Some geometric characterizations of the Hopf fibrations of the three-sphere

Marcos Salvai*

Abstract

The Fréchet manifold \mathcal{E}/\sim of all embeddings (up to orientation preserving reparametrizations) of the circle in S^3 has a canonical weak Riemannian metric. We use the characterization obtained by H. Gluck and F. Warner of the oriented great circle fibrations of S^3 to prove that among all such fibrations $\pi : S^3 \to B$, the manifold B consisting of the oriented fibers is totally geodesic in \mathcal{E}/\sim, or has minimum volume or diameter with the induced metric, exactly when π is a Hopf fibration.

Mathematics Subject Classification 2000: 53C22, 55R25, 57N12, 58B20, 58D10.

Key words and phrases: Hopf fibration, manifold of embeddings.

Running head: Hopf fibrations.

*Partially supported by FONCYT, Antorchas, CIEM (CONICET) and SECYT (UNC).
Introduction

Manifolds of embeddings. Let M, N be connected differentiable manifolds. If M is compact and oriented and N is Riemannian, then the set $\mathcal{E} (M, N)$ of all embeddings of M into N is a Fréchet manifold [5] which has a canonical weak Riemannian metric, defined by E. Binz in [2] (see also [6]), up to a constant $c > 0$, as follows: If $f \in \mathcal{E} (M, N)$ and $u, v \in T_f \mathcal{E} (M, N)$ (that is, u, v are smooth vector fields along f), then

$$
\langle u, v \rangle = c \int_M \langle u (x), v (x) \rangle \, \omega_f (x),
$$

where ω_f is the volume element of the Riemannian metric on M induced by f. Let \sim be the equivalence relation on $\mathcal{E} (M, N)$ defined by $\gamma \sim \sigma$ if and only if $\gamma = \sigma \circ \phi$ for some orientation preserving diffeomorphism ϕ of M. The set $\mathcal{E} (M, N) / \sim$ of equivalence classes is a Fréchet manifold with a weak Riemannian metric in such a way that the associated projection $\Pi : \mathcal{E} (M, N) \to \mathcal{E} (M, N) / \sim$ is a principal bundle with structure group $\text{Diff}_+ (M)$, and a Riemannian submersion.

In the following we consider $M = S^1 = \mathbb{Z} / (2\pi \mathbb{Z})$ and N the sphere $S^3 = \{ p \in \mathbb{H} \mid |p| = 1 \}$, where $\mathbb{H} \cong \mathbb{R}^4$ denotes the quaternions. We denote $\mathcal{E} = \mathcal{E} (S^1, S^3)$ and take for convenience $c = 1 / (2\pi)$. By abuse of notation we will often write x instead of $x + 2\pi \mathbb{Z}$.

Great circle fibrations of the three-sphere. An oriented great circle of S^3 is a pair (C, V), where C is a great circle (that is, the intersection of S^3
with a two-dimensional subspace of \mathbb{R}^4) and V is a unit tangent vector field on C. Let \mathcal{C} denote the set of all oriented great circles of S^3. We consider on \mathcal{C} a multiple of the standard Riemannian structure, namely, the normal metric induced by the canonical transitive action of $S^3 \times S^3$ on it. This enables us to identify $\mathcal{C} = S^2 \times S^2$ as Riemannian manifolds (see [1, 3] and the next section).

An oriented great circle fibration of S^3 is a smooth fibration $\pi : S^3 \to B$ given by a smooth unit vector field V on S^3 whose integral curves describe great circles, which are the fibers of π. The manifold B may be thought of as consisting of the oriented leaves (which are oriented great circles) of the oriented distribution induced by V. Such a fibration is said to be a Hopf fibration if it is conjugate by an isometry of S^3 (which may not preserve orientation) to the fibration given by the vector field $V(p) = ip$.

H. Gluck and F. Warner give in [3] a complete description of the (infinite dimensional) space of all oriented great circle fibrations $\pi : S^3 \to B$. They characterize those subsets B of \mathcal{C} which are bases of fibrations as above and show in particular that the inclusions $B \hookrightarrow \mathcal{C}$ are submanifolds (we recall their results with details below).

Define the natural inclusion $I : \mathcal{C} \to \mathcal{E}/_\sim$ as follows: if C is a great circle of S^3 and V is unit tangent vector field of C, then $I(C,V) = \Pi(\alpha)$, the equivalence class of the embedding $\alpha : S^1 \to S^3$, $\alpha(x) = (\cos x)p + (\sin x)V(p)$, for any (or some) $p \in C$.

