and their proofs will be simpler.
Throughout the paper, smooth means of class C∞.

Let G be a compact connected simple Lie group endowed with a bi-
invariant Riemannian metric. Ranjan proved in [6] that a smooth fibration
of G by affine maximal tori induces on the space F of fibers a Riemannian
structure (i.e., F has a Riemannian structure such that the natural projec-
tion G → F is a Riemannian submersion) if and only if the fibration is left-
or right-invariant. For G = S3, Baird and Wood [1] used techniques similar to
those in [2] to obtain a stronger result: only the left- or right-invariant fibra-
tions induce on the space of fibers a conformal structure, or, equivalently, in
their terminology, the great circle fibration of S3 associated with a conformal
morphism from S3 to a surface is a Hopf fibration. Perhaps this article can
provide some elements which help understand conformal morphisms defined
on a compact simple Lie group.

I would like to thank Antonio Di Scala and Carlos Olmos for helpful
suggestions.

2 W-oriented affine maximal torus fibrations

Let G be as in the introduction a compact connected semisimple Lie group.
A tangent vector to G is said to be regular if it is tangent to a unique affine
maximal torus. Let R denote the set of regular tangent vectors. An affine
Weyl chamber is a connected component of R ∩ TpS, where S is an affine
maximal torus and p ∈ S. Given an affine Weyl chamber C, there exists a
unique affine maximal torus S such that C is contained in TS. We denote
such a torus by τ (C). Let C denote the set of all affine Weyl chambers of G.

Fix a maximal torus T and a Weyl chamber C0 ⊂ TeT. G×G acts transi-
tively on C on the left as follows: (g, h) C = dLgdRh−1C, where Lk, Rk denote
left and right multiplication by k, respectively. Since the isotropy subgroup
at C0 is ∆ (T ) = {(u, u) | u ∈ T} , C may be identified with (G×G) /∆ (T )
and there is a natural bundle structure π : C → G defined by π (g, h) ∆ (T ) =
gh−1 (in particular, C ⊂ Tπ(C)G).

A Weyl-oriented (briefly, a W-oriented) affine maximal torus is a pair
(S, ρ), where S is an affine maximal torus of G and ρ : S → C is a continuous
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function such that ρ (k) ⊂ TkS for all k ∈ S. It can be shown that there exist
g, h ∈ G such that S = gTh−1 and ρ (guh−1) = (gu, h) C0 for all u ∈ T.

Recall that a fibration of S3 by oriented great circles is given by a unit
vector field on S3 all of whose integral curves are geodesics. Now, a continuous
fibration of G by W-oriented affine maximal tori is given by a continuous
section σ : G → C such that the (continuous) distribution p 7→ Tpτ (σ (p))
is integrable and τ (σ (p)) is a leaf of the distribution (hence the maximal
connected leaf) through p for all p ∈ G. Notice that if S is a leaf, then [σ|S] is a
W-orientation for S. Given such a foliation, the set F of leaves (which we may
suppose to be equipped with the induced W-orientations) with the quotient
topology is a topological manifold and the natural projection G → F is a
continuous fibration. If σ is smooth, then F admits a differentiable structure
such that the natural projection G → F is a smooth fibration (see e.g. [4,
Corollary 4 in p 21], the regularity condition is satisfied since given two fibers,
there exists an isometry of G taking one to the other, provided that G carries
a bi-invariant metric).

Let T denote the set of all W-oriented affine maximal tori of G. The
product G×G acts transitively on T as follows:

(g, h) (S, ρ) =
(
gSh−1, (g, h) ρ (g, h)−1)

(G × G acts transitively on G by (g, h) k = gkh−1). Let us define the W-
orientation ρ0 : T → C by ρ0 (u) = dLuC0 (= dRuC0). Since the isotropy
subgroup at (T, ρ0) is T ×T , then T may be identified in a natural way with
(G×G) / (T × T ) ∼= (G/T ) × (G/T ) . We consider on T the differentiable
structure induced by this identification.

