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Abstract

In this article we give examples of compact manifolds P admit-
ting homogeneous Riemannian metrics (depending on a real parame-
ter) and unit vector fields V , which are critical for the total bending
functional and have minimum energy among all solenoidal (that is,
divergence free) unit vector fields. The family of manifolds P , intro-
duced by Gary Jensen to provide new examples of Einstein metrics,
consists of total spaces of principal bundles over symmetric spaces,
and includes for instance Berger spheres. Those of Jensen’s examples
involving classical groups (and one exceptional) are made explicit for
instance as Grassmann- or Stiefel-like manifolds.

Introduction.

Let M be an oriented compact connected Riemannian manifold and let
V be a unit vector field on M. The total bending of V, which measures to
what extent V fails to be parallel, is defined in [6], up to a constant, by

B (V ) =

∫

M

‖∇V ‖2 ,

where integration is taken with respect to the Riemannian volume form, ∇
is the Levi-Civita connection, (∇V )p ∈ End (TpM) , X 7→ ∇XV, and ‖T‖2 =

trT tT. The unit vector field V is a map from M into T 1M, the unit tangent
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bundle of M. If one considers on T 1M the canonical (Sasaki) metric, then
the energy of V can be expressed as

E (V ) = c1 + c2B (V ) ,

where c1 and c2 are constants depending only on the dimension and the
volume of M . Beginning with G. Wiegmink and C. M. Wood [6, 7], critical
points of (any of) such functionals on unit vector fields on M have been
extensively studied (see for instance in [3] the abundant bibliography on the
subject).

Some Riemannian manifolds, for instance odd dimensional spheres, admit
volume preserving, unit speed flows. In a certain sense, one can say that the
best organized of these flows are those with minimum total bending among
them.

We give new examples of unit vector fields V on compact Riemannian
manifolds M having the following properties:

(∗1) V is critical for the energy functional among all unit vector fields on M.

(∗2) V has minimum energy among all solenoidal (that is, divergence free)
unit vector fields on M.

A unit vector field V on a compact oriented Riemannian manifold M is
said to have minimum Ricci curvature if Ricci(Vp) ≤ Ricci(Wp) for all p ∈ M
and any unit vector field W on M . It is said to be an eigenvector of the Ricci
curvature if Ricci(Vp) = f (p) Vp for some smooth function f on M and all
p ∈ M .

Proposition 1 Let M be a compact oriented Riemannian manifold and V a
Killing unit vector field on M. If V is an eigenvector on the Ricci operator,
then it satisfies property (∗1). If V has minimum Ricci curvature, then it
satisfies property (∗2).

Proof. The first assertion was proved by Wiegmink in [6, Theorem 2 (iv)].
The second one follows from the expression for the total bending given in
formula (2) of the same article, which originated in K. Yano (see for instance
[8]) and states that, up to a constant,

B (W ) =

∫

M

Ricci (W ) + 1
2
‖LW g‖2 − (div W )2 ,
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for any unit vector field W on M , where LW g denotes the Lie derivative of
the metric in the direction of W and integration is taken with respect to the
Riemannian volume form. (If W is a Killing vector field, then the second
and third terms of the integrand vanish, since by definition, the metric does
not vary along a Killing vector field, let alone the volume form.)

An immediate consequence of the Proposition is that the following vector
fields satisfy properties (∗1-2):

a) Unit Hopf vector fields on odd dimensional spheres.
b) Left or right invariant unit vector fields on a compact simple Lie group

endowed with a bi-invariant metric (the Lie group needs only to be semisimple
if the metric is determined by the opposite of the Killing form).

With additional techniques, González-Dávila and Vanhecke [4] proved
that each of the two distinguished unit vector fields on the Berger spheres
(S3, gt) , for some range of t, have minimum energy among all unit vector
fields. In particular, they satisfy properties (∗1-2).

In this paper we present many examples of unit vector fields satisfying
properties (∗1-2), among them Hopf unit vector fields on spheres S2n+1 or
S4n+3 for certain homothetic modifications of the canonical metrics in the
vertical spaces of the Hopf submersions S2n+1 → CP n, S4n+3 → HP n, as in
the following proposition. Let A = C or H be the complex and quaternionic
algebras, respectively, and let Im A denote the orthogonal complement of 1.

