Affine Maximal Tori Intersecting a Fixed One

Marcos Salvai

ABSTRACT. H. Gluck and F. Warner characterized the oriented great circle fibrations of the three-sphere. In a previous paper we generalized partially their result, obtaining, for any compact connected semisimple Lie group G, infinite dimensional spaces of concrete examples of fibrations of G by Weyl-oriented affine maximal tori. In this note, we study the space of such tori intersecting a fixed one, with the hope that it could help characterize those fibrations.

Let G be a compact connected semisimple Lie group. A maximal torus in G is a maximal abelian Lie subgroup of G. A subset S of G is an affine maximal torus if there exist $g, h \in G$ such that gSh^{-1} is a maximal torus of G. Equivalently, it is a maximal connected totally geodesic flat submanifold of G, provided that the group is endowed with a bi-invariant Riemannian metric.

H. Gluck and F. Warner [1] characterized the oriented great circle fibrations of the three-sphere. In [3] we generalized partially their result, obtaining, for any compact connected semisimple Lie group G, infinite dimensional spaces of concrete examples of fibrations of G by Weyl-oriented affine maximal tori (in our setting, the convenient generalization of an oriented great circle is a Weyl-oriented affine maximal torus, see below).

A tangent vector to G is said to be regular if it is tangent to a unique affine maximal torus. Let \mathcal{R} denote the set of regular tangent vectors. An affine Weyl chamber is a connected component of $\mathcal{R} \cap T_p S$, where S is an affine maximal torus and $p \in S$. Given an affine Weyl chamber C, there exists a unique affine maximal torus S such that C is contained in TS.

Fix a maximal torus T. A Weyl-oriented (briefly, W-oriented) affine maximal torus is a pair $(gT, hT) \in (G/T) \times (G/T)$. In [3], it was actually defined independently of the choice of T, as a pair (S, ρ) , where S is an affine maximal torus of Gand ρ is a continuous section of affine Weyl chambers tangent to S. For some fixed Weyl chamber $C_0 \subset T_eT$, (gT, hT) corresponds to the torus $S = gTh^{-1}$ equipped with the affine Weyl chamber section $\rho(guh^{-1}) = dL_{qu}dR_{h^{-1}}C_o$ $(u \in T)$.

Let $\mathcal{T} \cong (G/T) \times (G/T)$ denote the set of all W-oriented affine maximal tori of G. By convention, the intersection of two W-oriented tori in \mathcal{T} is the intersection

 $\bigcirc 0000$ (copyright holder)

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E15.

 $Key\ words\ and\ phrases.$ compact Lie group, affine maximal torus .

Partially supported by CONICOR, CONICET, CIEM (CONICET) and SECYT (UNC).

MARCOS SALVAI

of the underlying tori. In [3], we found sufficient conditions for a subset \mathcal{F} of \mathcal{T} to be the space of fibers of a fibration of G by W-oriented affine maximal tori. Obviously, two different tori in \mathcal{F} must have empty intersection. In this note, we study the space of such tori intersecting a fixed one, with the hope that it could help characterize those fibrations.

Let $T_o = (T, T) \in \mathcal{T}$ and $\mathcal{I} = \{S \in \mathcal{T} \mid S \cap T_o \neq \emptyset\}$. Let $\mathfrak{g}, \mathfrak{t}$ be the Lie algebras of G, T, respectively, and let \mathfrak{m} be the orthogonal complement of \mathfrak{t} in \mathfrak{g} (with respect to the opposite of the Killing form of \mathfrak{g}), which may be identified in a natural way with $T_T(G/T)$. Let $\mathcal{J} = \{(g, ug) \in G \times G \mid g \in G, u \in T\}$ and $P : G \times G \to \mathcal{T}$, P(g, h) = (gT, hT) be the canonical projection.

THEOREM 1. (a) \mathcal{J} is a submanifold of $G \times G$ which projects to \mathcal{I} under P. (b) T_o is a non-manifold point of \mathcal{I} and

$$T_{T_o}\mathcal{I} = \{ (X, \mathrm{Ad} (u) X) \mid X \in \mathfrak{m}, u \in T \},\$$

which is a full cone in $\mathfrak{m} \times \mathfrak{m}$.