Theorem 1 The map $I : \mathcal{C} \to \mathcal{E}/_\sim$ is an isometric totally geodesic submanifold.
We observe that the situation is not that simple for other spaces of embeddings. For instance, if $\gamma : \mathbb{R} \to \mathcal{E}(S^1, C)$, $\gamma(t)(x) = t + e^{xi}$, then $\Pi \circ \gamma$ is not a geodesic in $\mathcal{E}(S^1, C)/\sim$.

As a corollary of Theorem 1 and the powerful result of Gluck and Warner cited above, we have the following geometric characterizations of the oriented great circle fibrations of the three-sphere.

Theorem 2 Let $\pi : S^3 \to B$ be an oriented great circle fibration. The following assertions are equivalent:

a) π is a Hopf fibration.

b) $\text{vol } I(B) \leq \text{vol } I(B')$ for any oriented great circle fibration $\pi' : S^3 \to B'$.

c) $\text{diam } I(B) \leq \text{diam } I(B')$ for any oriented great circle fibration $\pi' : S^3 \to B'$.

e) $I(B)$ is totally geodesic in \mathcal{E}/\sim.

Remark. The Theorem is still valid if we substitute smooth fibration with continuous fibration whose space of fibers is a submanifold of C (see [3]).

Proofs of the statements

The Lie group $S^3 \times S^3$ acts transitively on C as follows: $(p, q)(C, V) = (pCq, dg_{p,q}Vg_{p,q})$, where $g_{p,q} = \ell_p \circ r_q$ and ℓ_p, r_p denote left and right multiplication by p, respectively. Let $\gamma_0(x) = e^{xi}$ and $T = \{e^{ix} \mid x \in \mathbb{R}\}$ its image in S^3. The isotropy subgroup at (T, γ'_0) is $T \times T$. Hence we identify $C = (S^3 \times S^3)/(T \times T) =$
\((S^3/T) \times (S^3/T) = S^2 \times S^2\), as in [3] (the notation here resembles more that of its partial generalization [7]). Via this identification, the map \(I\) can be written as

\[
I(pT, qT) = \Pi(\alpha), \quad \text{with} \quad \alpha(x) = pe^{x i} q.
\]

We call \(o = T\) and identify \(T_oS^2 = \mathbb{C}j\), the orthogonal complement of \(T_1T = \mathbb{R}i\) in \(T_1S^3 = \text{Im}(H)\).

Lemma 3 a) Let \(a, b \in \mathbb{R}\) and let \(\gamma: \mathbb{R} \to \mathcal{E}\) be defined by \(\gamma(t)(x) = e^{atj} e^{x i} e^{-bj}\). Then for all \(x \in S^1\) we have

\[
\gamma'(0)(x) = (ae^{-xi} - be^{xi}) j \perp ie^{xi} = \gamma(0)'(x)
\]

\[
\gamma''(0)(x) = 2abe^{-xi} - (a^2 + b^2) e^{xi}.
\]

b) Any geodesic in \(\mathcal{C} = S^2 \times S^2\) is congruent via the canonical isometric action of \(S^3 \times S^3\) on \(\mathcal{C}\) to the geodesic \(\alpha\) with \(\alpha(0) = (o, o)\) and \(\alpha'(0) = (aj, bj)\) for some \(a, b \in \mathbb{R}\).

c) The canonical actions of \(S^3 \times S^3\) on \(\mathcal{C}\) and \(\mathcal{E}/\sim\) are by isometries and the map \(I: \mathcal{C} \to \mathcal{E}/\sim\) is equivariant with respect to them.

Proof. The first assertions follow from easy computations using that \(j\) commutes with \(e^{atj}\) and \(je^{xi} = e^{-xi} j\) for all \(x, t\). The validity of (b) is a consequence of the fact that \(S^3\) acts transitively on the unit tangent bundle of \(S^2\). For (c), notice that \(\mathcal{C}\) has by definition the normal metric induced by the action of
$S^3 \times S^3$, and that this group acts by isometries in the ambient manifold S^3. The equivariance of I can be checked straightforwardly.

Now we state precisely the result of Gluck and Warner cited above.

