Some geometric characterizations of the Hopt

fibrations of the three-sphere

Marcos Salvai*

Abstract

The Fréchet manifold £/ of all embeddings (up to orientation pre-
serving reparametrizations) of the circle in S® has a canonical weak
Riemannian metric. We use the characterization obtained by H. Gluck
and F. Warner of the oriented great circle fibrations of 53 to prove that
among all such fibrations 7 : $3 — B, the manifold B consisting of the
oriented fibers is totally geodesic in £/., or has minimum volume or

diameter with the induced metric, exactly when 7 is a Hopf fibration.
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Introduction

Manifolds of embeddings. Let M, N be connected differentiable manifolds.
If M is compact and oriented and N is Riemannian, then the set £ (M, N) of all
embeddings of M into N is a Fréchet manifold [5] which has a canonical weak
Riemannian metric, defined by E. Binz in [2] (see also [6]), up to a constant
¢ > 0, as follows: If f € £(M,N) and u,v € T¢E (M, N) (that is, u,v are

smooth vector fields along f), then

(u, ) =c/M<u<x>,v<:c>> wy (),

where wy is the volume element of the Riemannian metric on M induced
by f. Let ~ be the equivalence relation on & (M, N) defined by v ~ o if
and only if ¥ = o o ¢ for some orientation preserving diffeomorphism ¢ of
M. The set £(M,N) /. of equivalence classes is a Fréchet manifold with a
weak Riemannian metric in such a way that the associated projection II :
E(M,N)— E(M,N) /. is a principal bundle with structure group Diff, (M),
and a Riemannian submersion.

In the following we consider M = S = Z/ (2rZ) and N the sphere S3 =
{p e H||p| =1}, where H = R* denotes the quaternions. We denote £ =
£ (S1,S3) and take for convenience ¢ = 1/ (27) . By abuse of notation we will

often write z instead of = + 27Z.

Great circle fibrations of the three-sphere. An oriented great circle of

S3 is a pair (C,V), where C is a great circle (that is, the intersection of S3
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with a two-dimensional subspace of R?) and V is a unit tangent vector field
on C. Let C denote the set of all oriented great circles of S3. We consider on C
a multiple of the standard Riemannian structure, namely, the normal metric
induced by the canonical transitive action of S® x S2 on it. This enables us to
identify C = S? x S? as Riemannian manifolds (see [1, 3] and the next section).

An oriented great circle fibration of S® is a smooth fibration 7 : S® — B
given by a smooth unit vector field V on S® whose integral curves describe
great circles, which are the fibers of 7. The manifold B may be thought of as
consisting of the oriented leaves (which are oriented great circles) of the ori-
ented distribution induced by V. Such a fibration is said to be a Hopf fibration
if it is conjugate by an isometry of S (which may not preserve orientation) to
the fibration given by the vector field V (p) = ip.

H. Gluck and F. Warner give in [3] a complete description of the (infinite
dimensional) space of all oriented great circle fibrations m : S® — B. They
characterize those subsets B of C which are bases of fibrations as above and
show in particular that the inclusions B < C are submanifolds (we recall their
results with details below).

Define the natural inclusion I : C — £/, as follows: if C' is a great circle of
S$3 and V is unit tangent vector field of C, then I (C,V) = II (a), the equiva-
lence class of the embedding « : S' — S3, a(z) = (cosz) p+ (sinz) V (p), for

any (or some) p € C.

Theorem 1 Themap I : C — £/ is an isometric totally geodesic submanifold.
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We observe that the situation is not that simple for other spaces of embed-
dings. For instance, if v : R — £ (S, C), v (¢) (r) =t + €*, then II o is not
a geodesic in £ (S1,C) /..

As a corollary of Theorem 1 and the powerful result of Gluck and Warner
cited above, we have the following geometric characterizations of the oriented

great circle fibrations of the three-sphere.

