Some geometric characterizations of the Hopf

fibrations of the three-sphere

Marcos Salvai*

Abstract

The Fréchet manifold $\mathcal{E}/_{\sim}$ of all embeddings (up to orientation pre-

serving reparametrizations) of the circle in S^3 has a canonical weak

Riemannian metric. We use the characterization obtained by H. Gluck

and F. Warner of the oriented great circle fibrations of S^3 to prove that

among all such fibrations $\pi: S^3 \to B$, the manifold B consisting of the

oriented fibers is totally geodesic in $\mathcal{E}/_{\sim}$, or has minimum volume or

diameter with the induced metric, exactly when π is a Hopf fibration.

Mathematics Subject Classification 2000: 53C22, 55R25, 57N12, 58B20, 58D10.

Key words and phrases: Hopf fibration, manifold of embeddings.

Running head: Hopf fibrations.

*Partially supported by FONCYT, Antorchas, CIEM (CONICET) and SECYT (UNC).

1

Introduction

Manifolds of embeddings. Let M, N be connected differentiable manifolds. If M is compact and oriented and N is Riemannian, then the set $\mathcal{E}(M, N)$ of all embeddings of M into N is a Fréchet manifold [5] which has a canonical weak Riemannian metric, defined by E. Binz in [2] (see also [6]), up to a constant c > 0, as follows: If $f \in \mathcal{E}(M, N)$ and $u, v \in T_f \mathcal{E}(M, N)$ (that is, u, v are smooth vector fields along f), then

$$\langle u, v \rangle = c \int_{M} \langle u(x), v(x) \rangle \ \omega_{f}(x),$$

where ω_f is the volume element of the Riemannian metric on M induced by f. Let \sim be the equivalence relation on $\mathcal{E}(M,N)$ defined by $\gamma \sim \sigma$ if and only if $\gamma = \sigma \circ \phi$ for some orientation preserving diffeomorphism ϕ of M. The set $\mathcal{E}(M,N)/_{\sim}$ of equivalence classes is a Fréchet manifold with a weak Riemannian metric in such a way that the associated projection Π : $\mathcal{E}(M,N) \to \mathcal{E}(M,N)/_{\sim}$ is a principal bundle with structure group $\mathrm{Diff}_+(M)$, and a Riemannian submersion.

In the following we consider $M=S^1={\bf Z}/\left(2\pi{\bf Z}\right)$ and N the sphere $S^3=\{p\in {\bf H}\mid |p|=1\}$, where ${\bf H}\cong {\bf R}^4$ denotes the quaternions. We denote ${\cal E}={\cal E}\left(S^1,S^3\right)$ and take for convenience $c=1/\left(2\pi\right)$. By abuse of notation we will often write x instead of $x+2\pi{\bf Z}$.

Great circle fibrations of the three-sphere. An oriented great circle of S^3 is a pair (C, V), where C is a great circle (that is, the intersection of S^3

with a two-dimensional subspace of \mathbb{R}^4) and V is a unit tangent vector field on C. Let \mathcal{C} denote the set of all oriented great circles of S^3 . We consider on \mathcal{C} a multiple of the standard Riemannian structure, namely, the normal metric induced by the canonical transitive action of $S^3 \times S^3$ on it. This enables us to identify $\mathcal{C} = S^2 \times S^2$ as Riemannian manifolds (see [1, 3] and the next section).

An oriented great circle fibration of S^3 is a smooth fibration $\pi: S^3 \to B$ given by a smooth unit vector field V on S^3 whose integral curves describe great circles, which are the fibers of π . The manifold B may be thought of as consisting of the oriented leaves (which are oriented great circles) of the oriented distribution induced by V. Such a fibration is said to be a Hopf fibration if it is conjugate by an isometry of S^3 (which may not preserve orientation) to the fibration given by the vector field V(p) = ip.

H. Gluck and F. Warner give in [3] a complete description of the (infinite dimensional) space of all oriented great circle fibrations $\pi: S^3 \to B$. They characterize those subsets B of \mathcal{C} which are bases of fibrations as above and show in particular that the inclusions $B \hookrightarrow \mathcal{C}$ are submanifolds (we recall their results with details below).

Define the natural inclusion $I: \mathcal{C} \to \mathcal{E}/_{\sim}$ as follows: if C is a great circle of S^3 and V is unit tangent vector field of C, then $I(C,V) = \Pi(\alpha)$, the equivalence class of the embedding $\alpha: S^1 \to S^3$, $\alpha(x) = (\cos x) p + (\sin x) V(p)$, for any (or some) $p \in C$.