(c) The set $\{(gT, ugT) \in \mathcal{T} \mid \mathfrak{t} \cap \operatorname{Ad}(g)\mathfrak{t} = \{0\}\}\$ is a submanifold of \mathcal{T} which is open and dense in \mathcal{I} .

PROOF. a) \mathcal{J} is a submanifold of $G \times G$ since the function $F: T \times G \to G \times G$ defined by F(u,g) = (g,ug) is a bijection onto \mathcal{J} and

$$dF_{(u,q)}(Z,X) = (X, dL_uX + dR_qZ) = 0$$

only if X = Z = 0 (L_k, R_k denote left and right multiplication by k, respectively). Moreover, if $T \cap gTh^{-1} \neq \emptyset$, there exist $u, v \in T$ such that $u^{-1} = gvh^{-1}$, hence hT = ugT. Conversely, $u^{-1} \in gT(ug)^{-1}$. Therefore, $\mathcal{I} = P(\mathcal{J})$.

b) $T_{T_o}\mathcal{I}$ is the set of velocities of smooth curves γ in \mathcal{I} with $\gamma(0) = T_o$. Clearly, $t \mapsto (\exp(tX)T, u \exp(tX)T)$ is a curve in \mathcal{I} with velocity $(X, \operatorname{Ad}(u)X)$, for all $X \in \mathfrak{m}, u \in T$. Conversely, let c be a curve in G/T with c(0) = T and u a curve in T. Taking the horizontal lift of c through e, we may write c(t) = g(t)T with g(0) = e and $\dot{g}(0) = X \in \mathfrak{m}$. Hence,

$$\frac{d}{dt}\Big|_{0} \left(g\left(t\right)T, u\left(t\right)g\left(t\right)T\right) = \left(X, d\pi \left(dL_{u\left(0\right)}X + dR_{g\left(0\right)}\dot{u}\left(0\right)\right)\right)$$
$$= \left(X, \operatorname{Ad}\left(u\left(0\right)\right)X\right).$$

Next, we show that $T_{T_o}\mathcal{I}$ is full in $T_{T_o}\mathcal{T} \cong \mathfrak{m} \times \mathfrak{m}$. Suppose that there exist $X_o, Y_o \in \mathfrak{m}$ such that $\langle (X, \operatorname{Ad}(u)X), (X_o, Y_o) \rangle = 0$ for all $u \in T, X \in \mathfrak{m}$, in particular for $X = X_o$. We have $Y_o = -X_o$, since the diagonal $\Delta(\mathfrak{m})$ is included in $T_{T_o}\mathcal{T}$. Hence, $\langle \operatorname{Ad}(u)X_o, X_o \rangle = ||X_o||^2$ for all $u \in T$. Thus, Ad $(u)X_o = X_o$ for all $u \in T$, since Ad (u) is an orthogonal operator of \mathfrak{m} . This implies that $X_o = 0$. Finally, observe that $(X, 0) \notin T_{T_o}\mathcal{T}$ for all $0 \neq X \in \mathfrak{m}$, hence $T_{T_o}\mathcal{I}$ is not a vector subspace of $T_{T_o}\mathcal{T}$.

c) Clearly, Ker $dP_{(g,ug)} = \{(dL_gZ_1, dL_{ug}Z_2) \mid Z_1, Z_2 \in \mathfrak{t}\}$ and $T_{(g,ug)}\mathcal{J}$ is the image of $dF_{(u,g)}$, which consists of the elements

 $(dL_gV, dL_udL_gV + dR_gdL_uZ) = (dL_gV, dL_{ug}(V + \operatorname{Ad}(g^{-1})Z)),$

with $V \in \mathfrak{g}, Z \in \mathfrak{t}$. Hence,

$$(T_{(g,ug)}\mathcal{J}) \cap (\operatorname{Ker} dP_{(g,ug)}) = = \left\{ (dL_g Z, dL_{ug} (Z + Z')) \mid Z \in \mathfrak{t}, Z' \in \mathfrak{t} \cap \operatorname{Ad} (g^{-1}) \mathfrak{t} \right\},$$

whose dimension is

(1)

$$\dim \mathfrak{t} + \dim (\mathfrak{t} \cap \operatorname{Ad} (g) \mathfrak{t})$$