Theorem 2 Let S = S2n+1 or S4n+3 be the unit sphere in An+1 and let D be
the one-, respectively, three-dimensional distribution on S defined by Dq =
(Im A).q ⊂ TqS. For each s > 0, let γs be the Riemannian metric on S
satisfying

γs (u, v) = 0, γs (v, v) = ‖v‖2 , γs (u, u) = s2 ‖u‖2

for all u ∈ Dq, v ∈ D⊥
q , q ∈ S. Then, for any unit vector u ∈ Im (A) , the

vector field U on S defined by Uq = uq/s (with unit length with respect to
γs) satisfies property (∗1). Moreover, it satisfies property (∗2) provided that
s2 ∈ (0, 1], s2 ∈ [1/ (2n + 3) , 1], respectively.

The proof is based on considerations about some examples below and is
postponed to the end of the article.

An application of Jensen’s examples.
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All our examples arise from a construction by Gary Jensen [5] of metrics gt

(for t in some real interval) on the total spaces of certain principal bundles
P → M , with M an irreducible symmetric space. The metrics gt differ homo-
thetically on the vertical spaces and coincide on the horizontal ones. These
spaces P may be thought of as a sort of generalization of Berger spheres.
Based on Jensen’s arguments, we obtain examples generalizing example (a)
above. Using Proposition 13 of [5] one could also generalize example (b) in
an analogous manner, finding unit vector fields satisfying properties (∗1-2)
on compact Lie groups with left invariant metrics, which are not bi-invariant.

Next we recall Jensen’s results. Let K be a compact connected semisim-
ple Lie group endowed with a bi-invariant Riemannian metric b. Suppose
that K has closed subgroups H, H1, H2 with Lie algebras h, h1 6= {0} , h2,
respectively, such that b (h1, h2) = 0 and h = h1⊕ h2 is a direct sum of ideals
of h (that is, as a group, H is locally the product of H1 and H2). Let k be the
Lie algebra of K and m the orthogonal complement of h in k. Let us denote
P = K/H2, M = K/H and π : P → M the canonical projection. Notice
that H/H2 is Lie group with Lie algebra h1 and π is an (H/H2)-principal
bundle.

Proposition 3 [5] For any t > 0, the inner product

gt = b|m×m + t2 b|h1×h1
, g (m, h1) = 0 (1)

on h⊥2 = m⊕ h1 is Ad(H2)-invariant and defines a K-invariant Riemannian
metric on P , subducing a K-invariant Riemannian metric on M. Moreover,
for any vector Y ∈ h1, a vertical vector field Ỹ on P is well-defined by

ỸkH2 = dL̃k (Y )

and is Killing (here L̃k denotes left multiplication by k ∈ K in P ).

In the following suppose that b = −F, the opposite of the Killing form of
k and that there exists c ∈ R such that F1, the Killing form of h1, satisfies
F1 = c F |h1×h1

, for instance when h1 is simple or abelian.

Theorem 4 [5, Proposition 12] Suppose additionally that M is an irre-
ducible Riemannian symmetric space. If P, gt and Y ∈ h1 are as above, with
gt (Y, Y ) = 1, then Ỹ is an eigenvector of the Ricci operator on P . Moreover,
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Ỹ has minimum Ricci curvature, provided that t > 0 belongs to the real closed
interval whose endpoints are the nonnegative roots of the equation

(2r/n + 1) (1− c) t4 − 2t2 + c = 0, (2)

where n = dimm, r = dim h1.

Remark. a) Jensen proves that the metric gt is Einstein if and only if t is
a nonzero root of the equation (2).

b) No vector field Ỹ as in the Theorem is parallel, since any such a vector
field has positive Ricci curvature, by Proposition 11 (iii) and equation (26) of
[5]. (Notice that parallel unit vector fields are trivial minima of the energy
functional.)