By convention, the intersection of two W-oriented affine maximal tori is
the intersection of the underlying tori. A subset of a manifold is a topological
submanifold if it is a topological manifold and the inclusion is continuous.

The next Proposition presents a general method to obtain the fibrations
of G by W-oriented affine maximal tori. Their smoothness is discussed in
Proposition 2.

Proposition 1 Let F be a compact topological submanifold included in T
with dimension half the dimension of T , such that S ∩ S ′ 6= ∅ for S, S ′ ∈ F
only if S = S ′ (it is implicit that their W-orientations also coincide). Then
there exists a unique continuous fibration of G by W-oriented affine maximal
tori such that F is its space of W-oriented fibers.
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Proposition 2 Let σ : G → C be a continuous section inducing a (continu-
ous) fibration P : G → F of G by W-oriented affine maximal tori. Then the
inclusion i : F → T is continuous and the following assertions are true.

(a) If σ is smooth (in particular, F admits a differentiable structure such
that P is a smooth fibration), then i : F → T determines a submanifold.

(b) If i : F → T determines a smooth submanifold, then σ (G) determines
a smooth submanifold of C.
Remark. A continuous fibration P : G → F of G by W-oriented affine
maximal tori is not necessarily smooth, even if the inclusion i : F → T
determines a smooth submanifold, as it is shown in Theorem 4.

3 Examples

Consider on G/T any fixed G-invariant Riemannian metric. Given a smooth
function f : M → M, where M is a compact Riemannian manifold, let us
denote |df | = sup {‖df (X)‖ | X ∈ TM with ‖X‖ = 1}.

The first part of the next theorem provides a sufficient condition for a
subset of T to be the space of W-oriented fibers of some continuous fibration
of G by W-oriented affine maximal tori. For G = S3, this condition is also
necessary (see [2]). In [7] we study the space of affine maximal tori intersecting
a fixed one, with the hope that it could help characterize those fibrations.
More concrete examples are provided in Theorem 4 and Proposition 6.

Theorem 3 For each strictly distance decreasing function f : G/T → G/T ,
there exists a unique continuous fibration of G by W-oriented affine maximal
tori, such that graph (f) ⊂ G/T × G/T ∼= T is the space of the W-oriented
fibers. Moreover, the following assertions are true.

(a) If f is smooth and |df | < 1, then the fibration is smooth.

(b) A partial converse of (a) holds : If the fibration is smooth, then f is
smooth.

Remarks.

(a) f = constant = h0T corresponds to the section σ (g) = dLg Ad (h0) C0,
which produces the left-invariant fibration with fibers gTh−1

0 , g ∈ G.

(b) Theorem 3 also holds, with a similar proof, if one substitutes the graph
of f with its reflection with respect to the diagonal, i.e. {(f (y) , y) | y ∈ G/T}.
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In this case, f = constant = g0T produces the right-invariant fibration with
fibers g0Th−1, h ∈ G.

(c) It is an open problem whether a compact connected simple Lie group
G 6= S3 admits a fibration such that the set of W-oriented fibers as a subset
of T is not the graph of a function from one factor of G/T × G/T to the
other. If G is not simple, this is sometimes the case: take for example the
group G1 × G2 with the fibration whose fibers are (g, e) (T1 × T2) (e, h−1) ,
where Gj is a compact connected simple Lie group and Tj is a maximal torus
of Gj (j = 1, 2).

(d) Gluck and Warner proved in [2] that the converse of Theorem 3 (a) is
true for G = S3.

(e) Let h ∈ G, cT ∈ NG (T ) /T , the Weyl group of G, with c /∈ T . The
graphs of the functions f1, f2 : G/T → G/T defined by f1 (gT ) = hgT ,
f2 (gT ) = gcT do not yield fibrations of G as in Proposition 1, since they
always contain two distinct W-oriented affine maximal tori with nonempty
intersection. Indeed, (T, hT ) ∩ (kT, hkT ) = Th−1 ∩ kTk−1h−1 contains the
identity for all k ∈ G and (T, cT ) ∩ (cT, c2T ) = Tc−1 ∩ cTc−2 = Tc−1.

