Affine Maximal Tori Intersecting a Fixed One

Marcos Salvai

Abstract

H. Gluck and F. Warner characterized the oriented great circle fibrations of the three-sphere. In a previous paper we generalized partially their result, obtaining, for any compact connected semisimple Lie group G, infinite dimensional spaces of concrete examples of fibrations of G by Weyloriented affine maximal tori. In this note, we study the space of such tori intersecting a fixed one, with the hope that it could help characterize those fibrations.

Let G be a compact connected semisimple Lie group. A maximal torus in G is a maximal abelian Lie subgroup of G. A subset S of G is an affine maximal torus if there exist $g, h \in G$ such that $g S h^{-1}$ is a maximal torus of G. Equivalently, it is a maximal connected totally geodesic flat submanifold of G, provided that the group is endowed with a bi-invariant Riemannian metric.
H. Gluck and F. Warner [1] characterized the oriented great circle fibrations of the three-sphere. In [3] we generalized partially their result, obtaining, for any compact connected semisimple Lie group G, infinite dimensional spaces of concrete examples of fibrations of G by Weyl-oriented affine maximal tori (in our setting, the convenient generalization of an oriented great circle is a Weyl-oriented affine maximal torus, see below).

A tangent vector to G is said to be regular if it is tangent to a unique affine maximal torus. Let \mathcal{R} denote the set of regular tangent vectors. An affine Weyl chamber is a connected component of $\mathcal{R} \cap T_{p} S$, where S is an affine maximal torus and $p \in S$. Given an affine Weyl chamber C, there exists a unique affine maximal torus S such that C is contained in $T S$.

Fix a maximal torus T. A Weyl-oriented (briefly, W-oriented) affine maximal torus is a pair $(g T, h T) \in(G / T) \times(G / T)$. In [3], it was actually defined independently of the choice of T, as a pair (S, ρ), where S is an affine maximal torus of G and ρ is a continuous section of affine Weyl chambers tangent to S. For some fixed Weyl chamber $C_{0} \subset T_{e} T,(g T, h T)$ corresponds to the torus $S=g T h^{-1}$ equipped with the affine Weyl chamber section $\rho\left(g u h^{-1}\right)=d L_{g u} d R_{h^{-1}} C_{o}(u \in T)$.

Let $\mathcal{T} \cong(G / T) \times(G / T)$ denote the set of all W-oriented affine maximal tori of G. By convention, the intersection of two W-oriented tori in \mathcal{T} is the intersection

[^0]of the underlying tori. In [3], we found sufficient conditions for a subset \mathcal{F} of \mathcal{T} to be the space of fibers of a fibration of G by W -oriented affine maximal tori. Obviously, two different tori in \mathcal{F} must have empty intersection. In this note, we study the space of such tori intersecting a fixed one, with the hope that it could help characterize those fibrations.

Let $T_{o}=(T, T) \in \mathcal{T}$ and $\mathcal{I}=\left\{S \in \mathcal{T} \mid S \cap T_{o} \neq \emptyset\right\}$. Let $\mathfrak{g}, \mathfrak{t}$ be the Lie algebras of G, T, respectively, and let \mathfrak{m} be the orthogonal complement of \mathfrak{t} in \mathfrak{g} (with respect to the opposite of the Killing form of \mathfrak{g}, which may be identified in a natural way with $T_{T}(G / T)$. Let $\mathcal{J}=\{(g, u g) \in G \times G \mid g \in G, u \in T\}$ and $P: G \times G \rightarrow \mathcal{T}$, $P(g, h)=(g T, h T)$ be the canonical projection.

Theorem 1. (a) \mathcal{J} is a submanifold of $G \times G$ which projects to \mathcal{I} under P.
(b) T_{o} is a non-manifold point of \mathcal{I} and

$$
T_{T_{o}} \mathcal{I}=\{(X, \operatorname{Ad}(u) X) \mid X \in \mathfrak{m}, u \in T\}
$$

which is a full cone in $\mathfrak{m} \times \mathfrak{m}$.
(c) The set $\{(g T, u g T) \in \mathcal{T} \mid \mathfrak{t} \cap \operatorname{Ad}(g) \mathfrak{t}=\{0\}\}$ is a submanifold of \mathcal{T} which is open and dense in \mathcal{I}.