Theorem 4 [3] A subset $B \subset C = S^2 \times S^2$ is the set of all oriented fibers of a smooth oriented great circle fibration of S^3 if and only if $B = \text{graph}(f)$ for some smooth function $f : S^2 \to S^2$ from one factor of $S^2 \times S^2$ to the other, with $|df| < 1$, where $|df| = \max \{|df(X)| \mid |X| = 1\}$. Moreover, B corresponds to a Hopf fibration if and only if f is constant.

For any $\alpha \in \mathcal{E}$ we have the decomposition $T_\alpha \mathcal{E} = \mathcal{H}_\alpha \oplus \mathcal{V}_\alpha$ in horizontal and vertical subspaces at α, where $\mathcal{V}_\alpha = \text{Ker}(d\Pi_\alpha)$ and \mathcal{H}_α is the orthogonal complement of \mathcal{V}_α. They consist of all the smooth vector fields along α which are tangent to $\alpha(S^1)$, respectively, normal, at each point of S^1.

Let M, N be as in the introduction. G. Kainz obtained in [4] a necessary and sufficient condition for a curve $\gamma : A \to \mathcal{E}(M, N)$ to be a geodesic, where A is an interval of the real line. In the very particular case when $\gamma(t)$ is a totally geodesic embedding and $\gamma'(t)$ is a normal vector field along $\gamma(t)$ for all $t \in A$, one has that γ is a geodesic if and only if

$$2 \left. \frac{D}{dt} \right|_{t_o} \gamma'(t)(x) = -d (\gamma(t_o))_x \left(\text{grad}^g_{(t_o)}(f) \right)$$

for all t_o and all $x \in M$, where $\frac{D}{dt}$ denotes covariant derivative along the curve.
\(A \ni t \mapsto \gamma(t)(x) \), the function \(f : M \to \mathbb{R} \) is given by

\[
f(y) = \|\gamma'(t_0)(y)\|^2,
\]

and \(\text{grad}^\alpha (f) \) stands for the gradient of \(f : M \to \mathbb{R} \) with respect to the metric on \(M \) induced by the embedding \(\alpha \).

Proof of Theorem 1. Clearly \(I \) is well-defined and one to one. We show now that \(I \) is smooth. Given any point of \(\mathcal{C} \), let \(U \) be an open neighborhood of it admitting a smooth local section \(\phi : U \to S^3 \times S^3 \) of the bundle \(S^3 \times S^3 \to \mathcal{C} \). By (1) we have that \(I|_U = \Pi \circ \sigma \circ \phi \), where \(\sigma \) is the smooth map \(\sigma : S^3 \times S^3 \to \mathcal{E} \) defined by \(\sigma(p,q)(x) = pe^{\pi i}q \). Hence, \(I \) is smooth.

Next we show that \(I \) is an isometric immersion. Let \(\gamma : \mathbb{R} \to \mathcal{E} \) be as in Lemma 3 (a). Hence \(\gamma'(0) \in T_{\gamma_0} \mathcal{E} \) and by (2),

\[
|\gamma'(0)(x)|^2 = a^2 + b^2 - 2ab \cos(2x)
\]

and \(\gamma'(0)(x) \) is orthogonal to \(\gamma'_0(x) \) for all \(x \in S^1 \) (in particular \(\gamma'(0) \in \mathcal{H}_{\gamma_0} \mathcal{E} \)). Therefore,

\[
\|\gamma'(0)\|^2 = \frac{1}{2\pi} \int_0^{2\pi} |\gamma'(0)(x)|^2 \, dx = a^2 + b^2.
\]

Besides, since \(\Pi \) and \(S^3 \times S^3 \to \mathcal{C} \) are Riemannian submersions, we have

\[
\|dI_{(\alpha,\rho)}(aj,bj)\| = \|d\Pi_{\gamma_0}d\sigma_{(1,1)}(aj,bj)\| = \|d\Pi_{\gamma_0}\gamma'(0)\| = \|\gamma'(0)\|.
\]

Now, \(a, b \) are arbitrary, hence (7) and Lemma 3 (b,c) imply that this is sufficient to conclude that \(I \) is an isometric embedding.
Next we show that \(I \) is totally geodesic. Let \(\alpha \) be the geodesic in \(C = S^2 \times S^2 \) with \(\alpha (0) = (o,o) \) and \(\alpha' (0) = (aj,bj) \), that is, \(\alpha (t) = (e^{atj},e^{bj}) (o,o) \).