Suppose that the Lie algebra g of G is equipped with an Ad (G)-invariant
inner product. Let t be the Lie algebra of T and let m be the orthogonal
complement of t in g, which can be identified in a natural way, as a vector
space, with To (G/T ) (here o = eT ). Let E be a regular element of t. It is
well-known that the function ι : G/T → g defined by ι (gT ) = Ad (g) E
determines a submanifold. Consider on G/T the induced metric, which is
G-invariant, and let d denote the associated distance. Let B be a normal
strongly convex ball of radius δ < 1 around o in G/T .

The next theorem provides, for any G, concrete infinite dimensional spaces
of examples of smooth and continuous nonsmooth fibrations of G as in The-
orem 3.

Suppose aditionally that [X, E] = Y for some unit X,Y ∈ m (existence
of such E, X, Y follows from standard arguments using the root system asso-
ciated with g, see e.g. [3]). Let γ be the geodesic in G/T with γ (0) = o and
initial velocity X. Notice that γ has unit speed, since ‖γ̇ (0)‖ = ‖dι (X)‖ =
‖[X,E]‖ = ‖Y ‖ = 1 and that γ|(−δ,δ) is distance preserving, by the choice
of δ.
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Theorem 4 For each smooth strictly distance decreasing function λ : R →
(−δ, δ) with λ (0) = 0, the function f : G/T → G/T defined by

f (gT ) = γ (λ (〈Ad (g) E, Y 〉))

is smooth and strictly distance decreasing.
Moreover, if |λ′| < 1 (respectively, λ′ (0) = 1), then |df | < 1 (respectively,

|df | = 1) and the continuous fibration of G by W-oriented affine maximal
tori associated with f as in Theorem 3 is smooth (respectively, not smooth).

Corollary 5 For any G, the hypothesis |df | < 1 in Theorem 3 (a) cannot be
dropped.

Next, we give a further concrete example of a strictly distance decreasing
transformation of G/T .

It is well-known that ι (G/T ) determines an isoparametric submanifold of
g and TE ι (G/T ) ∼= m decomposes as a direct sum of the common eigenspaces
of the shape operators Aξ, for ξ ∈ (TEι (G/T ))⊥ ∼= t [5]. Let a be one such
eigenspace and let ExpE : TE ι (G/T ) → ι (G/T ) denote the geodesic expo-
nential.

Proposition 6 If pra denotes the orthogonal projection of g onto a, then
the function

f : ι (G/T ) → ι (G/T ) , f = ExpE ◦ δ pra

is strictly distance decreasing.

4 Proofs of the statements

By abuse of notation, we will sometimes omit the W-orientation of a W-
oriented affine maximal torus, if it is clear from the context; whenever we
write S = gTh−1, we assume, unless otherwise stated, that S is equipped
with the W-orientation (g, h) ρ0 (g, h)−1.

Proof of Proposition 1. Let {Ui} , {Vi} be finite open coverings of F such
that U i (the closure of Ui, which is compact) is contained in Vi and there
exist continuous local sections (gi, hi) : Vi → G×G of the bundle defined as
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the pullback of the bundle G×G → T ∼= (G×G) / (T × T ) by the inclusion
F ↪→ T . Hence,

S = gi (S) T hi (S)−1 (1)

for all S ∈ Vi. Define Fi : Vi×T → G by Fi (S, u) = gi (S) uhi (S)−1. First note
that Fi is injective. Indeed, if Fi (S, u) = Fi (S

′, u′) , then by (1) S ∩ S ′ 6= ∅
and hence S = S ′ by hypothesis. Thus, gi (S) = gi (S

′) and hi (S) = hi (S
′).

