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Affine Maximal Tori Intersecting a Fixed One
Marcos Salvai

ABSTRACT. H. Gluck and F. Warner characterized the oriented great circle
fibrations of the three-sphere. In a previous paper we generalized partially
their result, obtaining, for any compact connected semisimple Lie group G,
infinite dimensional spaces of concrete examples of fibrations of G by Weyl-
oriented affine maximal tori. In this note, we study the space of such tori
intersecting a fixed one, with the hope that it could help characterize those
fibrations.

Let G be a compact connected semisimple Lie group. A maximal torus in G is
a maximal abelian Lie subgroup of G. A subset S of G is an affine maximal torus if
there exist g, h € G such that gSh~! is a maximal torus of G. Equivalently, it is a
maximal connected totally geodesic flat submanifold of G, provided that the group
is endowed with a bi-invariant Riemannian metric.

H. Gluck and F. Warner [1] characterized the oriented great circle fibrations
of the three-sphere. In [3] we generalized partially their result, obtaining, for any
compact connected semisimple Lie group G, infinite dimensional spaces of concrete
examples of fibrations of G by Weyl-oriented affine maximal tori (in our setting,
the convenient generalization of an oriented great circle is a Weyl-oriented affine
maximal torus, see below).

A tangent vector to G is said to be regular if it is tangent to a unique affine
maximal torus. Let R denote the set of regular tangent vectors. An affine Weyl
chamber is a connected component of R N7T,,S, where S is an affine maximal torus
and p € S. Given an affine Weyl chamber C, there exists a unique affine maximal
torus S such that C' is contained in T'S.

Fix a maximal torus 7. A Weyl-oriented (briefly, W-oriented) affine maximal
torus is a pair (¢7,hT) € (G/T) x (G/T). In [3], it was actually defined indepen-
dently of the choice of T, as a pair (5, p), where S is an affine maximal torus of G
and p is a continuous section of affine Weyl chambers tangent to S. For some fixed
Weyl chamber Cy C T,T, (gT,hT) corresponds to the torus S = gT'"h~! equipped
with the affine Weyl chamber section p (guh_l) =dLgdRp—1C, (ueT).

Let T = (G/T) x (G/T) denote the set of all W-oriented affine maximal tori of
G. By convention, the intersection of two W-oriented tori in 7 is the intersection
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of the underlying tori. In [3], we found sufficient conditions for a subset F of 7
to be the space of fibers of a fibration of G by W-oriented affine maximal tori.
Obviously, two different tori in F must have empty intersection. In this note, we
study the space of such tori intersecting a fixed one, with the hope that it could
help characterize those fibrations.

Let T, =(T,T) e T and Z={S €T | SNT, # 0}. Let g,t be the Lie algebras
of G, T, respectively, and let m be the orthogonal complement of t in g (with respect
to the opposite of the Killing form of g), which may be identified in a natural way
with Tr (G/T). Let J = {(g,ug) e GxGlgeGueT}and P: GxG — T,
P (g,h) = (¢T,hT) be the canonical projection.

THEOREM 1. (a) J is a submanifold of G x G which projects to T under P.
(b) T, is a non-manifold point of T and
Tr, T ={(X,Ad (u)X) | X em,uecT},
which is a full cone in m x m.
(c) The set {(¢gT,ugT) € T | tN Ad (g)t ={0}} is a submanifold of T which is
open and dense in T.

PROOF. a) J is a submanifold of G x G since the function F: T x G — G x G
defined by F'(u,g) = (g,ug) is a bijection onto J and
dF(y,g) (Z,X)=(X,dL,X +dR,Z) =0
only if X = Z =0 (L, Ry, denote left and right multiplication by k, respectively).
Moreover, if T N gTh™! # ), there exist u,v € T such that u=' = gvh™!, hence
hT = ugT. Conversely, u=! € gT (ug)fl. Therefore, Z = P (J).
b) Tr, T is the set of velocities of smooth curves v in Z with 7 (0) = T,. Clearly,
t — (exp (tX)T,uexp (tX)T) is a curve in Z with velocity (X, Ad (u) X), for all
X € m, u e T. Conversely, let ¢ be a curve in G/T with ¢(0) = T and u a curve
in T. Taking the horizontal lift of ¢ through e, we may write ¢ (¢) = g (¢t) T with
g(0) =e and ¢(0) = X € m. Hence,
d .
2| WOTu®g®T) = (X, dr(dLuo)X +dRy)(0)))
0
= (X,Ad (u(0)) X).