We have that \(I \circ \alpha = \Pi \circ \gamma \), where \(\gamma (t) \in \mathcal{E} \) is as in Lemma 3 (a). By items (b,c) of this Lemma, it suffices to prove that \(\gamma \) is a horizontal geodesic in \(\mathcal{E} \) (\(\Pi \) is a Riemannian submersion). We need to verify that \(\gamma' (t_o) \) is horizontal and check condition (4) only at \(t_o = 0 \), since \(\gamma (t) (x) = g (t) (\gamma_o (x)) \) for all \(x,t \), where \(g \) is the one-parameter group of isometries of \(S^3 \) given by \(g (t) (q) = e^{aji} q e^{-bj} \).

We have already seen that \(\gamma'(0) \in \mathcal{H}_\gamma \). Besides, in our case, the left hand side of (4) for \(t_o = 0 \) is two times the orthogonal projection of \(\gamma'' (0) (x) \) onto \(T_{e^x} S^3 = \mathbb{R} i e^{xi} \times \mathbb{C} j \), which by (3) equals

\[
4ab \langle e^{-xi}, ie^{xi} \rangle ie^{xi} = -4ab \sin (2x) ie^{xi}.
\]

The function \(f : S^1 \rightarrow \mathbb{R} \) as in (5) for \(t_o = 0 \) is given by (6). Hence, the right hand side of (4) is

\[
- \frac{d}{dy} \bigg| f(y) ie^{xi} = \frac{d}{dy} \bigg| 2ab \cos (2y) ie^{xi} = -4ab \sin (2x) ie^{xi},
\]

which coincides with (8). Therefore, \(I \) is totally geodesic.

Proof of Theorem 2. Let \(f : S^2 \rightarrow S^2 \) be as in Theorem 4. We may suppose that \(f \) is defined from the first factor of \(S^2 \times S^2 \) to the second one. By Theorem 1, the metric on graph \((f) \) induced from \(\mathcal{E} \) via the map \(I \) coincides with that induced by the inclusion in \(S^2 \times S^2 \). Since

\[
\text{vol} (\text{graph} \ f) = \int_{S^2} \sqrt{\det (id_z + (df)^* (df)_z)} \ dz
\]

8
(id_z denotes the identity map on T_zS^2), clearly this volume is minimum exactly for the constant functions, which correspond to Hopf fibrations by the characterization of Gluck and Warner.

If f is constant, then clearly the diameter of graph (f) equals \(\pi \). Let \(D \) be the diameter of graph (f) and let \(d \) denote the distance in this submanifold. For any \(z \in S^2 \),

\[
D \geq d ((z, f(z)), (-z, f(-z))) \geq \text{length } (\alpha) \geq \text{length } (c) \geq \pi
\]

for any curve \(\alpha : [0,1] \to S^2 \times S^2 \), \(\alpha (t) = (c(t), f(c(t))) \), where \(c \) is a curve in \(S^2 \) with \(c(0) = z \) and \(c(1) = -z \). If \(D = \pi \), we have then that \(f \) must take the same value on antipodal points, and also, that for any \(z \in S^2 \) there exists a geodesic arc \(c \) in \(S^2 \) joining \(z \) with \(-z \) such that \(f \circ c \) is constant. Hence \(f \) is constant on the great circle containing \(c \) (\(f \) can be defined on the projective space). Since any two great circles in \(S^2 \) intersect, \(f \) must be constant.

Suppose now that \(I (\text{graph } (f)) \) is totally geodesic in \(\mathcal{E} \). Then \(\text{graph } (f) \) is totally geodesic in \(\mathcal{C} = S^2 \times S^2 \), by Theorem 1. Given any \((X,Y) \in T \text{graph } (f) \), the geodesic \(\gamma = (\gamma_1, \gamma_2) \) in \(S^2 \times S^2 \) with initial velocity \((X,Y)\) is contained in \(\text{graph } (f) \). The curve \(\gamma_2 \) is a geodesic in \(S^2 \), which must be constant (otherwise its image would contain a pair of antipodal points, contradicting the assumption that \(|df| < 1 \)). Hence, \(Y = 0 \) for all \((X,Y) \in T \text{graph } (f) \). This implies that \(f \) is constant. The converse is obvious.
References

FaMAF - CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina.

salvai@mate.uncor.edu