This implies that u = u′.
Since Fi is continuous and Vi × T and G have the same dimension, then

Fi is an open mapping onto an open subset of G. Now, we have by (1) that

⋃
S∈F

S =
⋃
i

Fi (Vi × T ) =
⋃
i

Fi

(
U i × T

)

is an open and compact subset of G, hence it coincides with G.
Next, we define for each i the function σi : Image (Fi) → C by

σi (Fi (S, u)) = (gi (S) u, hi (S)) C0.

Now, the same arguments we have used to show that Fi is injective yield that
this defines in fact a continuous section σ : G → C. Finally, given k ∈ G,
then k = Fi (S, u) for some i, S ∈ F , u ∈ T . One easily checks that k ∈ S,
spanσ (k) = TkS and the W-orientation of S coincides with σ|S. ¦

The following elementary Lemma will be used repeatedly.

Lemma 7 Let Π : Q → B be a smooth fiber bundle.

(a) If F determines a smooth submanifold included in B, then Π−1F
determines a smooth submanifold of Q.

(b) If Σ : B → Q is a continuous section such that Σ (B) determines a
smooth submanifold of Q, then Σ is smooth if and only if for all q ∈ Σ (B)
one has

TqΣ (B) ∩Ker (dΠq) = {0} . (2)

Proof. (a) Let ι : F → B be the inclusion and let

ι∗Q = {(x, q) ∈ F ×Q | ι (x) = Π (q)}
be the pullback of Q by ι, with the standard differentiable structure. Then
the map ι∗Q → Q, (x, q) 7→ q determines a submanifold of Q with image
Π−1 (F).
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(b) Let us denote P = Π|Σ(B) : Σ (B) → B, which is a smooth bijection.
If (2) holds for q = Σ (x), then dPΣ(x) : TΣ(x)Σ (B) → TxB is a linear iso-
morphism. By the Inverse Function Theorem, Σ is smooth. The converse is
obvious. ¦

Let us define τ̃ : C → T by τ̃ (C) = (τ (C) , ρ), where ρ : τ (C) → C
is the unique W-orientation of τ (G) such that ρ (π (C)) = C. Under the
identifications given above of C and T with homogeneous spaces, one has
τ̃ (g, h) ∆ (T ) = (gT, hT ) for all g, h ∈ G.

Proof of Proposition 2. Let k ∈ G be arbitrary and let U ⊂ G be a smooth
submanifold containing k which is transverse to the fibers and intersects
each fiber at most once. Then, P (U) is an open set in F and s := (P |U)−1 :
P (U) → G is a continuous local section. We have i|P (U) = i◦P ◦s = τ̃ ◦σ◦s.
Hence, i is continuous.

Suppose now that σ is smooth. Similar arguments yield that i is smooth.
Since k is arbitrary, to prove that i determines a submanifold, it suffices to
show that diP (k) is injective. Let 0 6= X = dPk (Y ) ∈ TP (k)F , where Y ∈ TkU ,
and let c : I → U be a smooth curve defined on the interval I, with c (0) = k
and c′ (0) = Y . There exists a smooth function (g, h) : I → G×G such that
σ (c (t)) = (g (t) , h (t)) ∆ (T ). In particular, (i ◦ P ◦ c) (t) = (g (t) T, h (t) T )
and c (t) = π (σ (c (t))) = g (t) h (t)−1. We differentiate these expressions at
t = 0 and obtain

di (X) = (i ◦ P ◦ c)′ (0) = (dp (g′ (0)) , dp (h′ (0)))

(3)

and Y = dRh−1
0

g′ (0)− dLg0dLh−1
0

dRh−1
0

h′ (0) ,

where p : G → G/T denotes the canonical projection and g0 = g (0), h0 =
h (0). The first equation implies that if di (X) = (0, 0), then there exist
Z, Z ′ ∈ t such that g′ (0) = dLg0Z and h′ (0) = dLh0Z

′. After substitution in
the second equation in (3), we have

Y = dLg0dRh−1
0

(Z − Z ′) ∈ Tkτσ (k) .