As an immediate corollary of Theorem 4 and Proposition 1 we have

Corollary 5 If P and Y are as above, then the unit vector field Ỹ satis-
fies property (∗1). If additionally t is in the cited interval, then Ỹ satisfies
property (∗2).

Concrete examples.

Jensen classified all Lie algebra triples k, h, h2 satisfying the hypothesis of
Theorem 4. We adapt to our situation all those examples, up to finite cov-
erings, of Jensen’s list involving classical groups (Examples 1 - 10) and one
exceptional (Example 11), making them explicit for instance as Grassmann-
or Stiefel-like manifolds.

Next we fix some notation and recall some concepts involved in the exam-
ples. We refer the reader to [1]. Let {e1, . . . , em} denote the canonical basis
of Rm, Cm or Hm. The m × m identity and zero matrices are denoted by
Im and 0m, respectively. The matrix with blocks A1, . . . , Am in the diagonal
and zeroes in the rest is denoted by diag(A1, . . . , Am) .

A complex orientation on an m-dimensional complex vector space V is
an element of (ΛmV − {0}) /R+, that is an equivalence class of nonzero C-
multilinear alternating functions ×m

j=1V → C modulo positive multiples.
Equivalently, if V carries an Hermitian inner product, a complex orienta-
tion is an equivalence class of ordered orthonormal bases of V, two of them
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being in the same class if and only if the complex matrix relating them has
determinant one, that is, a multivector v1 ∧ · · · ∧ vm, with (v1, . . . , vm) an
ordered orthonormal basis of V.

The S1-projectivization of an ordered orthonormal basis (v1, . . . , vm) of
an Hermitian complex vector space is the set {(uv1, . . . , uvm) | u ∈ S1} and
is denoted by [v1, . . . , vm] .

Let V be a real vector space with an inner product 〈, 〉 and an orthogonal
complex structure J , that is, an orthogonal operator J on V such that J2 =
− Id (in particular the dimension of V is even). Then V has canonically the
structure of a complex vector space and

(x, y)J = 〈x, y〉+ i 〈x, Jy〉
defines an Hermitian product on V.

Let (V, 〈., .〉 , θ) be an oriented Euclidean space of dimension 2m. An or-
thogonal complex structure J on V is said to be special if ωm = θ, where
ω (x, y) = 〈x, Jy〉 for all x, y ∈ V. If V = R2m with the canonical inner prod-
uct and the canonical orientation e1∧· · ·∧e2m, then the linear transformation

given by the matrix Jm =

(
0m −Im

Im 0m

)
is a special complex structure and

all the other ones have the form kJmk−1 for some k ∈ SO (2m) .
The Killing forms of so (m) , su (m) ⊂M(m,C) and of sp (m) ⊂M(2m,C)

are given by
F (X,Y ) = λm tr (XY ) , (3)

where λm = m− 2, 2m, m + 2, respectively.

In each of the examples 1–11 below, the Lie group K acts transitively on P
and M . Suppose that K is endowed with the bi-invariant metric determined
by the opposite of the Killing form and P and M carry the Riemannian struc-
tures such that the canonical projections of K onto them are Riemannian
submersions.

Theorem 6 In each of the following examples, the projection

π : P ∼= K/H2 → M ∼= K/H

is a Riemannian submersion and M is an irreducible symmetric space. If P
carries the metric gt defined in (1), then for all t > 0 the unit vector fields
Ỹ , with Y ∈ h1, which are parametrized by the unit sphere in h1

∼= Rr, have
property (∗1). If additionally t is in the real interval whose endpoints are the
roots of (2), with the given constant c, then Ỹ has property (∗2).
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Example 1. M is the Grassmann manifold of all oriented p-dimensional
subspaces of Rp+q and P is the Stiefel manifold of all ordered orthonormal
bases of elements of M .

K = SO (p + q) H2
∼= SO (q) H = SO (p)× SO (q)

h1
∼= so (p) r =

(
p
2

)
c = (p− 2) / (p + q − 2)

Clearly, H2 = {Ip}×SO (q) and H are the isotropy subgroups at (e1, . . . , ep)
and e1∧· · ·∧ep, respectively. Next we compute c. By (3), if X ∈ so (p), then
F1 (X, X) = (p− 2) trX2 and

F (diag (X, 0q) , diag (X, 0q)) = (p + q − 2) tr X2.