Theorem 2 Let 7 : S3 — B be an oriented great circle fibration. The following

assertions are equivalent:

a) m is a Hopf fibration.

b) vol I (B) < volI (B') for any oriented great circle fibration 7' : S* — B'.
c) diam I (B) < diam I (B’) for any oriented great circle fibration ' : S — B'.

e) I (B) is totally geodesic in &/ ..

Remark. The Theorem is still valid if we substitute smooth fibration with

continuous fibration whose space of fibers is a submanifold of C (see [3]).

Proofs of the statements

The Lie group S®x S acts transitively on C as follows: (p, q) (C,V) = (pCq,dgp3V 95.4) »
where g, , = ¢, o, and ¢, , denote left and right multiplication by p, respec-
tively. Let 7, (z) = €* and T = {e"® | z € R} its image in S®. The isotropy

subgroup at (7,7)) is T x T. Hence we identify C = (S3 x S3) /(T x T) =



(S3/T) x (S3/T) = S? x S?, as in [3] (the notation here resembles more that of
its partial generalization [7]). Via this identification, the map I can be written

I(pT,qT) =Tl (a), with o(z)=pe™q. (1)

We call 0 = T and identify T,,5? = Cj, the orthogonal complement of T} T = R

in 715 = Im (H).

Lemma 3 a) Let a,b € R and let v : R — & be defined by 7 (t) (z) =

eieie=t  Then for all x € S' we have

7 (0) (z) = (ae™™ —be™) j L ie™ = v(0)' (z) (2)

7" (0) (z) = 2abe” ™ — (a® + b%) €. 3)

b) Any geodesic in C = S? x S? is congruent via the canonical isometric action
of §3 x 8% on C to the geodesic o with a (0) = (0,0) and o’ (0) = (aj,bj) for
some a,b € R.

c¢) The canonical actions of S® x S on C and £/ are by isometries and the

map I : C — &/ is equivariant with respect to them.

Proof. The first assertions follow from easy computations using that j com-
mutes with e®” and je® = e ®'j for all z,t. The validity of (b) is a consequence
of the fact that S3 acts transitively on the unit tangent bundle of S2. For (c),

notice that C has by definition the normal metric induced by the action of
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S3 x §3, and that this group acts by isometries in the ambient manifold S°.

The equivariance of I can be checked straightforwardly.
Now we state precisely the result of Gluck and Warner cited above.

Theorem 4 [3] A subset B C C = S? x S? is the set of all oriented fibers of
a smooth oriented great circle fibration of S® if and only if B = graph (f) for
some smooth function f : S* — S? from one factor of S? x S? to the other,
with |df| < 1, where |df| = max {|df (X)| | |X| = 1}. Moreover, B corresponds

to a Hopf fibration if and only if f is constant.

For any a € £ we have the decomposition T,,& = H, ® V, in horizontal
and vertical subspaces at «, where V, = Ker (dIl,) and H, is the orthogonal
complement of V,. They consist of all the smooth vector fields along a which
are tangent to o (S'), respectively, normal, at each point of S?.

Let M, N be as in the introduction. G. Kainz obtained in [4] a necessary
and sufficient condition for a curve v : A — £ (M, N) to be a geodesic, where
A is an interval of the real line. In the very particular case when ~ () is a
totally geodesic embedding and 4’ (¢) is a normal vector field along ~y (¢) for all

t € A, one has that 7 is a geodesic if and only if

2 21 o/ (1) (2) = ~d (3 (t), (aradl (£)) 0

for all ¢, and all z € M, where % denotes covariant derivative along the curve



A>tw— v(t)(x), the function f : M — R is given by

Fy) =117 (t) I, ()

and grad® (f) stands for the gradient of f : M — R with respect to the metric

on M induced by the embedding a.

Proof of Theorem 1. Clearly I is well-defined and one to one. We show now
that I is smooth. Given any point of C, let U be an open neighborhood of it
admitting a smooth local section ¢ : U — S2 x S3 of the bundle S® x S3 — C.
By (1) we have that I|;; = Ilogog¢, where o is the smooth map o : S*xS* — &
defined by o (p, q) (z) = pe*'q. Hence, I is smooth.