Now, $G_o = \{g \in G \mid \mathfrak{t} \cap \operatorname{Ad} (g) \mathfrak{t} = \{0\}\}$ is an open dense subset of G. Indeed, let $\Phi = \{\alpha_1, \ldots, \alpha_k\}$ be a basis of the root system associated with $\mathfrak{g}, \mathfrak{t} [\mathbf{2}]$ and denote $\mathfrak{t}^j = \bigcap_{i \neq j} \operatorname{Ker} \alpha_i$. The complement of G_o is the union of

$$G^{j} = \left\{ g \in G \mid \text{Ad} (g) \mathfrak{t} \cap \mathfrak{t} \supset \mathfrak{t}^{j} \right\},\$$

 $j = 1, \ldots, k$. Each G^j is contained in the union of the stabilizers of $\bigcap_{i \in J} \operatorname{Ker} \alpha_i$, with $J \subset \Phi - \{\alpha_j\}$. Therefore, $\mathcal{J}_o = F(T \times G_o)$ is open and dense in \mathcal{J} and (c) follows, since by (1), dP has maximal rank on \mathcal{J}_o .

Consider on G/T any fixed G-invariant metric d and let

$$\mathcal{D} = \{ (x, y) \in (G/T) \times (G/T) \mid d(x, T) = d(y, T) \}$$

We showed (and used) in [3] that $\mathcal{I} \subset \mathcal{D}$. In contrast with [1], where it is proved that equality holds for $G = S^3$, we have:

PROPOSITION 2. $\mathcal{I} = \mathcal{D}$ if and only if $G = S^3$.

PROOF. For $G = S^3$, Gluck and Warner proved in [1] that $\mathcal{I} = \mathcal{D}$. Let U be a normal ball in G/T centered at T and denote $V = U \times U - \{T_o\}$, which is an open subset of $(G/T) \times (G/T) \cong \mathcal{T}$. Next, we show by means of the Implicit Function Theorem that $\mathcal{D} \cap V$ is a hypersurface of \mathcal{T} . It is a level set of the function $F: V \to \mathbf{R}$ defined by F(x, y) = d(x, T) - d(y, T), which is smooth and satisfies $dF_{(x,y)} \neq 0$ for all $(x, y) \in V$. Indeed, we may suppose without loss of generality that $x \neq T$. If γ is the geodesic in U satisfying $\gamma(0) = T$ and $\gamma(1) = x$, we have that

$$dF_{(x,y)}(\gamma'(1),0) = \frac{d}{dt}\Big|_{t=1} d(\gamma(t),T) - d(y,T)$$

= $\frac{d}{dt}\Big|_{t=1} t \|\gamma'(0)\| = \|\gamma'(0)\| \neq 0.$

On the other hand, T acts on G/T on the left by isometries and T is a fixed point of this action. We know by Theorem 1 (a) that $\mathcal{I} = \{(x, ux) \mid x \in G/T, u \in T\}$. Let $H : (G/T) \times T \to (G/T) \times (G/T)$ be defined by H(x, u) = (x, ux). H is smooth and its image is \mathcal{I} , which is included in \mathcal{D} , since d(x, T) = d(ux, uT) = d(ux, T)by the G-invariance of d. Now, if G is not S^3 , straightforward arguments using the root system associated with \mathfrak{g} and \mathfrak{t} yield that dim $(G/T) \times T = \dim G <$ $2 \dim (G/T) - 1 = \dim \mathcal{D} \cap V$. Therefore, in this case, \mathcal{I} is strictly contained in \mathcal{D} .

References

- H. Gluck, F. Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983), 107–132.
- [2] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, Boston, etc, 1978.
- [3] M. Salvai, Affine maximal torus fibrations of a compact Lie group, preprint.

FAMAF, CIUDAD UNIVERSITARIA, 5000 CÓRDOBA, ARGENTINA *E-mail address:* salvai@mate.uncor.edu