Hence, c = (p− 2) / (p + q − 2).

Example 2. M is the manifold of special complex structures of R2p and
P is the manifold of all complex orientations on the complex vector space
structures on R2p determined by elements of M .

K = SO (2p) H2
∼= SU (p) H ∼= U (p)

h1
∼= R r = 1 c = 0

We recall that K acts on M by conjugation. The isotropy subgroup at Jp

is H = {A ∈ SO (2p) | AJp = JpA} , whose Lie algebra h consists of all ma-

trices fp (X + iY ) :=

(
X −Y
Y X

)
, where X,Y are real (p× p)-matrices,

X is skew-symmetric and Y is symmetric. The map fp : u (p) → h is
a Lie algebra isomorphism. The Lie algebra of the isotropy subgroup at
((R2p, Jp) ∼= Cp, e1 ∧ · · · ∧ ep) is h2 = fp (su (p)) , that is,

h2 = {fp (X + iY ) | trY = 0} .

Hence h1 = RJp is abelian and so c = 0.

Example 3. M is as in the previous example and P is the manifold of all
S1-projectivized orthonormal bases of the complex vector space structures
on R2p determined by elements of M .

K = SO (2p) H2
∼= S1 H ∼= U (p)

h1
∼= su (p) r = p2 − 1 c = p/ (2p− 2)
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The Lie algebra of the isotropy subgroup at ((R2p, Jp) ∼= Cp, [e1, . . . , ep]) is
h2 = RJp, since exp

(
sf−1

p (Jp)
)
ej = esiej for all j = 1, . . . , p. Hence h2 is

the subalgebra we called h1 in the previous example and vice versa. Next we
compute c. Let X ∈ so (p) ⊂ su (p) and Y = 0. By (3), F1 (X, X) = 2p trX2

and F (fp (X) , fp (X)) = 2 (2p− 2) trX2. Hence c is as stated.

Example 4. M is the Grassmann manifold of all oriented 4-dimensional
subspaces of R4+q and P is the manifold of all special orthogonal complex
structures on elements of M , with their complex orientations.

K = SO (4 + q) H2
∼= S3 × SO (q) H = SO (4)× SO (q)

h1
∼= so (3) r = 3 c = 2/ (q + 2)

Clearly, H is the isotropy subgroup at e1 ∧ · · · ∧ e4. For a quaternion q, let
Rq, Lq denote right, respectively left, multiplication by q. With the usual
identification R4 ∼= H, any element of SO (4) may be written as Lp ◦ Rq for
some p, q ∈ S3 ⊂ H, and the special complex structure J := diag(J1, J1) is
represented by Li. Now, Lp ◦Rq is a complex automorphism of (R4, J) if and
only if it commutes with Li, or equivalently, p = eiθ for some θ ∈ R. More-
over, the complex orientation e1∧e3 is preserved if and only if p = ±1. There-
fore, if R (respectively, L) is the subgroup of SO (4) consisting of all matrices,
with respect to the canonical basis, of the transformations Rq (respectively,
Lq), q ∈ S3 ⊂ H, then the isotropy subgroup at (e1 ∧ · · · ∧ e4, J, e1 ∧ e3) ∈ P
is H2 = R× SO (q) and h1 is the Lie algebra of L.

We now compute c. For q ∈ S3, let ` (q) ∈ SO (q) denote the matrix
of Lq with respect to the canonical basis. The map ` : S3 → L is a Lie
group isomorphism and d` (i) = J ∈ Lie (L) ⊂ so (4) . Let J̄ = diag(J, 0q) ∈
so (4 + q) . Since d` is a Lie algebra isomorphism, and

[x, y] = 2xy (4)

for all orthogonal x, y ∈ ImH = T1S
3, we have that F1

(
J̄ , J̄

)
= −8. On

the other hand, we have by (3) that F
(
J̄ , J̄

)
= (q + 2)tr J2 = −4 (q + 2) .