This is a contradiction, since τσ (k) is the fiber through k and Y 6= 0 is
tangent to a submanifold transverse to the fibers. Therefore, di is injective
and i determines a submanifold. This proves (a).
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Next, we prove (b). By Lemma 7 (a), with τ̃ : C → T instead of Π :
Q → B, τ̃−1 (F) is a smooth submanifold of C. It suffices to show that
σ (G) = τ̃−1 (F). Indeed, clearly, τ̃σ (G) ⊂ F and if τ̃C ∈ F , then C =
σ (π (C)) ∈ σ (G). ¦

For S ∈ T , let I (S) denote the set of all tori in T whose intersection
with S is not empty. If (M, d) is a metric space and (p, q) ∈ M × M, let
D (p, q) = {(p′, q′) ∈ M ×M | d (p, p′) = d (q, q′)} . If one identifies as above
T with G/T ×G/T, then D (S) ⊂ G/T ×G/T for S ∈ T .

Lemma 8 I (S) ⊂ D (S) for all S ∈ T .

Proof. Suppose that S = (gT, hT ) . First we show that S ′ ∈ I (S) if and
only if S ′ = (gukT, hkT ) for some u ∈ T, k ∈ G. Indeed, if S ′ has this form,

then guh−1 ∈ S∩S ′. Conversely, if S ′ =
(
g̃T, h̃T

)
and S∩S ′ 6= ∅, then there

exist u, v ∈ T such that guh−1 = g̃vh̃−1. Calling k = h−1h̃, one has g̃v = guk
and h̃ = hk, as desired.

Now, if S ′ = (gukT, hkT ) ∈ I (S) as above, we compute

d (gukT, gT ) = d (ukT, T ) = d (kT, T ) = d (hkT, hT ) ,

since the metric on G/T is G-invariant. Therefore, S ′ ∈ D (S) . ¦

Remark. We prove in [7] that I (S) = D (S) for all S ∈ T if and only if
G = S3.

Proof of Theorem 3. Let f : G/T → G/T be a strictly distance decreasing
function. We have to check that F = graph f satisfies the hypotheses of
Proposition 1. Clearly, it is a compact topological submanifold of G/T×G/T
with the required dimension. Now, suppose that S, S ′ ∈ F (say, S = (x, f (x))
and S ′ = (y, f (y))) and S ∩ S ′ 6= ∅, or equivalently, that S ′ ∈ I (S) . Since
I (S) ⊂ D (S) by Lemma 8, we have that d (y, x) = d (f (y) , f (x)) and this
implies that S = S ′ (f is strictly distance decreasing).

(a) Suppose additionally that f is smooth and |df | < 1 (in particular,
graph f is a smooth submanifold of T ). Let σ : G → C be the continuous
fibration of G associated with f , as above. By Proposition 2 (b), S := σ (G)
determines a smooth submanifold of C. We must prove that σ is smooth. By
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Lemma 7 (b), with π : C → G instead of Π : Q → B and Σ = σ, it suffices to
show that

TCS ∩Ker (dπC) = {0} (4)

for all C ∈ S. If we identify as above C ∼= (G×G) /∆ (T ) and C ∼=
(g, h) ∆ (T ), then

TCC = dL̃(g,h)

(
m⊕m⊕∆− (t)

)
,

where L̃k denotes left multiplication by k in the quotient space and ∆− (t) =
{(Z,−Z) | Z ∈ t}. Now, we verify that

Ker (dπC) =

{(
dL̃(g,h)

)
∆(T )

(Y, Y ) | Y ∈ m

}
. (5)

Indeed, given Y ∈ m, we compute

dπ dL̃(g,h) (Y, Y ) =
d

dt

∣∣∣∣
t=0

π (g, h) (exp tY, exp tY ) ∆ (T ) =
d

dt

∣∣∣∣
t=0

gh−1 = 0.