Proof. a) \mathcal{J} is a submanifold of $G \times G$ since the function $F: T \times G \rightarrow G \times G$ defined by $F(u, g)=(g, u g)$ is a bijection onto \mathcal{J} and

$$
d F_{(u, g)}(Z, X)=\left(X, d L_{u} X+d R_{g} Z\right)=0
$$

only if $X=Z=0\left(L_{k}, R_{k}\right.$ denote left and right multiplication by k, respectively). Moreover, if $T \cap g T h^{-1} \neq \emptyset$, there exist $u, v \in T$ such that $u^{-1}=g v h^{-1}$, hence $h T=u g T$. Conversely, $u^{-1} \in g T(u g)^{-1}$. Therefore, $\mathcal{I}=P(\mathcal{J})$.
b) $T_{T_{o}} \mathcal{I}$ is the set of velocities of smooth curves γ in \mathcal{I} with $\gamma(0)=T_{o}$. Clearly, $t \mapsto(\exp (t X) T, u \exp (t X) T)$ is a curve in \mathcal{I} with velocity $(X, \operatorname{Ad}(u) X)$, for all $X \in \mathfrak{m}, u \in T$. Conversely, let c be a curve in G / T with $c(0)=T$ and u a curve in T. Taking the horizontal lift of c through e, we may write $c(t)=g(t) T$ with $g(0)=e$ and $\dot{g}(0)=X \in \mathfrak{m}$. Hence,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{0}(g(t) T, u(t) g(t) T) & =\left(X, d \pi\left(d L_{u(0)} X+d R_{g(0)} \dot{u}(0)\right)\right) \\
& =(X, \operatorname{Ad}(u(0)) X) .
\end{aligned}
$$

Next, we show that $T_{T_{o}} \mathcal{I}$ is full in $T_{T_{o}} \mathcal{T} \cong \mathfrak{m} \times \mathfrak{m}$. Suppose that there exist $X_{o}, Y_{o} \in$ \mathfrak{m} such that $\left\langle(X, \operatorname{Ad}(u) X),\left(X_{o}, Y_{o}\right)\right\rangle=0$ for all $u \in T, X \in \mathfrak{m}$, in particular for $X=X_{o}$. We have $Y_{o}=-X_{o}$, since the diagonal $\Delta(\mathfrak{m})$ is included in $T_{T_{o}} \mathcal{T}$. Hence, $\left\langle\operatorname{Ad}(u) X_{o}, X_{o}\right\rangle=\left\|X_{o}\right\|^{2}$ for all $u \in T$. Thus, $\operatorname{Ad}(u) X_{o}=X_{o}$ for all $u \in T$, since $\operatorname{Ad}(u)$ is an orthogonal operator of \mathfrak{m}. This implies that $X_{o}=0$. Finally, observe that $(X, 0) \notin T_{T_{o}} \mathcal{T}$ for all $0 \neq X \in \mathfrak{m}$, hence $T_{T_{o}} \mathcal{I}$ is not a vector subspace of $T_{T_{o}} \mathcal{T}$.
c) Clearly, $\operatorname{Ker} d P_{(g, u g)}=\left\{\left(d L_{g} Z_{1}, d L_{u g} Z_{2}\right) \mid Z_{1}, Z_{2} \in \mathfrak{t}\right\}$ and $T_{(g, u g)} \mathcal{J}$ is the image of $d F_{(u, g)}$, which consists of the elements

$$
\left(d L_{g} V, d L_{u} d L_{g} V+d R_{g} d L_{u} Z\right)=\left(d L_{g} V, d L_{u g}\left(V+\operatorname{Ad}\left(g^{-1}\right) Z\right)\right),
$$

with $V \in \mathfrak{g}, Z \in \mathfrak{t}$. Hence,

$$
\begin{aligned}
& \left(T_{(g, u g)} \mathcal{J}\right) \cap\left(\operatorname{Ker} d P_{(g, u g)}\right)= \\
& =\left\{\left(d L_{g} Z, d L_{u g}\left(Z+Z^{\prime}\right)\right) \mid Z \in \mathfrak{t}, Z^{\prime} \in \mathfrak{t} \cap \operatorname{Ad}\left(g^{-1}\right) \mathfrak{t}\right\},
\end{aligned}
$$

whose dimension is

$$
\begin{equation*}
\operatorname{dim} \mathfrak{t}+\operatorname{dim}(\mathfrak{t} \cap \operatorname{Ad}(g) \mathfrak{t}) \tag{1}
\end{equation*}
$$