Therefore, c = 2/ (q + 2) .

Example 5. M is the Grassmann manifold of all p-dimensional subspaces
of Cp+q and P is the manifold of all complex orientations of elements of M .

K = SU (p + q) H2 = SU (p)× SU (q) H = S (U (p)× U (q))
h1
∼= R r = 1 c = 0
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Clearly, H and H2 are the isotropy subgroups at span{e1, . . . , ep} and at
e1 ∧ · · · ∧ ep, respectively. The orthogonal complement of h2 in h is h1 =
Rdiag(qiIp,−piIq) ∼= R, which is abelian. Hence, c = 0.

Example 6. M is as in the previous example and P is the Stiefel manifold
of all S1-projectivized ordered orthonormal bases of elements of M .

K = SU (p + q) h2
∼= u (q) H = S (U (p)× U (q))

h1
∼= su (p) r = p2 − 1 c = p/ (p + q)

The isotropy subgroup at [e1, . . . , ep] is the connected group

H2 =
{
diag (uIp, A) | u ∈ S1, A ∈ U (q) , updet (A) = 1

}
,

with Lie algebra h2 = {diag (aiIp, X) | a ∈ R, X ∈ u (q) , pai + trX = 0} .
The orthogonal complement of h2 in h is h1 = su (p)×{0q} . Next we compute
c. If X ∈ su (p) , by (3), F1 (X, X) = 2p trX2 and

F (diag (X, 0q) , diag (X, 0q)) = 2 (p + q) tr X2.

Hence c = p/ (p + q).

Example 7. M is the Grassmann manifold of all p-dimensional subspaces of
C2p and P is the Stiefel manifold of all S1-projectivized ordered orthonormal
bases of the elements of M and their orthogonal complements.

K = SU (2p) H2
∼= S1 × Zp H = S (U (p)× U (p))

h1 = su (p)× su (p) r = 2 (p2 − 1) c = 1/2

Clearly, H is the isotropy subgroup at span{e1, . . . , ep} and the isotropy
subgroup at ([e1, . . . , ep] , [ep+1, . . . , e2p]) is

H2 =
{
diag (uIp, vIp) | u, v ∈ S1, upvp = 1

}
.

The map φ : S1 × Zp → H2, φ (u,w) = diag(wuIp, ūIp) is a Lie group
isomorphism (we think of Zp as the solutions of zp = 1). Next we compute
c. Let X, Y ∈ su (p) . Since h1 is a sum of ideals, we have by (3) that

F1 (diag (X, Y ) , diag (X, Y )) = 2p
(
trX2 + trY 2

)
.

On the other hand, also by (3), we have that

F (diag (X, Y ) , diag (X,Y )) = 4p tr diag
(
X2, Y 2

)
= 4p

(
trX2 + trY 2

)
.
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Hence, c = 1/2.

Example 8. M is the Grassmann manifold of all p-dimensional quaternionic
subspaces of Hp+q and P is the Stiefel manifold of all ordered orthonormal
bases of elements of M .

K = Sp (p + q) H2
∼= Sp (q) H = Sp (p)× Sp (q)

h1
∼= sp (p) r = p (2p + 1) c = (p + 2) / (p + q + 2)

Notice that K ∼= U (p + q,H)). H is the isotropy subgroup at e1 ∧ · · · ∧
ep and the isotropy subgroup at (e1, . . . , ep) is {Ip} × Sp (q). Hence h1 =
sp (p) × {0q}. By (3), since sp (p) is a real form of sp (p,C), we have that
c = (p + 2) / (p + q + 2).

Example 9. M is the Grassmann manifold of all totally isotropic p-dimen-
sional complex subspaces of C2p (with respect to the canonical complex sym-
plectic structure Ω =

∑p
j=1 dzj ∧ dzj+p) and P is the manifold of all complex

orientations of elements of M .