Since π : C → G is a submersion and dim C − dimG = dim m, (5) follows.
Next we compute for Y ∈ m,

dτ̃ dL̃(g,h)∆(T ) (Y, Y ) =
d

dt

∣∣∣∣
t=0

τ̃ (g, h) exp t (Y, Y ) ∆ (T )

=
d

dt

∣∣∣∣
t=0

(g exp (tY ) T, h exp (tY ) T )

=
(
dL̃gY, dL̃hY

)
∈ TgT (G/T )× ThT (G/T ) .

On the other hand, if dL̃(g,h)∆(T ) (Y, Y ) ∈ TCS, we have

∥∥∥dL̃gY
∥∥∥ =

∥∥∥dL̃hY
∥∥∥ =

∥∥∥dfgT

(
dL̃gY

)∥∥∥ ,

since the image of τ̃ ◦σ is graph (f). Therefore, (4) follows from (5) if |df | < 1.

(b) Suppose that the section σ : G → C associated with f is smooth and
let P : G → graph (f) be the corresponding smooth fibration. By Proposi-
tion 2 (a), graph (f) determines a smooth submanifold of T . Now, we apply
Lemma 7 (b), with Π the projection pr1 onto the first factor of (G/T )×(G/T )
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and Σ (x) = (x, f (x)), to show that Σ (and hence f) is smooth. We must
check that

T(x,f(x)) graph (f) ∩Ker (dpr1)(x,f(x)) = {0} (6)

for all x ∈ G/T . Take an arbitrary element (0, Z) ∈Ker (dpr1)(x,f(x)), where
Z ∈ Tf(x) (G/T ), and suppose that (0, Z) ∈ T(x,f(x)) graph (f). Let γ (t) =
(a (t) , f (a (t))) be a smooth curve in graph (f) with γ′ (0) = (0, Z). We
compute

‖Z‖ =
∥∥(f ◦ a)′ (0)

∥∥ = lim
t→0+

d (f (a (t)) , f (a (0)))

t
≤

≤ lim
t→0+

d (a (t) , a (0))

t
= ‖a′ (0)‖ = 0

Hence Z = 0 and thus (6) holds. ¦

Proof of Theorem 4. The function f is smooth and strictly distance de-
creasing, since f is clearly a composition of smooth distance decreasing func-
tions and one of them, λ, is strictly distance decreasing. Let Z ∈ m with
‖dι (Z)‖ = ‖[Z,E]‖ = 1, let g ∈ G and denote a (g) = 〈Ad (g) E, Y 〉 . We
compute

dfgT

(
dL̃gZ

)
=

d

dt

∣∣∣∣
t=0

f (g exp (tZ) T ) (7)

=
d

dt

∣∣∣∣
t=0

γ (λ (〈Ad (g exp tZ) E, Y 〉))
= λ′ (a (g)) 〈Ad (g) [Z, E] , Y 〉 (γ′ ◦ λ ◦ a) (g) .

If |λ′| < 1, then |df | < 1, since Ad (g) is orthogonal and γ is unit speed.
Hence, the fibration is smooth by Theorem 3 (a).

Suppose now that λ′ (0) = 1. Setting in (7) g = e and Z = X (= γ′ (0) ∈
m), one obtains

dfo (X) = λ′ (0) 〈[X,E] , Y 〉X = X. (8)

Hence |df | ≥ 1 and thus |df | = 1, since f is distance decreasing. Let σ :
G → C be the continuous section associated with f as in Theorem 3. By
Proposition 2 (b), σ (G) determines a smooth submanifold of T . Identifying
as above C ∼= (G×G) /∆ (T ), one has

dτ̃∆(T ) (X,X) = (X,X) = (X, dfoX) ∈ T(o,o) (graph f) .
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Hence, (X,X) ∈ T∆(T ) σ (G), since σ (G) = τ̃−1 (graph f). Moreover, by (5),

(X, X) ∈ Ker
(

dπ|∆(T )

)
. Therefore, σ is not smooth by Lemma 7 (b), with

π : C → T instead of Π : Q → B and Σ = σ. ¦

Proof of Proposition 6. It follows from Toponogov’s Theorem and the fact
that ExpE (mα) is a totally geodesic round sphere (see [5]). ¦
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