Theorem 1 The map $I: \mathcal{C} \to \mathcal{E}/_{\sim}$ is an isometric totally geodesic submanifold.

We observe that the situation is not that simple for other spaces of embeddings. For instance, if $\gamma: \mathbf{R} \to \mathcal{E}(S^1, \mathbf{C})$, $\gamma(t)(x) = t + e^{xi}$, then $\Pi \circ \gamma$ is not a geodesic in $\mathcal{E}(S^1, \mathbf{C})/_{\sim}$.

As a corollary of Theorem 1 and the powerful result of Gluck and Warner cited above, we have the following geometric characterizations of the oriented great circle fibrations of the three-sphere.

Theorem 2 Let $\pi: S^3 \to B$ be an oriented great circle fibration. The following assertions are equivalent:

- a) π is a Hopf fibration.
- b) vol $I(B) \leq \text{vol } I(B')$ for any oriented great circle fibration $\pi': S^3 \to B'$.
- c) diam $I(B) \leq \text{diam } I(B')$ for any oriented great circle fibration $\pi': S^3 \to B'$.
- e) I(B) is totally geodesic in $\mathcal{E}/_{\sim}$.

Remark. The Theorem is still valid if we substitute *smooth fibration* with continuous fibration whose space of fibers is a submanifold of C (see [3]).

Proofs of the statements

The Lie group $S^3 \times S^3$ acts transitively on $\mathcal C$ as follows: (p,q) $(C,V) = (pC\bar q, dg_{p,\bar q}Vg_{\bar p,q})$, where $g_{p,q} = \ell_p \circ r_q$ and ℓ_p, r_p denote left and right multiplication by p, respectively. Let $\gamma_o(x) = e^{xi}$ and $T = \{e^{ix} \mid x \in \mathbf{R}\}$ its image in S^3 . The isotropy subgroup at (T, γ'_o) is $T \times T$. Hence we identify $\mathcal C = (S^3 \times S^3) / (T \times T) =$

 $(S^3/T) \times (S^3/T) = S^2 \times S^2$, as in [3] (the notation here resembles more that of its partial generalization [7]). Via this identification, the map I can be written as

$$I(pT, qT) = \Pi(\alpha), \text{ with } \alpha(x) = pe^{xi}\bar{q}.$$
 (1)

We call o = T and identify $T_o S^2 = \mathbf{C} j$, the orthogonal complement of $T_1 T = \mathbf{R} i$ in $T_1 S^3 = \text{Im}(\mathbf{H})$.

Lemma 3 a) Let $a,b \in \mathbf{R}$ and let $\gamma : \mathbf{R} \to \mathcal{E}$ be defined by $\gamma(t)(x) = e^{atj}e^{xi}e^{-btj}$. Then for all $x \in S^1$ we have

$$\gamma'(0)(x) = (ae^{-xi} - be^{xi}) j \perp ie^{xi} = \gamma(0)'(x)$$
 (2)

$$\gamma''(0)(x) = 2abe^{-xi} - (a^2 + b^2)e^{xi}.$$
 (3)

- b) Any geodesic in $C = S^2 \times S^2$ is congruent via the canonical isometric action of $S^3 \times S^3$ on C to the geodesic α with $\alpha(0) = (o, o)$ and $\alpha'(0) = (aj, bj)$ for some $a, b \in \mathbf{R}$.
- c) The canonical actions of $S^3 \times S^3$ on C and $\mathcal{E}/_{\sim}$ are by isometries and the map $I: C \to \mathcal{E}/_{\sim}$ is equivariant with respect to them.

Proof. The first assertions follow from easy computations using that j commutes with e^{atj} and $je^{xi} = e^{-xi}j$ for all x, t. The validity of (b) is a consequence of the fact that S^3 acts transitively on the unit tangent bundle of S^2 . For (c), notice that \mathcal{C} has by definition the normal metric induced by the action of

 $S^3 \times S^3$, and that this group acts by isometries in the ambient manifold S^3 . The equivariance of I can be checked straightforwardly.

Now we state precisely the result of Gluck and Warner cited above.

Theorem 4 [3] A subset $B \subset \mathcal{C} = S^2 \times S^2$ is the set of all oriented fibers of a smooth oriented great circle fibration of S^3 if and only if $B = \operatorname{graph}(f)$ for some smooth function $f: S^2 \to S^2$ from one factor of $S^2 \times S^2$ to the other, with |df| < 1, where $|df| = \max\{|df(X)| \mid |X| = 1\}$. Moreover, B corresponds to a Hopf fibration if and only if f is constant.