K = Sp (p) H2
∼= SU (p) H ∼= U (p)

h1
∼= R r = 1 c = 0

Recall that K is the group of complex automorphisms of C2p preserving both
Ω and the canonical Hermitian scalar product. The isotropy subgroup at
span{e1, . . . , ep} is H =

{
diag

(
B, B̄

) | B ∈ U (p)
}

. The isotropy subgroup
at e1 ∧ · · · ∧ ep is H2 =

{
diag

(
B, B̄

) | B ∈ SU (p)
}

with Lie algebra h2 ={
diag

(
X, X̄

) | X ∈ su (p)
}

. Hence h1 = R diag(iIp,−iIp) , which is abelian
and so c = 0.

Example 10. M is as in the previous example and P is the Stiefel manifold
of all S1-projectivized ordered orthonormal bases of elements of M .

K = Sp (p) H2
∼= S1 H ∼= U (p)

h1
∼= su (p) r = p2 − 1 c = p/ (p + 2)

The isotropy subgroup at [e1, . . . , ep] is H2 = {diag (uIp, ūIp) | u ∈ S1} . Hence,
h2 is the subalgebra we called h1 in the previous example and vice versa. Next
we compute c. Given Y ∈ su (p) , we have by (3) that F1 (Y, Y ) = 2p trY 2

and

F
(
diag

(
Y, Ȳ

)
, diag

(
Y, Ȳ

))
= (p + 2) tr diag

(
Y 2, Ȳ 2

)
= 2 (p + 2) trY 2,
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since Ȳ 2 = (−Y t)
2
. Hence, c = p/ (p + 2) .

Example 11. M is the Grassmann manifold of all quaternionic subalgebras
of the octonians and P is the Stiefel manifold of all algebra monomorphisms
of H into the octonians.

K = G2 H2
∼= SU (2) H ∼= SU (2)× SU (2)

h1
∼= su (2) r = 3 c = 1/6

We recall that the algebra O of the octonians is H×H with the multiplication
given by

(a, b) (c, d) =
(
ac− d̄b, da + bc̄

)

and G2 is its group of automorphisms. The group S3 × S3 acts on O as
follows:

(u, v) . (x, y) = (uxū, vyū) (5)

(we denote the action by a dot, to avoid confusion with the octonian multi-
plication). The action is effective and preserves the algebra structure, hence
we may consider S3×S3 as a subgroup of G2. The product S3×S3 is more-
over the isotropy subgroup at 1 ∧ i ∧ j ∧ k. On the other hand, the isotropy
subgroup at the inclusion fo : H → O, fo (x) = (x, 0) is H2 = {1} × S3.
We compute the constant c corresponding to this example in the following
Proposition.

Proposition 7 The constant c corresponding to the last example is 1/6.

Proof. We consider the presentation of g2 in terms of its root system, as the
orthogonal direct sum

g2 = t⊕
∑

γ∈∆+

mγ,

where t = R2 with the canonical metric, α = (2, 0), β =
(−3,

√
3
)

and
∆+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β} is the set of positive roots, mγ

is a two-dimensional vector space with orthonormal basis {xγ, yγ} and

[z, xγ] = 〈z, γ〉 yγ, [z, yγ] = −〈z, γ〉xγ, [z, z′] = 0, [xγ, yγ] = γ (6)

for all z, z′ ∈ t and all γ ∈ ∆+ (we do not need the expression for the Lie
brackets of the other elements). Notice that the inner product is a negative
multiple of the Killing form.
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Let S1 = {eis | s ∈ R} ⊂ S3. Since the restrictions to each factor S3 of
the action (5) on O commute, S1 × S1 ⊂ S3 × S3 is a maximal torus in G2

and there is a Lie algebra monomorphism

ι : T(1,1)

(
S3 × S3

)
= ImH× ImH→ g2

such that the restriction of ι to each factor ImH preserves inner products
(but ι does not!). We may suppose that ι (ImH× {0}) = Rγ1 ⊕ mγ1 and
ι ({0} × ImH) = Rγ2⊕mγ2 for some pair of orthogonal positive roots γ1, γ2,
say {γ1, γ2} = {α, 3α + 2β} . By Lemma 8 below, γ1 = α and hence h1 =
Rα ⊕ mα. Using (6), one computes the matrix of adα with respect to the
basis of g2 consisting of α, β and xγ, yγ for γ ∈ ∆+: It is a matrix with
blocks λJ1 in the diagonal, with λ = 0, 4, 6, 2, 0,−2,−6. Hence, F (α, α) =
tr ad2

α = −192. On the other hand, the matrix of adα|h1
with respect to the

basis {α, xα, yα} is diag(0, 4J1) and so F1 (α, α) = tr ad2
α

∣∣
h1

= −32. Therefore

c = 32/192 = 1/6. ¤

Lemma 8 With the notation of the previous Proposition, γ1 = α.