Now, $G_{o}=\{g \in G \mid \mathfrak{t} \cap \operatorname{Ad}(g) \mathfrak{t}=\{0\}\}$ is an open dense subset of G. Indeed, let $\Phi=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ be a basis of the root system associated with $\mathfrak{g}, \mathfrak{t}[\mathbf{2}]$ and denote $\mathfrak{t}^{j}=\cap_{i \neq j} \operatorname{Ker} \alpha_{i}$. The complement of G_{o} is the union of

$$
G^{j}=\left\{g \in G \mid \operatorname{Ad}(g) \mathfrak{t} \cap \mathfrak{t} \supset \mathfrak{t}^{j}\right\}
$$

$j=1, \ldots, k$. Each G^{j} is contained in the union of the stabilizers of $\cap_{i \in J} \operatorname{Ker} \alpha_{i}$, with $J \subset \Phi-\left\{\alpha_{j}\right\}$. Therefore, $\mathcal{J}_{o}=F\left(T \times G_{o}\right)$ is open and dense in \mathcal{J} and (c) follows, since by (1), $d P$ has maximal rank on \mathcal{J}_{o}.

Consider on G / T any fixed G-invariant metric d and let

$$
\mathcal{D}=\{(x, y) \in(G / T) \times(G / T) \mid d(x, T)=d(y, T)\}
$$

We showed (and used) in $[\mathbf{3}]$ that $\mathcal{I} \subset \mathcal{D}$. In contrast with [1], where it is proved that equality holds for $G=S^{3}$, we have:

Proposition 2. $\mathcal{I}=\mathcal{D}$ if and only if $G=S^{3}$.
Proof. For $G=S^{3}$, Gluck and Warner proved in [1] that $\mathcal{I}=\mathcal{D}$. Let U be a normal ball in G / T centered at T and denote $V=U \times U-\left\{T_{o}\right\}$, which is an open subset of $(G / T) \times(G / T) \cong \mathcal{T}$. Next, we show by means of the Implicit Function Theorem that $\mathcal{D} \cap V$ is a hypersurface of \mathcal{T}. It is a level set of the function $F: V \rightarrow \mathbf{R}$ defined by $F(x, y)=d(x, T)-d(y, T)$, which is smooth and satisfies $d F_{(x, y)} \neq 0$ for all $(x, y) \in V$. Indeed, we may suppose without loss of generality that $x \neq T$. If γ is the geodesic in U satisfying $\gamma(0)=T$ and $\gamma(1)=x$, we have that

$$
\begin{aligned}
d F_{(x, y)}\left(\gamma^{\prime}(1), 0\right) & =\left.\frac{d}{d t}\right|_{t=1} d(\gamma(t), T)-d(y, T) \\
& =\left.\frac{d}{d t}\right|_{t=1} t\left\|\gamma^{\prime}(0)\right\|=\left\|\gamma^{\prime}(0)\right\| \neq 0
\end{aligned}
$$

On the other hand, T acts on G / T on the left by isometries and T is a fixed point of this action. We know by Theorem 1 (a) that $\mathcal{I}=\{(x, u x) \mid x \in G / T, u \in T\}$. Let $H:(G / T) \times T \rightarrow(G / T) \times(G / T)$ be defined by $H(x, u)=(x, u x) . H$ is smooth and its image is \mathcal{I}, which is included in \mathcal{D}, since $d(x, T)=d(u x, u T)=d(u x, T)$ by the G-invariance of d. Now, if G is not S^{3}, straightforward arguments using the root system associated with \mathfrak{g} and \mathfrak{t} yield that $\operatorname{dim}(G / T) \times T=\operatorname{dim} G<$ $2 \operatorname{dim}(G / T)-1=\operatorname{dim} \mathcal{D} \cap V$. Therefore, in this case, \mathcal{I} is strictly contained in \mathcal{D}.

References

[1] H. Gluck, F. Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983), 107-132.
[2] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, Boston, etc, 1978.
[3] M. Salvai, Affine maximal torus fibrations of a compact Lie group, preprint.
FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina
E-mail address: salvai@mate.uncor.edu

[^0]: 1991 Mathematics Subject Classification. Primary 22E15.
 Key words and phrases. compact Lie group, affine maximal torus .
 Partially supported by CONICOR, CONICET, CIEM (CONICET) and SECYT (UNC).