For any $\alpha \in \mathcal{E}$ we have the decomposition $T_{\alpha}\mathcal{E} = \mathcal{H}_{\alpha} \oplus \mathcal{V}_{\alpha}$ in horizontal and vertical subspaces at α , where $\mathcal{V}_{\alpha} = \text{Ker}(d\Pi_{\alpha})$ and \mathcal{H}_{α} is the orthogonal complement of \mathcal{V}_{α} . They consist of all the smooth vector fields along α which are tangent to $\alpha(S^1)$, respectively, normal, at each point of S^1 .

Let M, N be as in the introduction. G. Kainz obtained in [4] a necessary and sufficient condition for a curve $\gamma: A \to \mathcal{E}(M, N)$ to be a geodesic, where A is an interval of the real line. In the very particular case when $\gamma(t)$ is a totally geodesic embedding and $\gamma'(t)$ is a normal vector field along $\gamma(t)$ for all $t \in A$, one has that γ is a geodesic if and only if

$$2 \frac{D}{dt} \Big|_{t_o} \gamma'(t)(x) = -d(\gamma(t_o))_x \left(\operatorname{grad}_x^{\gamma(t_o)}(f) \right)$$
(4)

for all t_o and all $x \in M$, where $\frac{D}{dt}$ denotes covariant derivative along the curve

 $A\ni t\mapsto \gamma\left(t\right)\left(x\right),$ the function $f:M\to\mathbf{R}$ is given by

$$f(y) = \|\gamma'(t_o)(y)\|^2,$$
 (5)

and $\operatorname{grad}^{\alpha}(f)$ stands for the gradient of $f: M \to \mathbf{R}$ with respect to the metric on M induced by the embedding α .

Proof of Theorem 1. Clearly I is well-defined and one to one. We show now that I is smooth. Given any point of \mathcal{C} , let U be an open neighborhood of it admitting a smooth local section $\phi: U \to S^3 \times S^3$ of the bundle $S^3 \times S^3 \to \mathcal{C}$. By (1) we have that $I|_U = \Pi \circ \sigma \circ \phi$, where σ is the smooth map $\sigma: S^3 \times S^3 \to \mathcal{E}$ defined by $\sigma(p,q)(x) = pe^{xi}\bar{q}$. Hence, I is smooth.

Next we show that I is an isometric immersion. Let $\gamma: \mathbf{R} \to \mathcal{E}$ be as in Lemma 3 (a). Hence $\gamma'(0) \in T_{\gamma_o}\mathcal{E}$ and by (2),

$$|\gamma'(0)(x)|^2 = a^2 + b^2 - 2ab\cos(2x)$$
 (6)

and $\gamma'(0)(x)$ is orthogonal to $\gamma'_{o}(x)$ for all $x \in S^{1}$ (in particular $\gamma'(0) \in \mathcal{H}_{\gamma_{o}}\mathcal{E}$). Therefore,

$$\|\gamma'(0)\|^2 = \frac{1}{2\pi} \int_0^{2\pi} |\gamma'(0)(x)|^2 dx = a^2 + b^2.$$
 (7)

Besides, since Π and $S^3 \times S^3 \to \mathcal{C}$ are Riemannian submersions, we have

$$\left\| dI_{(o,o)} \left(aj, bj \right) \right\| = \left\| d\Pi_{\gamma_o} d\sigma_{(1,1)} \left(aj, bj \right) \right\| = \left\| d\Pi_{\gamma_o} \gamma' \left(0 \right) \right\| = \left\| \gamma' \left(0 \right) \right\|.$$

Now, a, b are arbitrary, hence (7) and Lemma 3 (b,c) imply that this is sufficient to conclude that I is an isometric embedding.