Proof. Since the inner products on ImH and g2 are (negative) multiples of
the respective Killing forms and those Lie algebras are simple, there exist
positive constants λ and µ such that

‖ι (x, 0)‖ = λ ‖x‖ and ‖ι (0, x)‖ = µ ‖x‖

for all x ∈ ImH. Now, since ι is a Lie algebra morphism, we have by (4)
that [ι (j, 0) , ι (k, 0)] = 2ι (i, 0). Hence we may take ι (j, 0) /λ and ι (k, 0) /λ
as xγ1 and yγ1 , respectively, since they are orthonormal and their Lie bracket
is a positive multiple of ι (i, 0). Therefore,

‖γ1‖ = ‖[xγ1 , yγ1 ]‖ = ‖2ι (i, 0)‖ /λ2 = 2/λ.

Analogously, ‖γ2‖ = 2/µ. Thus, to show that γ1 = α, the short root, it
suffices to verify that λ > µ.

Differentiating the action (5) of G2 on O, we have an inclusion I : g2 →
so (8) (identifying O with R8 in the canonical way):

I (i, 0) (x, y) = d
ds

∣∣
0

(
eisxe−is, ye−is

)
= (ix− xi,−yi) , (7)

I (0, i) (x, y) = d
ds

∣∣
0

(
x, eisy

)
= (0, iy) .
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Let B be the inner product on so (8) defined by B (X, Y ) = − trXY, which
is a negative multiple of the Killing form of so (8) , and also (via I) of that of
g2, since this algebra is simple. By (7), I (i, 0) = diag (02, 2J1,−J1, J1) and
I (0, i) = diag (04, J1, J1) . Hence,

λ2

µ2
=
‖ι (i, 0)‖2

‖ι (0, i)‖2 =
B (I (i, 0) , I (i, 0))

B (I (0, i) , I (0, i))
=

12

4
= 3 > 1,

as desired. ¤

Proof of Theorem 2. Let K and H2 be as in Example 5 (for A = C) or as
in Example 8 (for A = H), with p = 1 and q = n. The group K acts on S
by isometries, preserving the distribution D. The isotropy subgroup at e1 is
H2, which acts irreducibly on De1 and on its orthogonal complement in Te1S.
Therefore, there exist positive numbers λ, µ such that the map

φ : (K/H2, gt) → (S, µγλt) , φ (kH2) = ke1, (8)

is an isometry for any t > 0. Moreover, in each case h1 is canonically iso-
morphic to Im A and a vector field Ỹ on K/H2 (Y ∈ h1) is mapped by dφ to
one of the vector fields U considered in the Theorem. Hence, the assertion
regarding property (∗1) is proved (notice that if a unit vector field V on a
Riemannian manifold (N, g) satisfies properties (∗1-2), then µV on (N,µg)
has the same properties.)

By Theorem 6 - Example 5, the remark after Theorem 4 and (8), only
the round metric γ1 is Einstein among the metrics γs on S2n+1 and hence
any unit vector Us on (S2n+1, γs) satisfies property (∗2) if 0 < s ≤ 1. We
consider now S4n+3. By the Example in [5], the metric gt of Example 8 is
Einstein if and only if t2 = 2 (corresponding to a round metric µγ1) or
t2 = 2/ (2n + 3). Since s = λt, we have λ2 = 1/2. Therefore, proceeding
analogously as before, the unit vector Us on (S4n+3, γs) satisfies property (∗2)
if 1/ (2n + 3) ≤ s2 ≤ 1. ¤
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