Next we show that [ is an isometric immersion. Let v : R — £ be as in

Lemma 3 (a). Hence 7' (0) € T, € and by (2),
17 (0) (z)]* = a? + b* — 2abcos (2x) (6)

and 7' (0) (z) is orthogonal to 7/ (z) for all z € S* (in particular 7' (0) € H., ).
Therefore,

1

" or

I O / "W O) @) da = a® + B (7)

Besides, since IT and S® x §% — C are Riemannian submersions, we have
[ (0.0) (aj, b5) || = [|dILy,doa ) (ag, b) || = [ldIL, Y (O)]] = |y (0)]] -

Now, a, b are arbitrary, hence (7) and Lemma 3 (b,c) imply that this is sufficient

to conclude that I is an isometric embedding.
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Next we show that I is totally geodesic. Let a be the geodesic in C =
52x S? with o (0) = (0, 0) and o’ (0) = (aj, bj) , that is, a (t) = (€*, ") (0, 0).
We have that Toa = ITo~y, where 7 () € £ is as in Lemma 3 (a). By items (b,c)
of this Lemma, it suffices to prove that 7 is a horizontal geodesic in £ (II is a
Riemannian submersion). We need to verify that 7' (¢,) is horizontal and check
condition (4) only at t, = 0, since 7 (t) (z) = g (¢) (7, (z)) for all x,¢, where g
is the one-parameter group of isometries of S given by g (t) (q) = e*Jge=%4.
We have already seen that 4" (0) € H,,. Besides, in our case, the left hand
side of (4) for ¢, = 0 is two times the orthogonal projection of 7" (0) (z) onto

T..:S3 = Rie®™ x Cj, which by (3) equals
4ab (e ™, ie™) ie” = —dabsin (2z)ie™. (8)

The function f : S' — R as in (5) for ¢, = 0 is given by (6). Hence, the right
hand side of (4) is

d

T f(y)ie™ = i 2ab cos (2y) ie™ = —4absin (2z) ie™,
Y

dy

T T

which coincides with (8). Therefore, I is totally geodesic.

Proof of Theorem 2. Let f : $2 — 52 be as in Theorem 4. We may suppose
that f is defined from the first factor of S? x S? to the second one. By Theorem
1, the metric on graph (f) induced from £ via the map I coincides with that

induced by the inclusion in S? x S2. Since
vol (graph f) — / Vdet (id, + (df)* (df),) d=
S2
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(id, denotes the identity map on 7,S52), clearly this volume is minimum ex-
actly for the constant functions, which correspond to Hopf fibrations by the
characterization of Gluck and Warner.

If f is constant, then clearly the diameter of graph (f) equals 7. Let D be
the diameter of graph (f) and let d denote the distance in this submanifold.

For any z € 52,
D >d((2,f(2)),(=z,f(=2))) = length (a) > length (c) > =

for any curve a : [0,1] — S? x S2, a/(t) = (c(t), f (c(t))), where c is a curve
in S? with ¢(0) = 2z and ¢ (1) = —z. If D = 7, we have then that f must take
the same value on antipodal points, and also, that for any z € S? there exists
a geodesic arc c in S? joining z with —z such that f o c is constant. Hence f
is constant on the great circle containing ¢ (f can be defined on the projective
space). Since any two great circles in S? intersect, f must be constant.
Suppose now that I (graph (f)) is totally geodesic in £. Then graph (f) is
totally geodesic in C = S?x 52, by Theorem 1. Given any (X,Y) € T graph (f),
the geodesic v = (71,72) in §% x S? with initial velocity (X,Y) is contained in
graph (f) . The curve 7, is a geodesic in S?, which must be constant (otherwise
its image would contain a pair of antipodal points, contradicting the assump-
tion that |df| < 1). Hence, Y = 0 for all (X,Y’) € T graph (f). This implies

that f is constant. The converse is obvious.
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