Next we show that I is totally geodesic. Let α be the geodesic in $\mathcal{C} = S^2 \times S^2$ with $\alpha(0) = (o, o)$ and $\alpha'(0) = (aj, bj)$, that is, $\alpha(t) = \left(e^{atj}, e^{btj}\right)(o, o)$. We have that $I \circ \alpha = \Pi \circ \gamma$, where $\gamma(t) \in \mathcal{E}$ is as in Lemma 3 (a). By items (b,c) of this Lemma, it suffices to prove that γ is a horizontal geodesic in \mathcal{E} (Π is a Riemannian submersion). We need to verify that $\gamma'(t_o)$ is horizontal and check condition (4) only at $t_o = 0$, since $\gamma(t)(x) = g(t)(\gamma_o(x))$ for all x, t, where g is the one-parameter group of isometries of S^3 given by $g(t)(q) = e^{atj}qe^{-btj}$. We have already seen that $\gamma'(0) \in \mathcal{H}_{\gamma_o}$. Besides, in our case, the left hand side of (4) for $t_o = 0$ is two times the orthogonal projection of $\gamma''(0)(x)$ onto $T_{e^{xi}}S^3 = \mathbf{R}ie^{xi} \times \mathbf{C}j$, which by (3) equals

$$4ab \left\langle e^{-xi}, ie^{xi} \right\rangle ie^{xi} = -4ab \sin(2x) ie^{xi}. \tag{8}$$

The function $f: S^1 \to \mathbf{R}$ as in (5) for $t_o = 0$ is given by (6). Hence, the right hand side of (4) is

$$-\frac{d}{dy}\Big|_{x} f(y) i e^{xi} = \frac{d}{dy}\Big|_{x} 2ab\cos(2y) i e^{xi} = -4ab\sin(2x) i e^{xi},$$

which coincides with (8). Therefore, I is totally geodesic.

Proof of Theorem 2. Let $f: S^2 \to S^2$ be as in Theorem 4. We may suppose that f is defined from the first factor of $S^2 \times S^2$ to the second one. By Theorem 1, the metric on graph (f) induced from \mathcal{E} via the map I coincides with that induced by the inclusion in $S^2 \times S^2$. Since

vol (graph
$$f$$
) = $\int_{S^2} \sqrt{\det} \left(i d_z + (df)^* (df)_z \right) dz$

(id_z denotes the identity map on T_zS^2), clearly this volume is minimum exactly for the constant functions, which correspond to Hopf fibrations by the characterization of Gluck and Warner.

If f is constant, then clearly the diameter of graph (f) equals π . Let D be the diameter of graph (f) and let d denote the distance in this submanifold. For any $z \in S^2$,

$$D \ge d\left(\left(z, f\left(z\right)\right), \left(-z, f\left(-z\right)\right)\right) \ge \text{ length } (\alpha) \ge \text{ length } (c) \ge \pi$$

for any curve $\alpha:[0,1]\to S^2\times S^2$, $\alpha(t)=(c(t),f(c(t)))$, where c is a curve in S^2 with c(0)=z and c(1)=-z. If $D=\pi$, we have then that f must take the same value on antipodal points, and also, that for any $z\in S^2$ there exists a geodesic arc c in S^2 joining z with -z such that $f\circ c$ is constant. Hence f is constant on the great circle containing c (f can be defined on the projective space). Since any two great circles in S^2 intersect, f must be constant.

Suppose now that I (graph (f)) is totally geodesic in \mathcal{E} . Then graph (f) is totally geodesic in $\mathcal{C} = S^2 \times S^2$, by Theorem 1. Given any $(X,Y) \in T$ graph (f), the geodesic $\gamma = (\gamma_1, \gamma_2)$ in $S^2 \times S^2$ with initial velocity (X,Y) is contained in graph (f). The curve γ_2 is a geodesic in S^2 , which must be constant (otherwise its image would contain a pair of antipodal points, contradicting the assumption that |df| < 1). Hence, Y = 0 for all $(X,Y) \in T$ graph (f). This implies that f is constant. The converse is obvious.

References

- [1] Besse A (1978) Manifolds all of whose geodesics are closed. Berlin Heidelberg New York: Springer
- [2] Binz E (1980) Two natural metrics and their derivatives on a manifold of embeddings. Monatsh. Math. 89: 275–288
- [3] Gluck H, Warner F (1983) Great circle fibrations of the three-sphere. Duke Math. J. 50: 107–132
- [4] Kainz G (1984) A metric on the manifold of immersions and its Riemannian curvature. Monatsh. Math. 98: 211–217
- [5] Kriegl A, Michor P (1997) The convenient setting for global analysis. Surveys and Monographs 53. Providence: AMS
- [6] Michor P, Ratiu T (1998) On the geometry of the Virasoro-Bott group. J.Lie Theory 8: 293–309
- [7] Salvai M (2002) Affine maximal torus fibrations of a compact Lie group.
 Int. J. Math. 13: 217–225

Famaf - Ciem, Ciudad Universitaria, 5000 Córdoba, Argentina.

salvai@mate.uncor.edu