Next, we show that T, 7 is full in T, 7 = m x m. Suppose that there exist X,,Y, €
m such that ((X,Ad (u) X),(X,,Y,)) =0 for all w € T, X € m, in particular for
X = X,. Wehave Y, = —X,, since the diagonal A (m) is included in T, 7. Hence,
(Ad (u) X,, X,) = | X,|? for all w € T. Thus, Ad (u) X, = X, for all u € T, since
Ad (u) is an orthogonal operator of m. This implies that X, = 0. Finally, observe
that (X,0) ¢ T, 7 for all 0 # X € m, hence T, 7 is not a vector subspace of T, 7.
c) Clearly, KerdPy ) = {(dLyZ1,dLyyZ>) | Z1,Z> € t} and T4 4T is the
image of dF{, 4), which consists of the elements
(dLyV,dLydLyV + dRydL,Z) = (dLyV,dLyg (V + Ad (g_l) 7)),
with V € g, Z € t. Hence,

(T(gmg)j) N (Ker dP(g,ug)) =

={(dLyZ,dLuy (Z+ Z") | Z € t,Z e tNAd (g7') t},
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whose dimension is

(1) dimt+dim (t N Ad (g)¢t).
Now, G, = {g € G| tNAd (g) t = {0}} is an open dense subset of G. Indeed, let
® = {ai,...,a;} be a basis of the root system associated with g, t [2] and denote

t/ = N;x;Ker o;. The complement of G, is the union of

G'={geG|Ad(g)tntDt},

j =1,...,k. Each G’ is contained in the union of the stabilizers of N;c Ker a;,
with J C ® — {a;}. Therefore, J, = F (T x G,) is open and dense in J and (c)
follows, since by (1), dP has maximal rank on 7,. O

Consider on G/T any fixed G-invariant metric d and let
D ={(z,y) € (G/T) x (G/T) | d(2,T) = d(y, T)}.

We showed (and used) in [3] that Z C D. In contrast with [1], where it is proved
that equality holds for G = S2, we have:

PROPOSITION 2. Z = D if and only if G = S3.

PROOF. For G = S3, Gluck and Warner proved in [1] that Z = D. Let U
be a normal ball in G/T centered at T" and denote V = U x U — {T,}, which is
an open subset of (G/T') x (G/T) = T. Next, we show by means of the Implicit
Function Theorem that DNV is a hypersurface of 7. It is a level set of the function
F :V — R defined by F (z,y) = d(z,T) — d(y,T), which is smooth and satisfies
dF(z) # 0 for all (z,y) € V. Indeed, we may suppose without loss of generality
that @ # T. If 7 is the geodesic in U satisfying v (0) = T and v (1) = z, we have
that

Wy (/1.0 = G| d6@).7)-dT)
d ’ _ ’
= Gt o= o) 2o

On the other hand, T acts on G/T on the left by isometries and T is a fixed point
of this action. We know by Theorem 1 (a) that 7 = {(x,uz) | x € G/T,u € T}. Let
H: (G/T)xT — (G/T) x (G/T) be defined by H (x,u) = (x,ux). H is smooth
and its image is Z, which is included in D, since d(z,T) = d(ux,uT) = d(uz,T)
by the G-invariance of d. Now, if G is not S3, straightforward arguments using
the root system associated with g and t yield that dim (G/T) x T = dim G <
2dim (G/T) — 1 = dimD N V. Therefore, in this case, Z is strictly contained in
D. O
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